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Abstract. We analyze the forced cylindrical bending vibrations of a laminated
elastic plate with actuators at the top and bottom surfaces and forced into
vibrations by applying time harmonic voltages to the actuators. The actuators

are modeled as thin films and mixed edge conditions are employed to simulate
simple supports. The analysis is performed by using the method of Fourier series
and the solution is exact within the assumptions of linear elasticity and plane
strain deformations. Numerical results are computed for an aluminum plate with

actuators affixed to its two major surfaces.

1. Introduction

Elastic beams or plates with piezoelectric films attached
to them have been of great interest because of their use
as smart structures. Most analytical analyses have been
based on various approximate beam or plate theories |1].

Pagano [2] has used the method of Fourier series
to study the cylindrical bending of a simply supported
elastic composite plate. The solution 1s exact within
the assumptions of plane strain deformations and linear
theory of elasticity.  The series solution satisfies
boundary conditions for a simply supported plate
characterized by the vanishing deflection and bending
moments at the edges. Ray et al [3] generalized
Pagano’s result to analyze the cylindrical bending of a
simply supported piezoelectric plate, and later [4] the
cylindrical bending of an elastic plate with piezoelectric
layers affixed to the bottom and top surtaces. Recently,
Zhou and Tiersten [5] have used the Fourier series
method to analyze the cylindrical bending of a laminated
elastic plate with actuators on the bottom and top
surfaces. The above analyses are all for static bending
problems.

In this paper, the Fourier series method 1s employed
to study the cylindrical bending vibration of a simply
supported elastic plate with piezoelectric actuators under
time harmonic driving voltages. The laminated elastic
plate can be made of either an 1sotropic or orthotropic
material. Numerical results for an example problem are
given.
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Figure 1. An N-layer elastic plate with piezoelectric
actuators at the bottom and top surfaces.

2. Governing equations

We consider an N-layer laminated elastic plate of length
21 and total thickness 2k with piezoelectric film actuators
attached to its bottom x3 = —h and top x3 = h surfaces,
as shown in figure 1. The positions of the bottom and top
surfaces of the plate as well as of the N — | interfaces
are denoted by ¥ = —p AW, RNV RN = h
respectively. The plate is forced into cylindrical bending
vibrations with u, = 0 and d/0x, = 0 by applying
voltages to the actuators.

2.1. Governing equations

For the nth layer (n = 1,2, 3, ..., N) of the plate, the
relevant equations of motion in rectangular Cartesian

485



J S Yang et al

coordinates are

(n) (ny _  _(n):-(n)
Ty T T3 = P U,

(1)

T+ i = p i

where a superscript n 1n the parenthesis indicates
quantities for the nth layer, a superimposed dot indicates
partial differentiation with respect to time ¢ and a comma
followed by an index i signifies partial differentiation
with respect to x;. Furthermore p 1s the mass density,
7;; the stress tensor and u; the displacement of a
material point. The relevant constitutive equations for
an orthotropic material are

(n) __ (n) (n) (n) (n)
14} Ciy Uy T Cy3Uszy

(n) (n) (n) (n) (n)
33 Cla Uy T Cy3 Uy 5 (2)

(ny (), (n)
Ty, = Cs5 (Uy | + Uy 5

which can be reduced to those for an isotropic material.
Here ci’]’), cfg), C:,(;), and cg';) are elasticities for the
material of the nth layer. The boundary conditions for
each layer at both ends are

=0 u’=0 at x,=0, 2. (3)
We note that these simulate a simply supported plate
characterized by the vanishing of the deflection and
bending moment at both ends. At the interface h"™
between the nth and (n + 1)th layers, we have

(n) _ _(n+l1) (n) __ _(n+l) __1.4{n)
Ty =T > T3z =133 at  x3 =h )
I N N L A

That 1s, the displacement and tractions are continuous
across the interface between the nth and (n + 1)th layer.
Similar conditions hold at the interface A"~ between
the nth and (n — 1)th layer. In terms of displacements,
(1), (3) and (4) can be written as

(n) {(n) (n) (n) (n) (n)y . (n) _  (n):(n)
Ciy Uy T Css Uy 33+ (€13 + Cs5 )y 13 = P U,

(n) (n)y . (n) (n) (n) (n) (n) _ _(n):(n)
(€)3 + Css )”1,,13 T Cs5 Uz jy T Cy3 Uz 33 = 0 Uy

(3)
cYul +eFuihy =0 at x; =0, 2
u:{,j") =0 at x; =0, 2/
and
{n) , (n) (n)y _ (n+l), (n+1) (n+1)
Css (”3,1 + Uy 3) = Cq5 (U3, Uy )
at X3 = h(n)
(n) (n) (n) (n)  (n+1) (n+l)
Clz |+ CyyUzz = Cyy3 Uy,
+ cgﬁ)ug’f;” at  xy = A"
1 (n) (n+1) (6)
u&") = u(lw - Uy = u3”+ at x3 = h'"

The piezoelectric actuators are modeled by the
equations for a thin piezoelectric film [6]. We use
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a superscript b to indicate quantities for the bottom
actuator with mass density p”, thickness A” and
displacement u?(x,, t). The balance of linear momentum
in the x; direction yields

= p"h"i". (7)

xy=—~h

For polarized ceramics poled in the x3 direction, the
constitutive equations which satisfy the electric charge
equation to the lowest order are

b _ =b . b ~b b __ =b b ~b /b b
Ty =cphiyy —en By =cluy —e5, V() / h (8)
where
~h b ~h b o .b b
cy =Sp/A ey =dy /(s +5))
b b b b
A =578 — 51287, (9)
or
b __ b b b 4 .b b __ b b b .b
Crp = €1y = C13€13/C33, €3y = €3 — €33C3/C33. (10)

In (8) we have set EY = V’(t)/h” where V(1) is
the applied time dependent voltage across the bounding
surfaces of the bottom actuator. In equations (9) and
(10), s7,, s2,, and d7, are the elastic and piezoelectric
constants for the actuator material. The end conditions
for the bottom actuator are

=0 at x, =0, 2 (11)

In terms of displacements, (7) and (11) can be written
as

b=b b (1), (1) (1) bbb
h Ci1lU) 11 + Css (“3,1 +”1,3) = p h u
X3=—h (12)

chuly=e VP@)/h® at x; =0, 2

Similarly, the superscript ¢ 1s used to denote
quantities for the top actuator. We have

(N)

h'T),, — T3 = p'h'u; (13)

X3 =h

H —{ ! —f ! —f { ot | ! !
Ty = Oy — €383 = Cly ) — e, V' (1)/h (14)

in which we have set E; = V'(t)/h’. The end conditions
for the top actuator are

T, =0 at x; =0, 2 (15)
In terms of displacements, (13) and (15) become

t=t .t (N}, (N) (N) N E R
hcyyuy 1y — Css (U3 + Uy s h_ph“’l
= (16)

Gl =&,V (t)/h at x, =0, 2

The additional boundary conditions at the top and
bottom surfaces of the laminated plate are given by

| by bl (1) b
r§3)=phué), u, =u;] at x3= —h

(N} _ rpt-(N) (NY ¢ .

(17)



which, when written 1n terms ot displacements, become

il + el = ) =
at x3 = —nh
(18)
— (Cg)“ﬁ) T C'(%’% Us a)) = p'h'i (N) = ugN} u,
at x3 = h

Equations (17) follow from the continuity of tractions
and displacements at the interface between the actuator
and the plate, and incorporate the balance of linear
momentum, in the x; direction, for the actuator. The
complete set of equations and boundary conditions
consists of equations (5) for each of the N layers,
equations (6) for each of the N — | intertaces, and

equations (12), (16) and (18).

2.2. Time harmonic vibrations

We study vibrations of the plate under time harmonic
driving voltage

Vb(t) _ f;beiwr
Vit) = Ve (19)

where V*? and V' are constants. Accordingly, for steady
state vibrations, all the field quantities have the same
time dependence

u)” (e, x3, 1) = @y (xy, x3)e"”

1ot

(n) ~( )

uy (xy, X3, 1) = i, (X, x3)e
| (20)

u®(x), 1) = &?(x;)e‘w‘

uh (x1, 1) = i ()

Henceforth, we drop the superimposed tildes. Substitu-
tion of (20) into (5), (6), (12), (16) and (18) yields

(n) (n) (n) (n) (1) (n)y, (n)
Cly Uy ) T Css Uy 33T (€13 + €55 U3 13

2 {(n)

= —p"w 7
(H) (H) ( ) (n) (n) (n)
(€13 )“1 13 T Cs5 Uz +C’H U3 33

. 2 (n)

cfl)uﬂ—l—cffag%_o at x; =0, 2/

ul’ =0 at x; =0, 2 (21)
s sy + 1)) = oss s 'y )
at  x3 = AW
cu) + el = ey 4 el
at  xy = h'"Y
WV =u" W =0y at xy =" (22)

Cylindrical bending vibration of elastic plates

b= 1) (1) (]) hyb
hcy uy ), + 55 (i3 +uy 3 = —p"h w'u

I_a,:-—h

b, =eVP/h" at x, =0, 2I

(23)
N), (N) (N) o 2t
h'ciuy — 655 (U3 +u)y) _h:—pha)ul
B (24)
chuf =&,V /h at x;=0, 2
(1) (1) (1) (1) bib 2. (1) (1) b
Cilzly |+ C3Uy3 = —p Uy’ ,  uy’ =u,
at xy3 = —h
(N) (N) (N) (N) 2 (N) (NY i
at x5 = h (25)

2.3. Homogenization of boundary conditions

We transform the inhomogeneous edge conditions in (23)
and (24) at end surfaces x; = 0, 2/ of the actuators into
homogeneous conditions by writing
b b :
W =u"+Clxy, ul=a'+C'x 26)
ch=e v/t nhy, C' =é,\V'/ch)
and substituting into (23) and (24), which then become
homogeneous boundary conditions in #” and &) at x; =
0, 2l. In summary, the problem to be analyzed involves
solving the following partial differential equations and

boundary conditions for u, )(x] , X3), Us )(xl , X3), “b(x])
and u] (x):

(n) (n) (n) {n) (n) (n)y . .(n)
CiyUp ) T Cs5Uy 53T (€)3 + Cs5 )“3,13

= —p(”)wzug ") (27a)
(an) (n))ul 1t ;5)”‘; L+ Cg)”;n%ia
= — el (27b)
cﬂ)u, |+ cﬁ?ug"; =0 at x; =0, 2 (27c)
uy’ =0 at x; =0, 2 (27d)
CSS)(“(H) (n)) _ Csn+l)( (fH—l) (n+l))
at  x3 = A"
e + e = e+
at x;3 = h™W
uP =y 0 g =™ (28)

b~ (l) (l)
h Cn“l 11T C (“ 1,3)

= —p"h’w* (" + C’xy)
coul, =0 at x =0, 2 (29)
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(V) (V)

t—t ~t N)
hCn”l il C'ss (“11 + Uy 3

xi=h
= —p' W’ @ + C'x))

&l =0 at x, =0, 2 (30)

(1) (1) () ) bpb 2 (1)
Cizlyy F ez 3= —p hwu,

um = ul +C’x; at x3=—h

(N) (N) (N) (N) tpt, 2, (N)
“(C11”11+33 13) = —p N Wiy
M =i+ C = h 31

3. Fourier series solutions

3.1. Plates with actuators on both major surfaces

We assume that the displacements can be expressed as a
Fourier series in x;. Thus

ul” = al” (x3) + Z M (x3) cosamx;  (32a)

) = Zbg>(x3) SN oty X (32b)
m=1

ﬁi’ = Dg + Z Df; COS O,y X | (32¢)

u, = Dy + Z D! cos o x; (32d)

Oy = mi /21 (32¢)

where a\" (x3), a™ (x3), b (x3), DE, D2, D}, and D!
are to be determined. Equations (32) ensure that all
homogeneous boundary conditions at the edges x; = 0
and x; = 2! are satisfied. Substitution of displacement
fields (32) into equations (27) yields the following
differential equations

css agyy + p P wlay” =0 (33)
and
'111 a(n) + Cg;) f;:)%a + A(n)b(”):a =0
AWM LWy () g (54)
where
)“51) = p' Yt — 651) i
Ay = pMw’ - el (35)
My = (€1 +esg)am
The solution to (33) 1s
ay’ (x3) = Ay cos n((,")x3 it fi( sin 7" X3 36

(ﬂ) (p(n)/c( n) ]/2

488

where A" and A{" are arbitrary constants. In order to
find a solution of (34), we let

(n) A o x
a, ’'(x3) = A, e ™ .
(n) (n) nw’x (37)
b, (x3) =B e ™

where A", B™ and n'" are constants. Substitution of
(3'7) into (34) yields

(ALY + c58 MI)HAL + A5 n B = 0 (38a)
— AP AD + A3 + 5 (B =0 (38b)

which has non-trivial solutions only if

(A 4+ e )2 + e (™))
+ (A5 = 0. (39)

Equation (39) can be written as a quadratic equation In

(ni)?
A + Bn™)y +C =0 (40)
with
A= el
B = c®WA™ 4 e 4y (41)
C — )‘-ﬁ)}‘-(”)

and (n")?* is given by
()" = -—[ -B+ (B*-4AC)"]  (42)

from which the four roots of 7" can be easily obtained.
The roots can be real or complex conjugate pairs. We
label the four roots as n(”) with p = 1,2,3,4. When
a particular root with ﬁxed p 1s real, from (38a) the
corresponding solution to (34) can be written as

(”)()C ) = D(n)f(")(x )

mpJdmp

(43)

by (x3) = D)) g, (x3)

where D} are arbitrary constants and

()
fory (x3) = ™3
- B [)\.(”) + CSS (n(n))Z] qf,‘fﬁm (44)
mﬂ(x ) = (n)_(n) —e
Mg Nmp

If a pair of complex conjugate roots exist, we denote
one of them by ) = £\ 4-ig\") where ") may be zero

mp mp
but ¢\ is non-zero. Then from (38a) there correspond
to thls pair of roots two sets of solutions to (34) which

can still be written as (43), with

(n)

£ (x3) = cos £ xzefr ™
(43)

(1)
g\ (x3) = (aty; COS L) x3 4 ayp sin ¢, x3) e ™



and

. (#)
fop (x3) = sin g, ) xzetr ™

mp

(46)
(n) _ (n) .o (n) Enm X3
Emp(X3) = (—@2CO8 ¢, X3 + &y Sin CupX3)e™
respectively, where
]
le]] - n n H
A2 [(Emp)? + ()]
X [ — MYEWIAY 4 55 [Em)’
— (NN — 2 REm 2]
]
M2 = e e mN21
A2 Em)? + (Smp)?]
SRR AR (G
nN2 (n)4 (n) n n
- I + 260 0y (47)

We note that there can be at most four specific values
of w which make B? — 4AC = 0. In that case, (42) has
repeated roots for (n\™)* and the solution to (34) needs
special discussion. We will not consider those special
values of w. In fact, when implemented on a computer,
B? — 4AC = 0 can hardly be exactly true. Hence, the
general solution to (34) can be written as

4
ay (x3) = ) Dy far) (x3)
p=1
4 (48)
b (x3) = ) DU gl (x3)

p=1
Hence we have the following expressions for the

solutions to (27a, b)

) - .
w" = A cosnVxs + Ay sin g x

o0 4
T Z[Z Di’(??[zfrf;;,w) (I‘j)] COS ¢, X
-m=14Lp=I
&0 4
m=1Lp=|

in which A, AJ’, and D)) are undetermined
constants.  The corresponding expressions for the
relevant components of the stress tensor are

o 4
(n) -
Lo Z[Z Dg‘;hf,‘:;(x;g)} Gin iy,

m=1Lkp=1
00 4

(n) -

Ty, = Z[Z Df,f;lf;; (.I3):| SIN &, X |
m=14%p=I

(n) (n) 4(n)y_(n) - (n)

Ty = —Cs5 Ag Mo SIN7H X3

(n) 4(n) ( (n)
+ DAY cos ng x;

o0 4
+ ZI—Z D;”I}qgg (Xg)] COS Ay X (50)

m=14%"p=I|

Cylindrical bending vibration of elastic plates

where
(n) (n} (n)
hf::;(x?,) — ——Cl] amf;f:;,}(x:l) + CIS gmp,?r(x?’)
() (n) {(n}
l,g:;(xli) = — 13Uy f;f:T;)(x3) + C3§ gmpj('x3) (51)

(n) (n) (n)
qr(n”;}(x?’) — CSS mp,?i(‘x3) T C55 amgg;z ()C})

Substituting (49) and (50) into the continuity
conditions (28) at the interface x3 = k', with the
orthogonality of the sine and cosine functions, we obtain

Ay cos g h™ + A" sinng” h™
= Ay cos g R + AGTY sinpg TV R™

(n) o4(n)_(n) .. _ (n) (n) A(n)_(n) (n)

(n+1) 4 (n+) _(n+1) _- (n+1)

y -
+cgs Ay ngt Y cos g R (52)

and

4 4
(n) gn}yrp(n)y __ (n+1) g(n+1)g,(n)
ZDmﬂme(h )_ZDM fmp (™)

4 4
D Dingp(h™) =) DyrVgitV(h®)
p=1 p=1
(53)
4 4
Y DWamh™)y =" DirDgltd (h™)
p=1 p=1

4 4

(n)y(n) p,(n)N (n+1)p(n+1) 1. (n)
> Dol (W) = 3 S DUV ()
p=1 p=1

Equations (52) and (53) can be written in the
following matrix form

Agl) n) AE}”_I_I)

Agz) — [T]o /i[(]‘"“) (54)
and Df:l) Df:f”

D, m | Dy

pw | =171 | bl )

ol Dl

where [T]g’) and [T]" are two transfer matrices given
by

—1
C(ng ™) S(ne h™)
— L L (n) (n)_{(n) (n) 1
“Cés)n{(} )S(n{}” h(n)) ng N C(noﬂ h ))
] 1
Cng " h™) S(ng " h™)
X 1 1 1 1) (n+1 +1)
_C;f;-i- )n{(}n-l- )S(n{(]n+ )h(n)) C%—!— )n((]n )C(néﬂ h(”))

(56)
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where C = cos and S = sin, and

(n) (n) (n) (n) —1
fm]H meH fm3H fm4H

(n) (n) (n) (n)
gmH 8gn,H g,3H g, H

(n})
T] =1 @ (n) (n) ()
I: qml H qu H QmS H qm4 H
(n) (n) (n) (n)
lm] H ZmZH lm?) H Zm4H
(n+1) (n+1) (n+1) (n+1)
fml H m? H m3 H fm4 H

(n+1) (n+1) (n+1) (n+1)
ml H m? H Em3 H Ema H

X
(n+1) (n+1) (n+1) (n+1)
qml H qu H qu H qm4 H

{n+1) (n+1) (n+1) (n+1)
lm] H lmZ H sz H lm4 H

(37)
where H = (A'").

With repeated use of (54) and (55), we can obtain
the following relations

Ay . (1) . (2) . -1 [ Ay o
io | =l 7)ol A | o

and
(1) (M)
Dml Dm]
D:(nlg [T](l)[T](ﬁ) [T](N—l) D%)
(H | — i (N)
Dm3 Dm3
(1) (N)
Dm4 Dm4

(59)

With (58) and (59), the interface conditions (28) are
satishied. However, (29)—-(31) still remain to be satisfied.
We express the non-homogeneous terms C’x; and C'x,
in (29)—(31) by their Fourier series as

OO
Clx; = cg + E cf; COS O, X
m=]

OO0
C'x) = ¢y + E C, COS Q) X}
m=1|

ch = C"I
¢y = C'l
b
ch = C—[(—l)”‘— 1]
" la?
f ()" — ] 60
Co lai[( ) ] (60)

Substituting from (32c, d), (49), (50), and (60) into
(29)—(31), using the orthogonality of the sine and cosine
functions, and combining the results with (58) and (59),
we obtain the following equations

(0 () 0 () (1) (1)_ (1) (D 4D
(css My SNy h)Ay " + (css g COSNy h)A,

pbhbeDg — _pbhbw?.cg

490

N)_(N) . (N N N) (N NY gy SN
(cgs)né ' sin n,g )h)Aé ) - (Cés)?’l((; ' cos Ué )h)Aé )
+ o'W w’ D}, = —p'h' w'c],
(cos g h) Ay’ — (sinny h)Ay’ — D = c;

(cos ny " RYASY + (sinny h)AY — D! = ¢!
Af]l)-l . (1) . (2) . (N—1) ASN) "
ﬁé”_l o { ]0 [ ]0 [ ]0 EéN) (61)

. DAY A(N) AN
for the six unknowns A}, Ay, AS", A)Y’, D!, and D!,
and

4
Y g (=)D + (ph*w® — nE el D},
p=1

_ pbhbwzci

4
Y gD — (p'h'w? ~ h'c| ) D),
p=1

= p'h'w’c

4
Y (=) + p" R e’gl) (—)IDS) = 0
p=1

4
2=l () + p'h' e, (W)]DLS) = 0
p=1

4

Y fad(—=h)D.) — Db =ch

p=1

4
Y MDY — D, =cl,
p=1

p" p™
D, Hr 1@ -1 [ D5y
DI |~ [T] [T] o [T] D™ (62)
m3 m3
(1) (N)
Dm4 Dm4

for the ten unknowns Df?:;, D%), D’ and D!. Note
that p = 1, 2, 3, 4. For given w, equations (61) and (62)
are iInhomogeneous equations for the forced vibrations of
the plate. The vanishing of the coetficient matrix of (62)
determines natural frequencies of the system, which lead
to resonances if any one of them i1s close to the forcing
frequency w. We note that from (60) ¢} = ¢! = 0 when
m 1s even. Hence (62) has non-trivial solutions only
when m 1s odd. This corresponds to vibrations with u;

being symmetric about x; = [/, the center of the plate.

3.2. Plate with one actuator

For the case of an actuator on only one surface of the
plate, for example, on the top, the solution can be simply
obtained by replacing the boundary conditions at the



bottom surface of the plate by 73 = 0 and 7;,’ = 0.
This results in the following equations

(csons sinng ' h)AY”
n (C%)n{()l) COS né”h)ﬁf}” — 0

(3 ng" sinny R AYY = (c55 g cosng h)Ag™
+p'h'w Dy = —p'h'w’cy

(cos n((,N)h)A{(]N) + (sin némh)ﬁém — Dy = ¢
4o T (I)FT ” T [ Ao 63)
A" “[ ]0 i ]0 [ ]o AV (

for the five unknowns A, A)’, Ay, A", and Dj,
and

4
Y g (=D =0
p=1

4
Y g M m)DY) — (p'h' e — h'éal) D), = p'h'w’c),
p=1

4

Y 1 (—h)DL) =0

p=1

4

D I=b () + p'h g, (1D, =0

(N) (1) SN
mep (h)Dmp - Dm = Cpy

ph p™
D, Hr 1@ -1 | D,
pO |~ [T] [T] a [T] D™ (64)
m3 m3
(1) (N)
Dm4 Dm4

and D’ for each m.

mp? mp °

for the nine unknowns DV DV)

4. An example

As an example, we consider an aluminum plate with PZT-
5 actuators on the two major surfaces. For aluminum [7]

E=69x10°Nm™? v=032p=2700 kg m™° (65)
and for the PZT-5 7]

¢’ =c, =121 x10° Nm™

76?3 =), = 7.52

¢, = chy = 11.1

el =ef, =-54Cm™’
eh, = ety = 15.8
p” = p' =7750 kg m™ (66)

1U,(1,0)]

Cylindrical bending vibration of elastic plates

0.30"""T""[‘FTTrrrnmrI..,.FTT_,__r-
0.25 -

0.20} -

' Q,=0.9301
0.15} :

0.10} -
| Q,=22.7020:
0.05 | 2,=8.2996 -

000 %90 15 20 25 30

Q

Figure 2. The normalized deflection of the centroid of the
plate |Us(/, 0)| = |uz(/, 0)lhcs, h?/(2h2%€eS, V as a function of
the non-dimensional forcing trequency

n2 [ EI\'?
() — —_— .
m/(2l)2(pf\)

For geometric dimensions, we take 2/ = 8 cm, h =
0.1 cm, h* = k' = 0.01 cm. We also set V” =
—V?’ = 50 V. Even though the analysis presented above
1s valid for a laminated elastic plate, in the example
considered there 1s only one lamina. This will facilitate
the interpretation of computed results.

The structure has a series of natural bending vibration
frequencies which can be ordered according to their
magnitudes as w;, w;, ws, The free bending
vibration modes corresponding to w,, wsz, ws, ... are
symmetric about x; = [, and those corresponding to w;,
ws, W, ... are antisymmetric. Only symmetric modes
can be excited 1n our problem because of the symmetry
of the structure and the loading conditions. The natural
frequencies of the structure can be roughly estimated
from the results of the beam theory. When the inertia

and rigidity of the actuators are neglected, we have

n2x? (EI\Y? EI\'?
NCETY (7) or 82, = “’”/ (7) ~n’
o 0

(67)

71.2
(21)?

where EI = E(2h)3/12 is the flexural rigidity for
plane strain deformations of a beam of unit width,
E = E/(1 —v?), and A = 2h is the cross sectional
area. §2, 1s the normalized natural tfrequency.

We plot the normalized deflection of the centroid
of the plate |Us(l, 0)| = |us(l, O)lhcg’lhb/(Zl)ze‘;lV as a
function of the normalized forcing frequency

x? (EIN\'?
2=w/ (21)? (p_A)

in figure 2. It 1s seen that U;(/,0) becomes large
at certain discrete values of w, which signifies the
resonance phenomenon. Those values of €2 at which
resonances occur should be in the sequence £2;, 23, §2s,
.... The values of 2, €23, and €25, ... shown in figure 2
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Figure 4. The normalized shear stress
Ta1 (X1, by = 131(x3, h)h?/ €5,V under the top actuator for
values of Q near ;.

are €27 =~ 0.9301, §2; =~ 8.2996, and {25 =~ 22.7020
which are close to n?, the estimate obtained from the
beam theory. In figure 2, only the locations of the peaks
that determine the resonant frequencies of the system are
important. The relative magnitudes of the peaks depend
on how close the sampling points of £2 are to the exact
values of 2, when the curve 1s computed.

Normalized deflection curves Us(xi, 0) = us(xq, 0)
hel h?/(21)%e, V. for values of Q near the the first
three resonance frequencies £2;, €25, and £25 are plotted
in figure 3. The free vibration modes of the plate
corresponding to §2;, §23, and §25 has zero, two, and four
nodes respectively. Under a particular forcing frequency
(2, all these modes will be excited. But it can be seen
that when €2 1s close to a particular resonant frequency,
the mode corresponding to that resonant frequency has a
dominant contribution to the deflection of the plate. The
Fourier series converges very fast. When §2 1s near £2;,
(23, or §25, only five, ten, or twenty terms are needed
for us(l,0) to have three significant digits. When £2
1s higher, higher order modes also become important
hence more terms are needed in the series. For all of the
results presented here, 100 terms in the Fourier series
are summed to obtain sufficient accuracy.

The normalized shear stress T3 (x;,h) = 13;
(x1, h)h"/e;, V at points on the interface between the
top actuator and the plate surface for two values of
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Figure 5. The normalized shear stress T3,(x;, h) under the
top actuator for values of Q2 near ;.

Figure 6. The normalized shear stress T31(xy, h) under the
top actuator for values of Q2 near Q5.

€2 around the first natural frequency £2; 1s plotted In
figure 4. The two curves plotted simply overlap and
cannot be distinguished from each other. As shown i1n
[5] by the finite element method and in [7] by elasticity
theory in static case, the shear stress 1s non-zero only
in the narrow regions near the ends of the actuator. In
approximate beam or plate theory, this shear stress has
a delta function distribution. The finite element method
usually predicts a more gradual change of the shear stress
distribution near the ends determined by the element si1ze
and 1nterpolation functions [5]. The results by Fourier
series sometimes have slight oscillations in the shear
stress distribution near the ends [7], which look like
the Gibbs phenomenon of a Fourier series near a jump
discontinuity. In our case, when the number of terms
summed in the Fourier series 1s equal to the number
of equally spaced sampling points in x;-direction (100
points in this example), the oscillations do not show up.

The normalized shear stress 73,(x;, #) under the
top actuator for values of €2 around the third natural
frequency §2; 1s plotted in figure 5. It 1s seen that
when €2 is not very close to £23, the qualitative behavior
of the shear stress distribution 1s similar to that shown
in figure 4. But when £2 gets very close to §23, the
shear stress i1s no longer zero in the central portion
of the plate and shows a sinusoidal variation which



0-5""["_’71""]"'T]111-|Ta..

0.4} :

T,,(0,h)

]
X
0 1 B N
| ]
i J
i |

- -
1 [ ] [ 1 41 || 1 'l 1 1 L 1 [ b 1 1 1 [l 1 1 F ]

0 5 10 15 20 25 30
O

Figure 7. The maximum normalized shear stress T3(0, h)
as a function of Q.

seems to be related to the deflection of the plate.
When €2 is very close to 23, resonance occurs and the
deformations of the plate may get large. In that case
a non-linear analysis with finite deformation theory 1s
needed. Similar behavior of the shear stress distribution
1s observed when 2 1s around €25 and i1s plotted iIn
figure 6.

Finally, maximum normalized shear stress 73,(0, /)
under the left end of the top actuator as a function of £2
1s plotted in figure 7. The maximum normalized shear
stress 1s almost constant for various values of £2 except
when 2 1s very close to a natural frequency §2,.

5. Conclusions

We have presented a Fourier series analysis of the
cylindrical bending vibration of a laminated elastic plate
forced by piezoelectric actuators under time harmonic
electric voltage. The solution 1s exact within the
assumptions of plane strain deformations and elasticity
theory. The Fourier series converges rapidly in the
numerical example studied. For the aluminum plate
with actuators attached to 1ts top and bottom surfaces, it
1s shown that the normalized shear stress i1s essentially
zero except in very small regions near the two edges,

Cylindrical bending vibration of elastic plates

and except for a forcing frequency close to one of the
natural frequencies of the plate. In the latter case, the
shear stress at the contact surface between the actuator
and the plate i1s non-zero almost everywhere. The
computed natural frequencies are found to be close to
those estimated from the beam theory. We note that the
solution obtained by the method of Fourier series may
exhibit Gibbs phenomenon at a free end of a plate.
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