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Thermoelastic damping (TED) in high frequency oscillators shifts their natural frequencies and attenuates the
vibration amplitude. The amount of damping depends upon the temperature of the environment in which the
device is operating. Here, we model the oscillator as a simply-supported beam of rectangular cross-section
undergoing infinitesimal deformations. We consider three (the Levinson, the Timoshenko and a sinusoidal)
through-the-thickness shear strain distributions, both translational and rotational inertia, and heat conduction
to analytically delineate their effects on the shift in frequencies and the attenuation of their amplitudes for the
lowest three vibration modes. The shear deformation distribution function multiplied by the Poisson ratio
appears in the volumetric strain. The TED in the Timoshenko, the Levinson and a beam with sinusoidal
variation of shear stresses is related to that in the Euler beam to recover the famous Lifshitz—Roukes formula.
Various results are presented to qualitatively and quantitatively illustrate the dependence of the TED upon the
lowest three frequencies and the resonator thickness. The analytical solutions presented here can be used as
benchmark solutions for checking the numerical solutions.

1. Introduction

Thermoelastic damping (TED) is an inherent internal energy dissipa-
tion mechanism in resonators due to coupling between the mechanical
and the thermal deformations. It originates from the irreversible flow of
heat produced during cyclic deformations of resonators [1], and plays
increasingly important role as the resonator dimensions are reduced. It
shifts frequencies and attenuates the amplitude of vibrations from their
values in homo-thermal motions. Therefore, an accurate prediction of
the TED in resonators is necessary for enhancing their use as devices.

Because of the immense literature on the TED in resonators it is
impossible to review all works and keep the manuscript within a rea-
sonable length. We hope that works briefly mentioned below provide
the reader a broad view of the TED in resonators.

Generally, two analytical methods have been used to evaluate the
TED, namely the energy and the complex frequency method. In the
energy method the inverse quality factor (0™") is defined as the ratio
of the energy dissipated in a vibration cycle to that stored in the
body during its homo-thermal vibrations [2-17]. Using the energy
method, Zener [2,3] established an approximate simple expression
for the TED in flexural vibrations of homogeneous thin rectangular
beams that was extended by Bishop and Kinra [4,5] to N-layered
structures with thermally imperfect interfaces. They showed that the
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total internal energy loss per cycle equals the product of the total
entropy produced multiplied with the equilibrium temperature. In the
complex frequency method, the inverse quality factor is expressed as
the ratio of the imaginary part of the complex frequency to its real
part [18-51]. Lifshitz and Roukes [18] presented a closed-form solution
for coupled thermomechanical vibrations of a thin beam by using
the Euler-Bernoulli beam theory (EBBT) and a one-dimensional heat
conduction equation.

We note that almost all structural vibration models have em-
ployed the EBBT in conjunction with either a classical [6-12,19-29,52,
53] or a generalized [13-15,31-48,54] heat conduction theory. Some
authors have generalized the classical EBBT to include effects of cou-
ple stresses [19,24,36,41,42,47,48,53,54] and nonlocal deformations
[46-48,54]1.

In the framework of Fourier heat conduction theory, there have
been a number of attempts to provide analytical solutions of the
TED in beam resonators. Tunvir et al. [52] derived quality factors
for beams of rectangular, elliptical and triangular cross-sections. Reza-
zadeh et al. [19] analytically analyzed plane stress/strain deformations
of a beam using a modified coupled stress theory that introduces a
length scale into the problem. Prabhakar and Vengallatore [6] have
analyzed 2-D heat conduction in vibrating beams and expressed the
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TED as an infinite series. Zuo et al. [7] analyzed the TED in a piezo-
electric beam based on the thermal energy approach. Yang and Ba-
tra [53] studied free vibrations of a linear thermo-piezo-electric body
and subsequently used a perturbation method to quantify the shift in
the fundamental frequency and the attenuation of its amplitude for
thickness-stretch plane strain vibrations of a non-piezoelectric strip.
More recently, Resmi et al. [20] have analyzed coupled thermoelastic
deformations of beams by using a modified couple stress theory.

Vengllatore [8], as well as Prabhakar and Vengllatore [9] studied
the TED in symmetric three-layer and asymmetric two-layer beam
resonators, and numerically examined the effect of varying the volume
fractions of the constituent materials. Zuo et al. [10] derived an ana-
lytical solution of the TED in an asymmetric three-layered beam. Yang
et al. [11,12] investigated the TED in bilayer resonators with the top
layer either fully [11] or partially [12] covered and used a 2-D heat
conduction equation. Their numerical results show that peak values of
the TED in the two cases occur within a range of the ratio of the thermal
diffusivity of the two layers.

Khanchehgardan et al. [21] have examined effects of mass diffusion
on the TED of a functionally graded material (FGM) beam resonator
with the through-the-thickness variation of material properties de-
scribed by a power-law function. Azizi et al. [22] investigated the TED
in an FGM beam composed of silicon and a piezoelectric material and
quantified effects of the volume fraction of the piezoelectric material,
cross-section and ambient temperature. Zhong et al. [23] analyzed the
TED in an FGM beam with material properties varying exponentially
through the thickness by neglecting the stretching-bending coupling
that should be considered when the material properties are asymmetric
about the geometrical mid-surface. Li et al. [24] performed theoretical
analyses of the TED in FGM beam resonators under different boundary
conditions. For arbitrary through-the-thickness variation of the material
properties, they first developed a layer-wise homogenization approach
and solved the heat conduction equation with complex coefficients.
Zhang and Li [25] analytically found the TED in FGM beams by
considering a modified couple stress theory.

Yi and Martin [26] used the finite element method (FEM) to solve a
2-D complex eigenvalue problem derived by using a two-way coupled
thermo-elasticity theory. Mendez et al. [27] have numerically investi-
gated nonlinear thermoelastic vibrations of a cantilever beam. Utilizing
an eigenvalue formulation and a customized FEM code, Guo and Yi [28]
analyzed the TED in beams with square-shaped vents located along
their centerlines. Guo and Yi [29] compensated for the TED in beam
resonators by exploiting the piezo-resistive effect. More recently, Cheng
et al. [30] numerically investigated reducing the TED in a rectangular
beam by cutting slots in it of various dimensions.

In the classical heat conduction equation using Fourier’s law ther-
mal disturbances propagate at infinite speeds. Several generalized the-
ories, e.g., the Lord—Shulman (LR), the Green-Lindsay (GL), the Green—
Naghdi (GN), the dual-phase-lagging (DPL) and the three-phase lagging
(TPL) theories reviewed in [31] have been proposed that provide a
finite speed of propagation of thermal disturbances. Guo [32] and Guo
et al. [33] derived explicit solutions of the TED in beam resonators
using a single-phase lagging (SPL) and an DPL model. Abbas [34]
studied the TED in a beam with the heat conduction equation having
one relaxation time and fractional time derivatives. Zhou and Li [13]
investigated effects of non-Fourier heat conduction on the TED in
beams using the SPL model and found multiple peaks in the TED.
Youssef and EI-Bary [35] employed a generalized thermo-elasticity the-
ory with one relaxation time and two-temperature variables to deduce
an explicit formula of the TED with Young’s modulus varying with the
reference temperature.

Vahdat et al. [36] studied the TED in a beam with piezoelectric
(PZT) layers bonded on the top and the bottom surfaces by using a non-
Fourier heat conduction model containing one relaxation time. They
showed that imposing positive DC voltages to the PZT layers increases
the critical thickness but decreases the TED while the negative DC volt-
age leads to the opposite trend. Bostani and Mohammdadi [37] used the
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energy method to obtain the analytical solution of the TED in a beam
based on the LS model and a modified strain gradient elasticity theory.
Utilizing the SPL heat conduction model Kumar and Mukhopadhyay
derived analytical solutions of the TED in beams by applying the com-
plex frequency method in [38] and the entropy generation approach
in [14]. Kumar and Kumar investigated the TED in beam resonators
by employing the TPL thermo-elasticity theory [39] and a unified
formulation of the generalized coupled thermo-elasticity theories [40].
They arrived at explicit L-R formulas of the TED. Kumar et al. [41]
presented the frequency shift in beams by using the TPL model for
materials with memory. Borjalilou et al. [42] derived the 0~ based on
the modified couple stress and the DPL heat conduction equation by the
complex frequency approach. Borjalilou and Asghari [43] extended the
work reported in [42] by including effects of electrical actuation. Guha
and Singh [44] studied beams containing sandiness and voids based
on both the LS and GL generalized heat conduction theories, and Kaur
et al. [45] considered transversely isotropic beams and used the GN
III theory. Shi et al. [15] have presented a closed-form expression for
the TED in transversely isotropic material beams by considering the
size-dependent and the surface effects in the DPL theory.

The TED considering nonlocal effects based on Eringen’s theory [54]
have been investigated in [46-49]. Kumar and Mukhopadhyay [46]
considered both the size-dependence and the nonlocal effects in the
SPL model with the modified couple stress theory. Using the DPL
heat conduction equation, Borjalilou et al. [47] examined the TED by
considering nonlocal effects. Kaur et al. [48] employed a generalized
piezo-thermo-elasticity theory with two temperatures and nonlocal
Eringen’s constitutive relations to analyze the TED. Gu et al. [49]
used the DPL generalized thermo-elasticity theory to investigate the
nonlocal, the surface and the thermal relaxation effects on the TED.

Like higher-order strain gradients in the mechanical problem
Batra [55] considered 2" order spatial and spatial time derivatives in
the internal energy equation for a rigid heat conductor. He showed that
thermal waves propagate at a finite speed. The linearized heat equation
has four relaxation times and two thermal conductivities one of which
depends upon a length parameter. Cattaneo [56] and Chester [57] have
proposed heat equations that permit finite speeds of thermal waves.

Nearly all works cited above are based on the EBBT. However, a
few authors have analyzed the TED in either thick or short beams
with either the Timoshenko (TBT) or the first-order shear deformation
theory (FSDT) [16,17,50,51]. Parayil et al. [16] used the FSDT to find
an approximate solution of 2-dimensional thermo-mechanical deforma-
tions of a beam and considered in [17] geometrical nonlinearities due
to bending-stretching deformations of the mid-plane and the actuating
electrostatic force. Rezazadeh et al. [50] studied the TED in electro-
statically deflected short beams based on Eringen’s nonlocal elasticity
theory and the DPL heat conduction model. Emami and Alibeigloo [51]
analyzed the TED in an FGM Timoshenko beam with the through-the-
thickness variation of material properties described by a power law
function. The eigenvalue problem with complex frequencies was solved
by using Navier’s method and the Q~'was extracted.

In the EBBT effects of transverse shear deformations and rotational
inertia on the transient response are neglected, and the TBT gives
a uniform through-the-thickness distribution of the transverse shear
stress that violates vanishing of tangential tractions on the top and
the bottom surfaces of a beam either loaded by only normal or null
tractions on these surfaces. This has been corrected to a large extent
in higher-order shear deformation theories (HSDTs) [58-61] that pro-
vide null tangential tractions on major surfaces of a beam, and need
modifications to satisfy non-zero tangential tractions applied on these
surfaces. The modifications have been made in plate/beam theories
proposed in [62-65] and in other papers not cited here. The Carrera
Unified Formulation (CUF) for micropolar plates is described in [64]
and for the analysis of thermoelastic deformations of beam-type struc-
tures in [65]. The Carrera plate/shell/beam theories, Batra and Vidoli’s
plate theories [66] and various other higher-order shear deformation
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Fig. 1a. Geometry and supports of a rectangular cross-section beam and the Cartesian coordinate axes.

theories (HSDTs) [58-60] can be deduced from Mindlin’s theories [67].
Batra and Vidoli [63] have studied deformations of a cantilever beam
with tangential tractions applied on its top and bottom surfaces. Qian
and Batra [68] have analyzed transient thermoelastic deformations of
a thick plate. However, they did not consider the TED. Plate theories
using classical linear elasticity concepts have been extended to those
using strain gradients as kinematic variables and the associated couple
stresses as kinetic variables; e.g., see [67]. Like micropolar theories
these involve a length scale that helps mitigate effects of the finite
element mesh while numerically solving the governing equations. A
length scale also appears in Eringen’s non-local theory [46-49,54] that
expresses stresses at a point in terms of strains averaged over a domain
centered at the point of interest. Higher-gradient and micro-inertia
effects have been considered in analyzing composite beam structures
by Ayad et al. [69] who found values of material characteristics length
using a homogenization theory for a beam made of alternate thin blocks
of two materials. They found that the vibration frequency depends upon
the wave number.

As far as we can ascertain the TED has not been analyzed us-
ing the Levinson and a sinusoidal through-the-thickness shear stress
distribution. It could certainly be numerically studied but that will
not provide closed-form expressions for the frequency shift and the
amplitude attenuation.

The novelty of the work is to provide closed-form expressions for
the TED-induced change in the frequencies and amplitudes of vibration
of a simply-supported beam of rectangular cross-section. This will be
useful to resonator designers at least in arriving at preliminary designs
that could be improved upon by numerically analyzing either their 3-
dimensional thermo-mechanical deformations or employing CUF-based
analysis with higher-order beam/plate theories. The closed-form ex-
pression given here for the inverse quality factor Q' will serve as
a benchmark against which numerical solutions could be compared.
Numerical solutions could consider dependence of material properties
upon the temperature and the geometric/material nonlinearities.

Here, we consider three through-the-thickness distributions of the
shear stress to delineate the TED in beams of various length/thickness
(or aspect) ratios. Assuming that the heat conduction effects are domi-
nant in the beam thickness direction, we analytically find an expression
for the through-the-thickness variation of the temperature. The main
results of the paper are (i) providing an expression for the complex
frequency of free vibration of a shear deformable beam in terms of
that of the EB beam, and (ii) quantifying the TED in shear deformable
beams. Numerical results listed and plotted in the paper compare the
TED values for three different shear stress shape functions with that for
the EBBT for different values of the aspect ratio.

2. Equations of motion

Consider a simply supported beam resonator of rectangular cross-
section having length /, height # and width b schematically shown
in Fig. 1 where the rectangular Cartesian coordinate axes employed
to study its infinitesimal thermo-mechanical deformations are also
exhibited. Thus, the beam’s neutral surface is the x-y plane and the
positive z-axis points upwards along the thickness direction. The beam
material is assumed to be isotropic, homogeneous and linearly elastic,
and the displacement field used for a higher-order shear deformation
beam theory (HSDT) is given by [59,61]

dw,,
u(x,z,1) = —z—— + f(2)@ (x,1) (1a)
dx

Table 1
Four stress shape functions, f(z). and the corresponding stress functions g(z).
Function type f(z) g(z)
3 2
Polynomial z— 4z 1- 4z
3h? h?
. . h . r=xz rz
Trigonometric e sin (I ) cos (? )
. zz — hsinh(zz/h) 1 —cosh(zz/h)
H boli —_———— +z —_—— +1
yperbotic Alcoshz/2 -1 T ¢ cosh(z/2) -1 T
N 2
Exponential 2o 2/ P ( 1- 4%)
w(x,z,1) = wy(x,1) (1b)

where w;, is the beam deflection, ¢ a rotation about the y-axis of the
transverse normal, and f(z) a shape function defining through-the-
thickness variation of the transverse shear strains and stresses satisfying
zero tangential tractions on the top and the bottom surfaces except for
the TBT for which f(z) = z. The function f(z) need not be a polynomial
function of z. For example, it may be a trigonometric, a hyperbolic, an
exponential or a logarithmic function. Four choices of f(z) and their
corresponding shear stress functions g(z) = d//dz are listed in Table 1
and plotted in Fig. 1b.

The non-zero axial strain £, and the transverse shear strain y,, found
from Eq. (1a,b) are

X

0% w, dep
= —z— — 2.
£ z Fw + f(2) o (2a)

d
Y. = g2 with g(z) = —df (2b)
zZ

The axial stress o, and the transverse shear stress 7.

»» found using
Hooke’s law, are

@ wy dp
o, = E —ZF +f(2)a — Eal (3)
Eg(z)
.= 4
R T 4
where 0(x,y,z,1) = T(x,y.z,1) — T is the temperature change, and

T, is the reference temperature. Moreover, E, v and a, respectively,
are Young’s modulus, Poisson’s ratio and the coefficient of thermal
expansion. The axial thermal strain equals «0.

Assuming that the top and the bottom surfaces of the beam are
traction free and thermally insulated, we write equations of motion
(5)~(7) in terms of the resultant shear force Fg, and the moment M
about the y-axis.

oM 92 dwy
E‘F-Fﬁ("zx“ﬂw )
dF, 52w0
= o ©
n/2
(Fg. M) = b/ (Tyzs a_,(z)dz (7)
—h/2

The inertial parameters I, I, and I 11 in Egs. (5) and (6) are defined
as
h/2
Iy =pbh, I, = pbi® [12, I; =bp f(z)zdz (8)
—h/2

where p is the mass density (kg/mg). Substitution of Egs. (3) and (4)
into Eq. (7) yields

(9a,b)
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Fig. 1b. Through-the-thickness variations of four choices of function f(z) and g(z) = df /dz.
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where
3 h/2 h/2
S, = %,Sﬂ = bE f(2)zdz, S, = Eb f g(z)dz,
12 2 20+ v) Joup

/2
My = abE/ 0zdz (10a,b,c,d)

h/2
The thermal bending moment M, produced by the temperature
change is calculated from the thermal stress a E6.
Substitution for M and Fg from Eq. (9) into Egs. (5) and (6) gives
differential equations (11) and (12) governing free vibrations of the
beam in terms of the functions w, and .

w, e OMp 92 dwy
R B R CRH R SR/ B
9o _ do Pwy (12)
ox S, a2

We now substitute for ¢ from Eq. (12) into Eq. (11) to obtain the
differential equation for the deflection wy,.

*w, N PMr P roe— (1 s 1Sy 0w, N Inlsy 0®wy
Toxt e a2 [0\ T s, ) e s, a2
13)

The temperature change, 0, appearing in Eq. (10d) is found by solving
the heat conduction equation as discussed below.

3. Heat conduction equation

The evolution of temperature, 0, in an isotropic and homogenecous
beam is governed by Eq. (14); e.g., see [1].

(20 020 _ 00 aETy de;
dx2  09z2 p ar

1—-2v ot
In Eq. (14) « is the thermal conductivity, C the specific heat, and the
dilatation ¢;; given by [Eqgs. 9 and 10 of Ref. [18]] is

a4

2
d”w;
ox?

ad
Eif S Exx T Ey tE, =(1-2v) [—z + f(z)% +2(1 + v)al (15)
For small amplitude transverse vibrations of the beam we assume
that hea co duction efzfe ts are dominant in the beam thickness direc-
tion, or iﬂr‘ < < %r We substitute from Eq. (15) into Eq. (14),

ax?

neglect the term % on the left-hand side of Eq. (14), and get

2
a9°w
dx?

2
chxg :pC(1+

2(1 4 v)a? ET(,) a0

o
d—20pC ) HI@50

+crETD% [—z

(16)

Boundary conditions for a simply-supported (S-S) beam with the top
and the bottom surfaces thermally insulated are

we=0,M =0 on x=0,1 (17a)
9 _0 on z=+h/2 (17b)
0z

No boundary conditions for the temperature are needed at x = 0,1,
and no initial conditions are needed to study free vibrations of the
beam.

4. Harmonic response of the system

Assuming that free vibrations of the beam are harmonic and the
kinematic parameters together with the temperature change have the
same complex-valued frequency @, we write

wy, 0) = (w. 0) e
(00, 0)

where i = \/—_1 ; w and 0 are, respectively, amplitudes of vibrations
of w, and@. The real part of @ determines the oscillatory motion
and the imaginary part the attenuation of the amplitude of vibration.
Substitution from Eq. (18) into Egs. (13) and (16) yields the following
eigenvalue problem:

(18)

—

d'w - d*w - — M
Szw + gsz +¢0LU + 2 =0 (19)
%0 _iw |-, Ap dw do
9—7{04—? [—z@+f(z)§ (20)
in which

_ I S _ hf2 _
), by = @1, [—2+i], MTzabEf 0zdz
Iy S, —h/2

(21a,b,c)

_ T
2 2 /1
= w1 S _
Py =w"I, (m s,

Ap = Ea’Ty/(pC), x = &/(pC) (21d,e)

Henceforth, we use the following non-dimensional variables related
to their dimensional counterparts by Eq. (22).

(X W)= w)/l, ((.H)=(zD/h (22a)

O=al, my=IM/S,. FQ)=[(2)/h, Q="w\1/S, (22b)

Substituting from Eq. (22) into Eqgs. (19) and (20), we get governing
equations (23) and (24) in terms of non-dimensional variables.

2

d“m
+ (P 2* — NRPW + —L
(2~ 1) e

d*w
dx4

L d2w
dx?

+ Q2 =0 (23)
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Table 2
Normalized values of ¢, and ¢, for the three shape functions f(z).
1) F(C) 2(2) Lo ¢
fi=z F=C 1 1/5 1
_L . _4 1 4
2TET 3 R=t-3 "= 4 5
h . (nz 1 . Tz L3 24
3= ;sm(T) I'}:;sm(:r{) CUS(F) - =
2O = 5 dw 2
— +pO= — +c, QF(OW (24)
oz TP ral¢ a2 to ©)
where
CCp A% A il
= = —— +ec.0 = ——,c; = (25a)
b= = pa e o s, s,
I A
g=ir = a=—=. nr)=\/‘—ig (25b)
S, Aa g

Dimensionless parameters ¢, and ¢, are related to the shear de-
formation shape function f(z) and the aspect ratio, A = [/h, of the
beam.

Herein, we study the problem for three choices, namely linear,
cubic polynomial and sinusoidal, of function f(z) listed in Table 1.
The corresponding function g(z) and the two parameters, ¢, and c,
defined in Eq. (25a), are also listed in Table 2. The choice f(z) =
z reduces the beam theory to Timoshenko’s or the FSDT that does
not satisfy the vanishing of the shear tractions on beam’s top and
bottom surfaces. Thus, we employ the shear stiffness coefficient Fg =
kg fjr//zz 7,.dz, where k, = 5/6 is the shear correction factor for a
rectangular cross section. The other two choices for f(z) are for HSDTs
and satisfy 7..|.__, 2 =0. The choice of a cubic polynomial for f(z)
results in through-the-thickness parabolic distribution of the transverse
shear stress and has been widely used in studying static and dynamic
deformations of beams; e.g., see [51,58-61]. The governing equations
for f(z) = 0 reduce to those for the EBBT.

5. Complex frequency and TED
Corresponding to the above three choices for f(z) the general

solutions of the heat conduction Eq. (24) are listed below as Egs. (26),
(27) and (28).

. ‘ dw 2
0, = A;sin(pl) + Bycos(pd)+q | ¢ ax2 + ¢, Q°F (OW (26)
0y = Ay sin(p0) + By cos(p0) + q |¢ T 4 e, (g + Fz(r‘;)) W] 27)
dx? P
2 2_(22
O3 = Agsin(pl) + By cos(pl) + g (gd—“: + % F3(C)W) (28)
dxz = p?—x2

Here F,({) for i = 1,2,3 are non-dimensional forms of f;(z) listed in
Table 1. Constants A; and B; (i = 1,2,3) are found from

00

e =
that is Eq. (17b) written in non-dimensional variables. We thus get

Substitution from Egs. (30)-(32) in the dimensionless form of Eq.
(10d) gives
2

d“w
mr = Uy d_gZ + MZC_‘.QZW (33)
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where
~ L 2
Uy = Aqy, w—1+ﬁ(§—rdn§) (34)
Aqy for F,
4 8
Ag| =+ —w(R2 for F;
oy = q(s ﬂw<0 2 (35)
24Agp”
s L for F;
3(p? —z?) ’

Furthermore, substitution of Eq. (33) into Eq. (23) gives

2

d'w d’w
(I+ P‘J)W + (¢ + Cxﬂz)gzﬁ + (P2 — DRPW =0 (36)

for W. By using Egs. (9), (22) and (34) the dimensionless bending
moment can be written as

Mi w
m= =—(1+u.)ﬁ—(cf+.u2)csazw (37)
To solve differential Eq. (36), we use boundary conditions (17a) that
in terms of non-dimensional variables are

WO) =W(1)=0, m0) =ml)=0 (38)
The function W = A, sin(nzX) (n = 1,2, ...) satisfies Egs. (36) and
(38) provided that

B2 — [+ (hy + ¢, 1p) Q2127 + (1 + )22 =0 (39)

Here Q is the dimensionless complex natural frequency of the simply-
supported beam and @, = nr’xz? is the natural frequency of the
Euler-Bernoulli (E-B) beam for a mechanical problem.

From Egs. (25), (34) and (35) it can be seen that Eq. (39) is a
nonlinear transcendental equation for 2 because y,(£2) and u,(£2) are
transcendental functions of . To simplify the calculation, as it has
been done in the literature, these functions are evaluated at 2 =
Q, where £, is the natural frequency of the beam under isothermal
conditions. With this approximation, an analytical solution of Eq. (39)
is

12

L+ by + cy) Qg £ \/[l + (b + 1) Qg > — 4 (1 + 1) 2
2,

(40$)

The isothermal frequency £, is first found by setting u; = p, = 0
in Eq. (40), then the energy dissipation parameters y, and u, are
calculated by using Egs. (34) and (35), and the complex frequency 0
is found from Eq. (40). The inverse quality factor [18] of the S-S beam
is determined from

Im(£2)
Re(Q)

o'=2 (41)

in which Re(£2) and Im(«2) are the real and the imaginary parts of .
By setting f(z) = 0 in Eq. (1), or equivalently ¢, = ¢, = ¢, = 0 in
Eq. (39), we get the complex frequency 2 of the E-B beam as

Qp = Qg V1 + 1 (2gy) & Lpol 1 + 4y (L2g9)/2] (42)

From Eq. (42) we can derive the well-known Lifshitz-Roukes (I-R) [18]
expression for the E-B beam

_p 64g 1 sinh & +siné
QE ) I - E coch £ 4 cos £
&2 & coshé +cosé

where ¢ = h\og/Qyx), wgy = 2g9\/S>/1,/1* is the homo-thermal
frequency of the E-B beam, and 4 is given by Eq. (21d).

(43)
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Table 3

Material properties at T, = 300 K.
Materials E (GPa) p (kg/m?®) « (W/m/K) C (J/kg/K) a (10°°/K) v
SiC 427 3100 65 670 4.3 0.17
Ni 210 8900 92 438.2 13.0 0.3

Table 4

First two non-dimensional frequencies (£2,) for isothermal deformations of E - B and
shear-deformable beams (Poisson’s ratio, v = 0.3).

n FQ) A

50 30 10 9 8 7 6 5

1 0 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696
F, 9.8629 9.8511 9.7075 9.6709 9.6205 9.5488 9.4420 9.2740
F, 9.8629 9.8511 9.7075 9.6709 9.6205 9.5488 9.4419 9.2740
F; 9.8629 9.8509 9.7059 9.6689 9.6181 9.5457 9.4380 9.2686
2 0 39.478 39.478 39.478 39.478 39.478 39.478 39.478 39.478
F, 39.372 39.185 37.096 36.609 35965 35.094 33.886 32.167
F, 39.372 39.185 37.096 36.609 35965 35.094 33.886 32.167
F; 39.371 39.182 37.075 36.583 35.934 35.057 33.842 32113

6. Through-the-thickness temperature variation

Bu substituting W = A;sin(zX) into Egs. (30)-(32) we get the
following expression for the non-dimensional temperature change

@, = H(OW,(X)., (i=12.3) (44)

where function H,({) represents the variation of ©,({) across the beam
thickness. Corresponding to the three shear functions listed in Table 1,
functions H;(¢) are

H\(0) = He(©) + e, (r: - %{f}z}) e (45)
Q) = H(©+eq? [p% ( - p;%(’:f/)z)) + F2<¢)] Co= 1t )
Hy(©) = Hp(©) + %Fﬂc), ¢ = Ug—;j” 47)
where

Hg(©) = —(nm)q (c - %(’5)2)) 48)

is for the EBBT. For ¢, = 0, shearing deformations vanish and Egs. (45)—
(47) reduce to Eq. (48).

7. Numerical results and discussions

In this section, we investigate the effect of shear deformations on
the TED for silicon carbide (SiC) and nickel (Ni) beams; values of the
material parameters are listed in Table 3.

By setting x4, = p, = 0 in Eq. (40) we obtain expressions for the non-
dimensional frequency, £, of an S-S shear deformable beam without
considering the TED. Two lowest frequencies for various values of the
aspect (length/height = 1) ratio are provided in Table 4. A comparison
of frequencies for different values of the function F({)(F = 0 for the E-B
beam) reveals that for a fixed A the consideration of shear deformations
decreases the frequency from that of the E-B beam. For each value
of A the first two frequencies do not depend upon the through-the-
thickness shear distribution because parameters ¢, and ¢, in Eq. (23)
are the same for m; = 0. Furthermore, the effect of shear deformation
diminishes with an increase in 4 and becomes negligible for 1 = 50,
and equals ~2% for A = 10.

We could not find in the open literature the inverse quality factors
of beams based on the HSDTs used here. We list in Table 4 for some
values of A the first two frequencies for the EBBT (F = 0) and the FSDT
(F = F}). The values of inverse quality factor corresponding to the first
two vibration modes for the E-B beam are calculated using the L-R
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Table 5
Inverse quality factor (Q~' x 10*) of the two beams using different shear deformable
functions in beam theories (2 =1 pm).

(a) SiC beam

no e A

50 30 10 9 8 7 6 5

1 0 0.4865 1.3346 5.6174 5.4103
F, 0.4857 1.3289 5.4967 5.2880
F, 0.4857 1.3289 5.4953 5.2865
F; 0.4857 1.3288 5.4936 5.2847

2 0 1.8928 4.3984 2.5204 2.0953
F, 1.8814 4.3348 24351 20142 1.6193 1.2578 0.9346 0.6531
F, 1.8813 4.3343 24364 2.0169 1.6241 1.2652 0.9452 0.6671
r 1.8928 4.3334 2.4351 2.01587 1.6233 1.2649 0.9453 0.6677

4.9480 4.2540 3.4077 2.5204
4.8306 4.1466 3.3121 2.4351
4.8291 4.1454 3.3116 2.4364
4.8273 4.1436 3.3100 24351
1.6966 1.3310 1.0024 0.7135

Ni beam

1 0 0.6403 1.7719 11.841 12.862
F, 0.6392 1.7635 11.488 12.383
F, 0.6392 1.7635 11.445 12.380
r 0.6392 1.7634 11.440 12.373
2 0 2.5397 6.6546 9.7017 8.3164
F, 2.5226 6.5364 9.1998 7.8560
F, 2.5224 6.5355 9.1944 7.8530
F; 2.5222 6.5340 9.1865 7.8457

13.452 13.252 11.984 9.7017
12.899 12.663 11.414 9.1997
12.894 12.656 11.407 9.1944
12.887 12.648 11.399 9.1864
6.8773 5.4670 4.1534 2.9809
6.4575 5.0843 3.8048 2.6690
6.4585 5.0918 3.8224 2.7009
6.4521 5.0866 3.8190 2.6998

solution [18], Eq. (43). From the results listed in Table 5 it is evident
that values of Q! estimated by the FSDT and the HSDT are less than
those given by the EBBT and the relative error between them increases
with a decrease in A. Moreover, the effect of shear deformation on the
TED related to the second mode is more than that related to the first
mode.

Values of the inverse quality factor, Q~!, listed in Table 5 reveal that
the shear deformations affect the TED for all values of 4 considered. For
example, for 4 = 5 and the shear deformations described by functions
F,, F, and F;, the TED in the first (second) vibration mode of the SiC
resonator is lower by ~3.2% (~6.9%). This is important if the resonator
is used for detecting deposition on it of tiny either dust particles or
biological agents.

For 4 =5 and 10 and the beam vibrating in the first mode, we have
exhibited in Fig. 2 the dependence of Q! upon beam’s thickness h.
The computed values of Q~' for the three shear deformation functions
are nearly the same, however, their peak values noticeably differ from
that for the EBBT. Defining the relative error as, r = (0! - 0;')/0},
where subscripts E and L, respectively, denote the E-B (F = 0) and the
Levinson (F = F,) beam theories, the maximum value r,, of r equals
2.3% and 8.2%, respectively, for A = 10 and 4 = 5 for the SiC beam, and
2.6% and 9.0% for the Ni beam. In each case, they occur for different
values of the beam thickness.

In Fig. 3 we have depicted for 2 = 5 and the first three vibration
modes the Q! versus log,,(wg,) for the two beams where ey, is the
isothermal natural frequency computed using the EBBT. It is found that
for the 1st, 2nd and the 3rd modes r,,, equals, respectively, 2.3%,
8.1%, and 15.8% for the Si beam and 2.6%, 9.0% and 17.3% for the
Ni beam. Thus, effects of shear deformation on the TED are more in
higher modes of vibration.

Recalling that thermal coupling in the heat equation is proportional
to the initial temperature T, we have displayed in Fig. 4 for three
values of T, the dependence of O~! upon the SiC beam thickness for
aspect ratio A = 10 and 5. As expected for a fixed thickness of the beam
O~! increases monotonically with an increase in T;,. We could not an-
alytically solve the problem and derive closed-form expressions for the
quality factor when material properties depend upon the temperature.
Our values of Q! at the three temperatures, 150, 200 and 300 K should
be illustrative of qualitative trends rather than as exact values.

We have delineated in Fig. 5 the effect of the energy dissipa-
tion upon the frequency shift, (Re(£2) — Q,)/€;,, and the attenuation,
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Fig. 2. For 4A=5,10 and beams vibrating in the 1st mode the dependence of Q! upon the beam thickness for three shear deformation functions (1st mode); (left) SiC beam, and

(right) Ni beam.
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Fig. 3. For the first three vibration modes and A = 10, the dependence of Q' upon log,(ew,) for the two beams using the EBBT and the Levinson beam theory; (left) SiC beam,

and (right) Ni beam.
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Fig. 4. For the SiC beam vibrating in the 1st mode at T;, = 250 K, 300 K and 350 K and using the E-B and the Levinson beam theories the dependence of O~' upon the beam

thickness; (left) A =35, and (right) 4 = 10.

Im(£2)/£2,, for SiC beams of different thicknesses having 4 = 10 and 7.
It is evident that the consideration of the shear deformation shifts the
frequency more than it affects the attenuation.

Finally, Fig. 6 shows through-the-thickness variation of the temper-
ature rise, defined by 7;({) = Re[I;({)]/a for the SiC and the Ni beams
with 4 =10 and 5 predicted by different beam theories. It can be seen
that the temperature rise predicted by the shear deformation theories
are less than that by the EBBT. Moreover, comparing results for the

two values of A, the difference is higher for the beam with 4 = 5.
However, the differences between the temperature rise estimated by
the three shear deformation functions are negligible. Furthermore, the
temperature distribution in an isotropic and homogeneous resonator
is antisymmetric about its geometric mid-surface similar to the dis-
tribution of the normal stress. Recall that the TED is proportional to
the dilatation that has opposite sign at points above and below the
mid-surface.
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Fig. 5. Frequency shift and attenuation versus the thickness of the SiC beam vibrating in the 1st mode using the E-B and the Levinson beam theories; (left) 2 = 7, and (right)
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Fig. 6. Through-the-thickness variation of the dimensionless temperature 7({) change for 1 pm thick (top) SiC and (bottom) Ni beams vibrating in the 1st mode.

8. Conclusions

We have analytically quantified the thermo-elastic damping (TED)
in high frequency vibrations of a simply-supported beam of rectangu-
lar cross-section using three through-the-thickness distributions of the
shear stress, namely, linear, cubic polynomial and sinusoidal functions

of the thickness coordinate. Assuming that the heat conduction is
dominant in the thickness direction, we have also derived through-the-
thickness variation of the temperature in the beam. An important result
is the closed-form expressions for the first three complex frequencies
of the beam resonators, and the inverse quality factors for them. The
quality factor measures the percentage shift in the frequency caused
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by the thermo-elastic damping (TED). For three through-the-thickness
variations of the shear stress, numerical results for different values
of the aspect ratio (length/thickness), initial temperature, and beam
thickness having the same aspect ratio are presented. These lead us to
the following conclusions.

(a) Egs. (40) and (41) express the frequency of a shear deformable

beam in terms of that of a Euler-Bernoulli beam and provide
better estimates of the TED than that given by the EBBT.

(b) The effect of the shear deformation on the TED becomes sig-

nificant with a decrease in beam’s aspect ratio, and for a given
aspect ratio is nearly the same for the three through-the-thickness
shear deformations considered.

(c) Like the axial stress and the axial strain, the through-the-

thickness temperature distribution is asymmetric about the
beam’s mid-surface.

The work can be extended to beams with other boundary conditions,
and considering other heat conduction and non-local theories.
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