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STRESS INTENSITY RELAXATION AT THE TIP 
OF AN EDGE CRACK IN A FUNCTIONALLY GRADED 

MATERIAL SUBJECTED TO A THERMAL SHOCK 

Zhi-He Jin and R C. Batra 
Department of Engineering Science and Mechanics 

Virginia Polytechnic Institute and Stare University 
Blacksburg, I/iq$nia USA 

We analyze thermal stresses and the stress intensity factor in an edge-cracked strip of a 
functionally graded material (FGM) subjected to sudden cooling at the cracked surface. 
It B assumed thut the shear modulus of the material decreases hyperbolically with the 
higher value at the surface exposed to the thermal shock and that the thermal 
conductivity uaties exponentially. Volume fictions of the constituents in a 
ceramic-metal FGM are then determined with the assumed shear modulus gradient 
using a three-phnse model of conventional composites. The differences between the 
other assumed ntaterial properties and those predicted by the three-phase model are 
delineated and the applicability of the assumed FGM is discussed. It is shown that the 
maximum temile thermal sttess in the strip without cracks is substantially reduced by 
the assumed thermal conductwity gradient and that the magnitude of the compresswe 
stress is increased. A strong compressive zone just away from the thermally shocked 
surface B developed especially at the very initial stage of the thermal shock Thermal 
stress intensiv factors (TSIF) are numerically calculated based on a singular integral 
equation derived from the dislocation density along the crack faces. It is shown that 
while TSIF is relatively insensitive to the shear modulus gradient, it is significantly 
reduced by the thermal conductivity gradient. 

Functionally graded materials for high-temperature applications are special com- 
posites usually made from ceramics and metals. The ceramic in a FGM offers 
thermal bamer effects and protects the metal from corrosion and oxidation. The 
FGM is toughened and strengthened by the metallic composition. The nonuniform 
microstructures in materials with continuously graded macroproperties are the 
most distinctive features of FGMs. The macro-inhomogeneous properties of a 
FGM reduce thermal stresses when it is subjected to a thermal shock. 

Hasselman and coworkers [I, 21 investigated thermal stress reductions in 
ceramics by spatially changing the thermal conductivity. They studied thermal 
stresses in solid and hollow cylinders and showed that significant reductions in the 
magnitude of the tensile thermal stress in the ceramic components could be 
achieved by appropriatc:ly introducing spatial variations of thermal conductivity or 
porosity, which in turn changed the thermal conductivity and the modulus of 
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318 Z.-H. JIN AND R. C. BATRA 

elasticity. This is evidently related to the concept of a FGM [3]. Noda and Tsuji [4] 
studied thermal stress reductions in a FGM plate. Tang et al. [5] and Arai et al. [6] 
considered the optimum design of a FGM for minimizing thermal stresses. By 
introducing graded ceramic-metal interfaces, thermal residual stresses at the 
interfaces can also be reduced [7, 81. 

The knowledge of crack growth in a FGM is important in order tb understand 
its thermal shock resistance. Kawasaki and Watanabe [9] observed surface crack 

'formation and propagation in d FGM plate when subjected to a thermal shock. 
Surface cracks in FGM coatings were also observed by Takahashi et al. [lo]. It is 
difficult to develop theoretical models for thermal crack growth in a FGM. 
Assuming an exponential spatial variation of the elastic modulus, Atkinson and 
List [Ill, Dhaliwal and Singh [12], and Delale and Erdogan [13] solved some crack 
problems for inhomogeneous solids subjected to mechanical loads. By also assum- 
ing exponential variations of thermal properties, Jin and Noda [14, 151 and 
Erdogan and Wu [I61 obtained solutions of steady TSIF for inhomogeneous 
materials. Noda and Jin [17, 181 considered the growth of cracks subjected to a 
transient thermal loading. The reduction in TSIF can be achieved by appropriately 
selecting the material parameters [14, 15, 17, 181. 

Here we investigate thermal stresses and the change in the stress intensity 
factor in an edge-cracked strip of a FGM. The aim is to explore the effects of shear 
modulus and thermal conductivity gradients on thermal stresses and TSIF. It is 
assumed that the edge-cracked strip of width b, initially at a constant temperature 
To, is suddenly cooled to a temperature T, on the surface with the crack ( x  = 0) 
and the other surface (x =.b) remains at To. The shear modulus p of the material 
is assumed to be given by p = po/(l  + px/b), where po is the shear modulus at 
x = 0 and p (r 0) is a nondimensional parameter. The thermal conductivity k is 
assumed to vary according to the relation k = k,e8x/b, where ko is the thermal 
conductivity at x = 0 and 6 is a nondimensional parameter. The effects of material 
inhomogeneities on thermal stresses and the stress intensity factor are studied. 

A MATERIAL MODEL 

FGMs are multiphase materials with spatially varying properties tailored to satisfy 
specific requirements encountered in engineering applications. The material prop 
erties of a FGM, such as Young's modulus and the coefficient of thermal expan- 
sion, may be determined from the properties of its constituents and their volume 
fractions by using an appropriate microthermomechanical model. Conventional 
composite models may be used when the volume fraction of one constituent is 
much smaller than that of the other in a two-phase FGM. However, the validity of 
those models cannot be assured over the entire range of constituent volume 
fractions because. they were developed on the assumption that the constituent 
distributions and microstructures are uniform in the composite. The main feature 
of the FGMs is the nonuniform microstructure with the continuous change in 
constituent volume fractions. In fact, micromechanics models for FGMs are not 
available [19]. One possibility is to assume a priori properties of a FGM and then 
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STRESS INTENSITY RELAXATION 31 9 

use an appropriate mic:rothermomechanica1 model to determine the approximate 
values of the volume fractions of the constituents. The advantages of this method 
are that the material response can be studied with the assumed variation in 
properties and the thermomechanical equations are usually simplified. The disad- 
vantage is that the assumed material distributions are usually approximate in the 
framework of a micron~echanical model and may not always result in the desired 
variations of thermal and mechanical properties. 

The thermoelasticity equations for an inhomogeneous solid undergoing plane 
strain deformations can be written in rectangular Cartesian coordinates as [20] 

where F is the Airy stress function, T is the temperature change, V 2  is the 
Laplacian operator, E is Young's modulus, v is Poisson's ratio, p is the shear 
modulus, a is the coefficient of thermal expansion, k is the thermal conductivity, 
and K is the thermal diffusivity of the material. 

It is extremely difficult to solve Eqs. (1) and (2) analytically for a general 
spatial variation in material properties. Here we consider a particular FGM. We 
assume that the mechar~ical properties are functions of only x and are given by 

where Eo, p,, and v, are the Young's modulus, shear modulus, and Poisson's ratio 
at x = 0, respectively; b is a length parameter; and P and y are constants. Noting 
that E = 2(1+ v)p, the dependence of Young's modulus and the Poisson's ratio 
upon x can be written as 
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320 2.4. JIN AND R. C. BATRA 

In Eqs. (3)-(6), P and y may be determined by 

where pi and vi are the shear modulus and Poisson's ratio at x = b, respectively. 
The Poisson's ratio given by Eq. (6) must satisfy the condition 0 s v I; 0.5. 

The variations in thermal properties are assumed as follows: 

where a,, k,, and K~ are the coefficient of thermal expansion (CE), thermal 
conductivity and thermal diffusivity at x = 0, respectively; ai is the CIE at x = b; 
ap is an adjustable constant; and 6 is given by 

where ki is the thermal conductivity at x = b. 
With assumptions (3)-(121, Eqs. (1) and (2) reduce to the simple forms 

6 dT 1 d T  
V Z T +  - =  -- 

b d x  u d t  

which may be solved analytically. 
Now we determine the volume fractions of the constituents in a two-phase 

FGM with its mechanical and thermal properties given by Eqs. (3)-(12). We 
assume that the above particular FGM is obtained by dispersing metallic particu- 
lates in a ceramic matrix. The microthermomechanical model used is a three-phase 
model (TPM) or the so-called generalized self-consistent model [21, 221, which is 
better than other models [19]. Since the volume fraction can generally be deter- 
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STRESS INTENSITY RELAXATION 32 1 

mined with only one assumed property, the other properties predicted by the TPM 
may be different from those assumed. We will show these differences for an 
example material. In the TPM, the effective shear modulus, p, of a composite is 
given by [22, 231 

where CL, is the shear modulus of the matrix and A, B, and C are dependent on 
the volume fraction 5 of the metal particulates, the Poisson's ratio of each phase, 
and the ratio of the shear moduli. We now consider a strip with width b of the 
assumed FGM; see Figure 1. The strip is subjected to a thermal shock at the 
surface x = 0. It is assumed that the ceramic matrix has a higher shear modulus, 
pm > pi (subscripts m and i refer to the matrix and particulates, respectively) and 
the volume fraction F of the metallic phase satisfies 5 = 0 at x = 0 and 6 = 1 at 
x = b. (The surface exposed to the thermal shock is completely made of ceramics in 
FGMs for thermal barrier effect and achieving high corrosion and oxidation 
resistance). Hence, we have po = p,,, in Eq. (3). Substitution of Eq. (3) into Eq. (15) 
leads to the following equation for the volume fraction of the metalic phase 

Once the volume fraction is determined, the bulk modulus K of the FGM 
composite can be obtained from [23] 

Figure 1. An edge crack in a strip of the FGM subjected to 
a thermal shock. 

D
ow

nl
oa

de
d 

by
 [

V
ir

gi
ni

a 
T

ec
h 

L
ib

ra
ri

es
] 

at
 1

1:
47

 2
2 

O
ct

ob
er

 2
01

3 



322 Z.-W. JIN AND R. C. BATRA 

where K,, and Ki are the bulk moduli of the ceramic and the metal, respectively. 
Then Young's modulus E and Poisson's ratio v are given by 

The coeficient of thermal expansion (CTE) [24,25] and the thermal conductivity [23, 
261 of the composite are given by 

As an example, we consider a FGM with the properties 

Ei = 200 GPa q = 1/3 Gi = 75 GPa 

for the metal phase and 

Eo = 300 GPa vo = 0.2 Go = 125 GPa 

for the ceramic phase. 
Figure 2 shows the shear modulus of the FGM and the volume fraction of the 

metal phase. Since the volume fraction is determined with the assumed shear 
modulus, the shear modulus predicted by the TPM is identical to that assumed, Eq. 
(3). The computed Young's modulus and Poisson's ratio of the TPM are depicted 
in Figurcs 3 and 4; these agree well with those obtained from Eqs. (5) and (6). In 
addition, it can be seen from Figure 4 that the assumed Poisson's ratio satisfies the 
condition 0 s vs 0.5. Figure 5 shows the CTE predicted by the microthermome- 
chanical model of Levin [24] and that given by Eq. (9). It is observed that the two 
CTEs are approximately identical when a, in Eq. (9) is chosen as 17 X 10-'/"~. 
In general, ol, in Eq. (9) can be chosen by, for example, the least squares method, 
so that the assumed CTE gives a best approximation to that predicted by a 
microthermomechanica1 model. The thermal conductivities obtained from the 
TPM and the presently assumed one are shown in Figure 6; the difference between 
them is somewhat large, but the maximum relative error is less than 10%. Here the 
thermal diffusivity, K ,  is not shown. Even if two monophase materials have the 
same K, the diffusivity of the mixture of the two materials usually is not a constant 
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STRESS INTENSITY RELAXATION 

Figure 2. Shear modulus of the FGM and the corresponding volume fraction of the metal in the FGM 
by the TPM. 

since K depends on the thermal conductivity, density, and specific heat. The 
present assumption of a constant thermal diffusivity is made for mathematical 
convenience. 

Jin and Mai [27] showed that the difference between Poisson's ratios predicted 
by the TPM and assurnl~tion (6) increases with an increase in P. Hence, with the 

Present assumption 

0 0.2 0.4 0.6 0.8 I 

x/b 

Figure 3. Young's modulus predicted from the TPM and the present assumption, Eq. (5).  
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Z-H. JIN AND R. C. BATRA 

I " ' I ' . - I ' . ' I ' - -  

- Resent assumption - - ...-- TPM model 

- 

- - 

I . , , l . . . l , , ,  I . . .  

Figure 4. Poisson's ratio predicted from the TPM and the present assumption, Eq. (6). 

constituent volume fractions of the TPM based on the shear modulus, the TPM 
model gives values of the CTE, Young's modulus, Poisson's ratio, and thermal 
conductivity close to the assumed values when P is not very large. We note that 
the TPM and other microthermomechanical models developed for macrohomoge- 
neous composites are only approximately valid for FGMs. 

Present assumption 

14.6 - - - a - -  Levin's model 

14.2 - - 

13.8 - 

- 

0 0.2 0.4 0.6 0.8 1 

x/b 

Figure 5. Coefficient of thermal expansion predicted from Levin's model and the present assumption, 
Eq. (91, a, = 17 X OK-'. 
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STRESS INTENSITY RELAXATION 

- P r e s e n t  assumption 

0 0.2 0.4 0.6 0.8 1 

x/b 

Figre 6. Thermal conductivily predicted from the TPM and the present assumption, Eq. (10). 

THERMAL STRESSES 

Temperature Field 

Consider a long FGM srrip of width b with an edge crack of length a as shown in 
Figure 1. The strip is initially at a constant temperature To, and the surface x = 0 is 
suddenly cooled to a temperature Ta. It is assumed that the surface x = b remains 
at temperature To. Hence, the initial and boundary conditions for the temperature 
field are 

Equations (14), (21), ancl (22) have the solution 

where x* =x/b, AT- To - T,, T =  t ~ / b '  is the nondimensional time or the 
so-called Fourier number, and B,, is given by 
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326 z.-H. J I N  AND R. C. BATRA 

Thermal Stresses 

For a known spatially one-dimensional temperature field T = T(x,t) in the strip of 
Figure 1, we seek a particular solution of Eq. (1) with a one-dimensional variation 
of material properties. Hence, a particular solution of Eq. (1) has the form 
F = F(x, t) and the equation is reduced to 

where 

The general solution of Eq. (25) is 

where P and Q are integration constants to be determined from conditions 

which imply that the resultant force and moment in the strip are zero. By 
substituting Eq. (27) into Eq. (28), P and Q can be determined and the longitudi- 
nal stress can be written as 

where Aij  (i, j = 1,2) and A, are given by 

b 
A,, = A I I  = E f x h  (30c, d )  

0 

with 
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STRESS INTENSITY RELAXATION 327 

By substituting Eq. (23) into Eq. (29) and noting expressions ( 5 )  and (6) for E 
and v, we obtain the expression for the thermal stress as 

(1 - vO)a:(x*, 7 )  

where a,, a.. (i, j = 1,  :!), I i j  and lij (i = 1,2, j = 1,. . . ,6) are constants given in ' J  
Appendix A. 

THERMAL STRESS INTENSITY FACTOR 

The homogeneous so1ul:ion of Eq. (13) satisfying the symmetry condition at y = 0 
can be expressed as 
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32 8 Z.-H. JIN AND R. C. BATRA 

where A( () and Bi( 5 (i = 1,2,3,4) are unknown functions to be determined. 
Using the traction free conditions at both surfaces x = 0 and x = b, i.e., 

four unknowns Bi(J) can be expressed in terms of A(( ) .  The stresses can be 
obtained from the Airy stress function (33) and the displacements are related to 
the stresses by Hooke's law, i.e., 

where p and Y are given by Eqs. (3) and (6). 
By introducing the following dislocation density function (e.g., see 1291) 

the longitudinal stress uy at the crack line (y = 0) corresponding to Eq. (33) can be 
evaluated as 

The superposition of the above stress and that given by Eq. (32) must be zero at 
the crack face. Hence, the singular integral equation of the crack problem is 
derived as 

in which K(r, s) is a Fredholm type kernel given in Appendix B, r = (2x/a - 11, 
and s = (2xf/a - 1). According to the singular integral equation method [28-301, 
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STRESS INTENSITY RELAXATION 

Figure 7. Normalized thermal stress in the FGM strip at ( a )  T =  ( b )  T =  (0 s x / b  5 0.1). 

Eq. (38) has a solution of' the form 

where $ ( r )  is a continuous and bounded function on the interval [ -  1,1]. If 4 ( r )  is 
normalized by (1 + v,)aAT, then the normalized stress intensity factor, K*, at the 
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Z.-H. JIN AND R. C. BATRA 

crack tip is obtained as 

NUMERICAL RESULTS AND DISCUSSION 

I t  is known that thermal stresses in a material depend not only on the magnitude of 
the thermal shock but also on the temperature distribution in the material. 
Thermal stresses will be influenced by the thermal conductivity gradient since it 
changes the temperature distribution [I, 21. The main objectives of the present 
study are to investigate the possible reduction of thermal stresses and the relax- 
ation of thermal stress intensity due to thermal conductivity and elasticity modulus 
gradients. For simplicity, we assume e = 0 in Eq. (9), i.e., a constant coefficient of 
thermal expansion. When there is a shear modulus gradient, Poisson's ratio is 
taken as 0.2 at x = 0 (ceramic side) and 0.33 at x = b (metal side). 

Effects of Material Inhomogeneities on Thermal Stresses 

Figures 7 and 8 show the thermal stress normalized by E,a,AT/(l - v,) in the 
strip free of cracks for various inhomogeneous parameters S and P at nondimen- 

Figure 8. Normalized thermal stress in the FGM strip at 7 = lo-'. 
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STRESS INTENSITY RELAXATION 

o 0.2 0.4 0.6 0.8 1 

Nondimensional time T 
(a) 

- 

- - - - - p = o , & l  

-.-.-.-------.-_-._.-.-, 
0 " " " " ' " ' " ' " "  

0 0.02 0.04 0.06 0.08 0.1 

No~~dimensional time 7 

(6) 

Figure 9. Normalized thermal ::tress at (a) x = 0 vs. nondimensional time 7 and ( b )  (0 5 7s 0.1). 

sional times r = ancl respectively. It is seen from Figures 7a and 7b that 
at T =  the maximu~n tensile thermal stress occurring at x = 0 is significantly 
reduced by increasing 6, a parameter of thermal conductivity gradient, when there 
are no gradients of meclianical properties. However, the magnitude of the maxi- 
mum compressive stress increases with increasing 8. It seems that the thermal 
stress is relatively insensitive to P,  a parameter of shear modulus gradient. The 
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332 2.-H. JIN AND R. C. BATRA 

maximum tensile stress increases slightly with increasing P when the material is 
thermally homogeneous. The inverse occurs when 6 is not zero. For P = 0 and 
6 = 1, the maximum tensile stress is only 72% of that in the homogeneous material 
and drops to 68% of that in the homogeneous material for /3 = 1 and S = 1. It is 
also observed that high compressive stresses are developed near the surface x = 0, 
which will retard the growth of the crack into the material. Figure 8 shows similar 
results for \r= lo-'. In Figure 9a, the evolution of the normalized tensile stress at 
x = 0 (which is maximum in the strip at a given time) is depicted. The tensile stress 
decreases with increasing T and the all-time maximum occurs at T = 0'. While the 
thermal stress in a homogeneous strip vanishes as T -, m, the stress in a nonhomo- 
geneous strip is nonzero. Figure 96  highlights the results for the interval 7 E [0,0.1]. 

Effects of Material Inhomogeneities on TSIF 

The TSIF can be calculated from Eqs. (39) and (40) after the singular integral 
equation (38) is numerically solved. The effects of the assumed gradients of 
material properties on the TSIF are then studied. 

For a thermally homogeneous material ( 6  = O), the general pattern in the 
variations of the normalized TSIF, K*(a/b,r), with time and crack length is 
similar to that in a homogeneous material [31-341. For fixed values of B and the 
crack length, the TSIF increases from zero and passes through a peak value at a 
particular time that increases with the crack length and decreases to zero subse- 
quently. There is a critical normalized crack length (normalized by the width of the 
strip) I ,  (= a,/b) at which the peak value of TSIF reaches a maximum. Figure 10 

Normalised crack length, ah 

Figure 10. Normalized peak TSlF in the edge-cracked FGM strip (6  = 0; B - 0.5, 1.0). 
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STRESS INTENSITY RELAXATION 

Nondimensional time z 
(4 

Nondimensional time z 
(b) 

Figure 11. Normalized TSlF versus nondimensional time 7 ( a )  for various crack lengths a / b  ( = 0; 
6 =  I ) a n d ( b ) ( O s ~ s O . l ) .  

shows the peak TSIF versus the normalized crack length a/b for different values 
of p. The peak TSIFs in the inhomogeneous material ( /3 # 0) are slightly higher 
than those in a homogeneous material ( p  = 0, with Young's modulus and Poisson's 
ratio being E, and v,). The inhomogeneity has a negligible effect on the critical 
length I , ,  which is about 0.065 for the homogeneous material. We have also 

D
ow

nl
oa

de
d 

by
 [

V
ir

gi
ni

a 
T

ec
h 

L
ib

ra
ri

es
] 

at
 1

1:
47

 2
2 

O
ct

ob
er

 2
01

3 



Z.-H. JIN AND R. C. BATRA 

0 0.1 0.2 0.3 0.4 0.5 0.6 

Normalised crack length, a/b 

F i y r e  12. Normalized peak TSIF vs. normalized crack length ( P = 0.0; S = 0.5, 1.0). 

investigated the influence of Poisson's ratio on the TSIF. When Poisson's ratios v, 
at x = 0 and v ,  at x = b are varied in such a manner that the parameter y in Eqs. 
(4146) and (8) remains unchanged, no change in the TSIF is observed. However, if 
y becomes smaller due to the variations of v, and v,, the TSIF becomes smaller 
and may be slightly lower than that for the homogeneous material.' 

For a mechanically homogeneous material ( /3 = 0 and v, = v,), the pattern in 
the variations of the TSIF with time and crack length is similar to that of a 
homogeneous material for short cracks but different for long cracks. Figure l l a  
shows the TSIF versus the nondimensional time T for various normalized crack 
lengths a/b for S = 1. For cracks longer than a /b  = 0.035, the TSIF is virtually 
negative at the initial stage of the thermal shock. For cracks longer than a /b  = 0.2, 
the TSIF is negative for r < lo-' and reaches the peak at the steady state. Figure 
11 b illustrates results for the integral T E [O, 0.11. Physically, a negative TSIF means 
that no crack growth occurs. Figure 12 shows the normalized peak TSIF as a 
function of a/b for different 6. The peak TSIF increases with a/b, reaches its 
maximum at about a/b = 1, = 0.035, and then decreases with further increase in 
a/b. It is seen that the peak TSIFs for the FGM are significantly reduced as 
compared with that for the homogeneous material. The maximum normalized TSIF 
is 0.06774 for S = 1, nearly half of its value 0.1263 for the homogeneous material. 
Also, the critical crack length ac/b = 1, at which the peak TSIF has the maximum 
value is about 0.035 for the FGM, which is much smaller than 0.065, the value for 
the homogeneous material. Jin and Mai 1351 showed that in a homogeneous 
ceramic, a preexisting crack shorter than 1, = 0.065 will grow unstably once 
initiated by a thermal shock and cause a sudden drop of the residual strength. For 
the nonhomogeneous material with a thermal conductivity gradient, only cracks 
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Normalised crack length, alb 

Figure 13. Normalized peak 'TSIF vs. normalized crack length ( P - 0.5; S = 0.5, 1.0). 

shorter than I, = 0.035 will grow unstably when initiated; i.e., the cracks between 
a/b = 0.035 and 0.065 will no longer cause a sudden drop of the residual strength. 
Even if a short crack ]nay grow unstably, it will be arrested 'earlier due to the 
increasing toughness of the FGM. Figures 13 and 14 show similar results for 
materials with both mechanical and thermal inhomogeneities (both /il and 6 are 

Normalised crack length, a/b 

Figure 14. Normalized peak T'SIF vs. normalized crack length ( /3 = 1.0; S = 0.5, 1.0). 

D
ow

nl
oa

de
d 

by
 [

V
ir

gi
ni

a 
T

ec
h 

L
ib

ra
ri

es
] 

at
 1

1:
47

 2
2 

O
ct

ob
er

 2
01

3 



336 Z.-H. JIN AND R. C. BATRA 

not zero). It is again observed that the maximum TSIF is reduced to about half of 
that for the homogeneous material. The critical crack length for P = 1 and S = 1 is 
only 0.025. 

CONCLUSIONS 

A FGM is proposed for improving the thermal shock resistance. The FGM has a 
hyperbolically decreasing shear modulus with the higher value at the surface 
exposed to the thermal shock and the thermal conductivity of the FGM increases 
exponentially. Such a FGM may be obtained by dispersing metal particulates in a 
ceramic matrix with an appropriate particulate volume fraction gradation. It is 
shown that the maximum tensile thermal stress in a strip of the FGM is substan- 
tially reduced by the assumed thermal conductivity gradient and the peak magni- 
tude of the compressive stress is increased. A strong compressive zone just away 
from the thermally shocked surface is developed, especially at the initial stage of 
the thermal shock. The TSIF for an edge crack in the FGM strip is relatively 
insensitive to the shear modulus gradient but is significantly reduced by the 
thermal conductivity gradient. 
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APPENDIX A 

Constants a,, a i j ,  Iij and in Eq. (32) 

The constants a,, a;, (i, j = 1,2), Iij and I,; (i = 1,2, j = 1,.  . . ,6) in the thermal 
stress expression (32) are given as 

a , ,  = 1 - e - Y  

and 

2e-8 1 - e-(r-c) 
I , ,  =-- 

1 - e - 8  y - E  
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li;. can be obtained from the corresponding Iij by setting E = 0. 

APPENDIX B 

Kernel K( r, s) in Eq. (38) 

The kernll K(r,s)  in the singular integral equation (38) is 

where 

and k ( r , s )  is a very complicated function that is not given here but can be 
obtained from the authors. 
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