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a uniform value 6,? In an attempt to answer this question, I show
that the velocity w and the temperature 6 approach in I2 norm the
values O and 0, , respectively, as t — o, provided the shear Viscosity,
the conductivity and the specific heat of the fluid satisfy certain
conditions. This result holds irrespectively of what the motion and the
temperature 1s at the initial instant of time. Actually the nature of
the result proved depends to a large degree on what smoothness as-

sumptions one makes about the solution of the governing equations. For
1.2
example, the assertion (v,0)— (0,0,) as t— o holds if the solution

(w,0) of the field equations satisfies the following conditions. For
every ¢ > 0, v and 6 are square integrable over the region oceupied
by the fluid; v and 6 are differentiable with respect to the spatial
variables x, and the derivatives with respect to x are square inte-
grable. However, if we assume that v and 6 be also uniformly con-
tinuous with respect to f{, then we can prove a stronger result that
(v,8) — (0, 6y) almost everywhere as ¢t — . Since not muech is known
about the existence of solutions of the governing equations, it is not
clear how smooth the solution would be if it existed for all times
t = 0.

It seems worth mentioning that, because of the possibility of the
fluid’s being set into oscillatory motion, the part of the boundary of
the fluid on which adherence condition holds may vary with time.
Here I make the somewhat plausible assumption that there exists a
time 7' such that for all ¢ > T, there is a material subsurface to which
the fluid adheres. Because the result proved here is of asymptotie
nature, without any loss in generality we may set T — 0. Similarly
the part of the boundary on which the temperature is maintained at
the value 0p may vary with time. In this case I do not require that
there be a material subsurface on which the temperature is assigned
for all times 7.

The mechanical problem corresponding to the situation when the
container is completely filled with the liquid has been solved by
Kampé de Fériet [1]. He proved that the kinetic energy of any
disturbance approaches zero exponentially. A significant difference
between this case and the one I study here is that the total potential
energy of the fluid remains constant for all ¢ > 0 when the vessel is
completely filled with the fluid. On the other hand, when the con-
talner is not completely filled, there is the possibility of the exchange



A THEOREM IN THE THEQRY OF INCOMPRESSIBLE ETC. 701

of the mechaniecal energy between the kinetie and the potential parts
and this complicates the problem. It 1s, perhaps, because of this ex-
change of mechanical energy between the kinetic and potential parts
that it is hard to obtain a monotone decay of the kinetie energy. In
any event, at present 1 am unable to obtain such a sharp estimate for
the type of weak solutions whose existence 18 assumed.

Notations: 1 refer the deformation of the fluid to a fixed set of
rectangular Cartesian axes. The vector X denotes the position of a
material particle, and I denotes the region occupled by the fluid in
the reference configuration. The vector x = 4 (X, ) gives the place

occupied by X, v = x gives its velocity and the scalar 6 =6 (X, 1) > 0
denotes the absolute temperature of X at time . A comma followed
by an index 1 designates differentiation with respect to x;. The su-
perposed dot stands for the material time derivative. The summation
convention 1s used. The vector n designates the outer unit normal to
the current configuration of the boundary 0 R of R. d By and 9 R.
denote subsets of dR, t.e. dE, cdR. By dR, we shall mean

BREEE}R——B_RL

2. - Formulation of the problem.

The thermomechanical deformations of an incompressible Navier-
Stokes-Fourier fluid subject to lamellar body forces are governed by

where

d--ij == 5 (vi,j + vj,i) = Vi, )

(2) tiy = — P 0s; + 2u(0) dy

q; :——k(ﬁ) Q,i-
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Here, 0. &, t;, u and & denote, respectively, the mass density per unit
volume, the internal energy density per unit volume, the Cauchy stress
tensor, the shear viseosity and the thermal conduetivity of the fluid.
Both u and %k are functions of the temperature 0. The scalar field p
gives the arbitrary hydrostatic pressure and £ — £(xX) gives the po-
tential of the body forces. 2 is assumed to be a non-negative, bounded,
differentiable funetion with the property that of2; is square integrable
over B. I remark that gravity is included as a special case when £
is linear in x. In the energy equation (1);, q denotes the heat flux
and the source term (0, 8,) (8 — 0y) accounts for the change of the
internal energy due to exchange of heat by radiation into the sur-
roundings. Quite often, radiation is either neglected or 1s assumed
to be an arbitrary function of place and time. Here r 1s assumed to
be bounded:; in particular, it may vanish identically. In order that
heat may radiate out of body if 1t 1s at a temperature higher than
that of the surrondings, the function r should be non-negative. 1 as-
sume that by an appropriate choice of the scales for various quantities,
the above equations (1) and (2) and the new quantities introduced
below are put in non-dimensional form. It may be remarked that the
fluid need not be homogeneous. I assume that the density, the shear
viscosity and the thermal conductivity are continuous and bounded
functions so that the various integrals considered below do exist. For
use in the discussion to follow, I introduce the Helmholtz free energy
function @, defined by

(3) p(0,X)=¢(0,X)—0n(0,X),
where # is the entropy density per unit volume. It is useful to recall
that

J &

J 1
g =055 =c0.X),

where ¢ is the specific heat. Therefore, for the case at hand,
(4) - e = 0.

Taking the inner product of (1), with v integrating the resulting equa-
tion, (1); and (1)z over the region (R, t), using the divergence theorem
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and the relations (2), we get

(&V'nzo,

d 1 :
(5) dt 9 f@'vVdV:@tIJ%_]’UidA-—-zfﬂdﬂdiJdVﬁf@de,
d

— [ edv = (§> O m dA L 2 [ﬂdﬁdﬁdv-_fr (60— 06,)dV .

\

Substituting for e from (1); in (4), Integrating the resulting equation
over the region y(£, {) and making an obvious simplification, we obtain

d k

L o

-k 2 r ﬁ
[ e 0000+ 2 dydy— (0 —60)| av.

If the fields (w, ) satisfy (1) and the prescribed side conditions such
as mitial conditions and boundary conditions then also (v, ) satisfies
(9) but the converse i1s by no means true. For (v,8) to be a solution
of (1), dj; and 0; should be differentiable with respect to X, but for
(v,8) to be a solution of (5), dyy and #; should exist almost every-
where in y (F,?) and should be square-integrable.

Our main tools in the proof of the theorem stated below are the
Imequalities due to Poincaré and Korn. I recall these inequalities. For
differentiable funections f defined on R such that f€I2(R) and
fi€ L?(R), we have Poincaré’s inequality [3, p. 355]

(7 [rav=op| f,if.idV+;i>PdA,

R R

and 1if f =0 on a part d By of the boundary of R, then the inequality
(7) ean be sharpened to [4]

(8) () [2av < p, [ fataav.
R

R

() I am grateful to Professor C. M. Dafermos for providing me a proof
of (8) and to Professor J. I.. Ericksen for bringing to my attention the re-
feremce [4].
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Here the constant p; depends only upon B whereas p. depends on R
and dfy,. For differentiable vector valued funections u defined on E
such that wm € L*(F), u; ;€ L*(F) anda = QO on a part d B, of the
boundary of E, we have Korn’s inequahty [4]

(9) , Wi 5 Uy, ; dV é ki [u(i_j) Ui, i) drV ’

R R

where %, is a function of R and R, .

In what follows I assume that the problem outlined in section 1,
or equivalently the equation (1) under the boundary conditions (10)
and suitable initial conditions, has a weak solution in the sense that
tfor every £ > 0,

(1) the mappmg y of the reference configuration R into the
present configuration 1s continuously differentiable with respect to
X and ¢, v is differentiable with respect to x and v& L?*(R), v; ; € L?(R),

(11) 6 1s diferentiable with respect tox, 6 € L?(R), 0;¢€ I?(R),

(11) fowv-vdV and fedV are differentiable with respect to
time f,

(iv) (w, ) satisty (9), boundary conditions (10) and suitable
initial conditions,

(v) the real valued functions gq; and pe (or ¢») appearing in
the mequalities below are bounded.

This definition of the weak solution differs from the one often
used 1n that (i11) is usually not required to hold (2). I now state the
theorem 1 wish to prove below.

THEOREM : lLiet B be an open, connected and bounded region with
a smooth boundary (®). Then the weak solution (w,8) of (1) under the
boundary conditions

vix,?)= 0, (%, 1) € x(aR1(1), ) X (0, 1),
tij Ty = Do M (x,1) € y (IR, t) X (0, 1),
10) B(x, t) = 0y, %, ) € y(3Rx(H), ) X (0, 1),
qi M = b(0,00) (0 —8), (x,1)€x(dB:1) X (0,8, (%)

(*) E.g. see Liadyzhenskaya [2].

(*) The region is assumed to be smooth enough to apply the inequalities (7),
(8) and (9). For details concerning this, see [3, 4].

(*) The funection b(6,0,) is assumed to be bounded.
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ulenlienlankinll el

satisfies
1,2
V> 0,710,
I,2
(11) 9——)@0,t-—>00,
Iim | p2 dV exists,
f— 0o
provided
() o =inf o(X) >0,
(1) co = sup o(X) 1s finite,
(ii1) ¢35 = Inf u(f, X) > 0,
0.X
0,
(v) o = inf LX) o ¢
9,X v,
(12) < (v} NJIR (%) == ¢ in the sense that the 2-dimensional

t=>0

oo
measure of NJE.(?) is nonzero, and
=10

(v1) one of the following two holds

Py . . 6, 0
(a) NdR2(?) &= ¢, nf 6, 0 > 0, or mf A ’9 0) > 0,
b=0 0, X 6, X
|
| . | 0
~ (b) inf (b(ﬂ’ %) | bk (9) ) > 0, or inf 120 S ¢
! 9.X V) 6> 0, X 0

In (12), the mfimum or supremum 1s taken over all possible values
of the temperature #. However, if in a particular problem, we have
a priori knowledge of the range of values over which 6 ean vary, then
we can take the infimum or supremum with € varying over that range
only.

The assumption (12); and the boundary condition (10); imply that
v satisfies conditions sufficient for Poincaré’s inequality (8) and Korn’s
inequality (9) to hold. Combining these two inequalities yields

Ilr"

Y.t ¥ (R, t)
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where q; depends on F and dF;. If dF, varies with time ¢, then ¢; can
be regarded as a real-valued funection of time {. I assume this function
to be bouded above for every ¢ and, with some ambiguity in notation,
denote 1ts least upper bound also by ¢;. I shall use a similar notation
below and therefore the various factors occurring in the inequalities
below are to be understood in the sense of suprema of their values if
either dF; or dRs is a function of time ¢.

3. - Proof of the theorem.

I first note that because of (5); and the boundary conditions
(10)1,2, the first integral on the right-hand side of (5)» vanishes. Now
rewriting (H)s as

(;Zt /- (“g_ Vv Q“Q)dv = — 2 / udi; dy dV = 0,

1
we see that the non-negative funection [Q (—;; V-V -+ Q) dV 1s non-

s

incereasing and therefore

(14) lim / (—Q— V- Vv -+ 9!2) dV exists.

t—-»00 . 2

Integrating both sides of (5)2 with respect to ¢ in the time inter-
val (0, T) where T is arbitrary, we get

J 2 = 2 {0

T
~ T
nv .

v 0

Since fof2dV is a bounded function of ¢, (15) implies that

(16) Juds; di; &V € L (0, )

}

for otherwise [ % V-v dV would become negative for séme large value

Jopd

of ¢, which ié impossible. Using (12),,2 and (13), we get the following



A THEOREM IN THE THEORY OF INCOMPRESSIBLE ETC. 707

string of inequalities:

B

/—Qv-vdVg ‘

) '22 [V'Vdv < =& diydy dV =

2

IA

1 % f udij dy; AV

2 ¢,
and these with (16) imply that

(17) I(t)Ef%-v-vdVeLl(O,oo).

With the smoothness assumptions we have on Q2 QQ eL' (y (R, 1)).
Using this, the assumption that £ is bounded and (16), we conclude
from (5)2 that

I¢lt (0, c0) .

Thus 1(%) is uniformly continuous in ¢ and
(18) I(t) > 0 as t — oo

now follows from (17). (11); is an immediate consequence of (18) and
(12); and (11); follows from (18) and (14). Combining (5),, (5); and
(6) suitably, we can verify the following

i [ b
19) | (e—boy+ov - v+2gfz)dvz__§—9~(9_5ﬂ)2dA_.
X(R.t X(3RS.t)
0, k s, ¥ |
[ 000t 20 (142 a4 - 0— 002 av
X (R.1) ' |

It », b, & and n are non-negative functions, it is clear that the
right-hand side is aways non-positive. Following Ericksen [5], I in-
troduce a finite Taylor expansion in the temperature for @, obtaining
thereby

¢ — N == @y + K (0 — 60)2
where
Po =g ('90) ’ and
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0* being a value of the temperature between 6 and f,. An alternative
expression for K 1s

¢ (0F)
6*

K=

On the assumption that the specific heat 1s always positive, K

would be positive. Since qi;} — 0, we conclude that

d

X (R 1)

Thus, with the assumptions that u >0, &£ >0, b and r are non-
negative funections, the non-negative function

fa

[[E(O—6 +¢ v v+200]dV

is monotonically non-increasing and hence must converge as t—> o0,
This along with (12), and (14) implies that

“

(20) lim j (00,2 AV exists .

t— o0

When N OR:(1) 5= ¢, we can use (8) to arrive at

t=u

Tk | k
90 J W G.i ﬁ.i dV — 6{} f -9_2 (‘9 — 90).1 (9 — 90).1 av :

-

{ .
) - / (6 — 6p)2 AV,

1\

(_ ; 0, k
ox 0

and thus obtain the following from (19):

d
dt

(21) [ (KO —007+ov - v+

—|‘299)dV§—Q3[(9—9{1)2dV——2 ’ uds; dis AV,
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where

which by assumption is positive. If instead, the second alternative in
(12)¢ holds, then with the definition |

| ____f(b Qﬂk)
_ 05"—-}9]51: "F! 92 y

we have

b . ’ k
(92) @) - (0—62dA + | 0, 5 0,40,V =

X GR.Y AR

P

| 2 Cs @ (9'——90)2 dA —|— / (Gm-f)g)*i (9*——6)11 dVi .

X (3RS AR,

Sinee 0 =0, on y(dFR.,?), we can replace the region of integration
x (3R>, t) by y (dRy,?) in the first integral on the right-hand side
of (22). Now the use of Poincaré’s inequality in the form (7) gives

b | k
(5) b (60— 0y)* dA |- f G, I 0,0;dV = i (0 —64)2dV,

da
xE(R;t) X(Rat-) . gx(Rjt}
and therefore
b . A roo P
(23) @ F(EJ—GU)? dA -+ J %9{; Pt 0:0; 5 (G—GO)zi dV =
X (3R, )

where

g, — inf (05 : ?ﬂ),
0, X \ 0

and by assumption we have ¢, > 0. (23) and (19) again give (21) with
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Q3 repléced by q4. Now an argument similar to the one used in con-
cluding (17) from (9)e yields

[ (60— 607 av € 1(0, =)
and this along with (20) 1mplies that
[(9—6{})20117—)0 as [ —> 0.

Now (11), follows immediately once we note that

A

[ (62 —6,2) v gf(e__oﬂ)ﬂdwrzen f(e-—_eﬁ)dv ,

L

< f (0 — 6,)2 AV + 26, ( j d v)m ( f (8 — 8,)? dv)m .

To obtain the last inequality, we have used the Cauchy-Schwarz Ine-
quality. This completes the proof of the theorem.

Now consider the case when the solution (w,8) of (9) and (10) 1s
also required to be smooth in the following sense: the fields (w,#) are
uniformly continuous with respect to t. For such solutions of (5) and
(10), the assertion that (w,0)— 0 almost everywhere as {—> % can
be proved from (11);» and the definitions of limit and of uniform
continuity. I remark that the weak solutions are not generally as-
sumed to have this additional smoothness.

4. - Remarks.

Even though I have shown above that the potential energy of
the fluid approaches a limit as { — «, depending upon the shape of
the container, this limiting value can be different for different sizes
of the initial disturbances. For example, if the vessel has a shape like
the one sketched below one could start with all the fluid in the valley
A and end up with some fluid in B or viee versa. One possibility 1s
that, in the process of the transfer of the fluid from 4 to B, the flmd
would come in contact with some part of the wall it had not previously
touched, and then the bounding layer of the fluid would stay there
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forever afterward. Should this happen, it is conceivable that, at some
point on the wall connecting A and B, the thickness of the layer of the
tluid connecting the fluid in 4 and B might decrease as ¢ increases,
ultimately becoming zero as {—> 0. Such a motion of the fluid would be
topological for every t but in the limit as { — «, become non-topolo-
gical. I remark that the preceding analysis covers such a possibility.

Dussan [6] has studied the smoothness of the veloeity field and
surface tractions in the neighborhood of the line common to three
materials, e¢.g. where the interface between two immiscible fluids meets
a solid wall. Her study shows that the velocity field and the surface
tractions may not be well defined in the neighborhood of this common
Iime. Also the assumption that 4 € €' and the adherence condition at
the solid walls are incompatible with the assumption that the common
line moves. Her basic assumptions in arriving at these results are that
a point on the fluid-fluid interface travels to the common line in a
finite mnterval of time and the fluids adhere to the solid walls. In the
problem studied here, I have neglected the deformations of the other
fluid (e.g. air) which may be contained in the container besides the
Navier-Stokes-Fourler fluid. Moreover this other fluid is supposed to
exert a uniform pressure Py on that part of the boundary of the
Navier-Stokes-Fourier fluid which is not in contact with the walls
of the container. Thus the assumptions made here are not the same
as those made by Dussan [6]. The preceding remarks should make
clear that the assumptions y € C' and 9 B, is a function of time ¢ are
not mutually inconsistent.

It seems worth mentioning that the above analysis holds for the
case when the shear viscosity u is also a function of d provided u is
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bounded below, t.e. (12); holds. Two other possible generalizations of
the result presented here are to Reiner-Riviin fluids and to incom-
pressible fluids of second grade. I now explore conditions which would
be sufficient for the above analysis to apply in these two cases. To do
so for Reiner-Rivlin fluids, 1 exploit the faect that the cruecial step in
the proof of the above theorem 1s the following: The dissipation
funetion @ = ir (td) 1s bounded below by ¢rd? For Reiner-Rivlin
flmids, the Cauchy stress is given by (%)

t=—p14 /LU 1A + f2(11, I11) d~,

where p, the hydrostatic pressure, is an arbitrary function of x and
t, and where Il and III denote the second and the third invariants
of d. The first mnvariant I (= {r d) is i1dentically zero. Thus for the
dissipation funection @ we obtain

O = f,tr d? 4 fo tr d3,
= (fi+ 1 fa—fo) tr @+ fo (tr @+ tr @ — 11 tr @%).
The Hamilton-Cayley theorem, vz
d?—-Id*+11d-—-1I1I11 =0,
and the fact that I =0, imply-

trd*= — II {tr d=
Thus
Ird?2+trd®—Iird?=19 d*+ d° 4 d*).

The observation that the right-hand side is always non-negative for
every d immediately leads to the coneclusions that the inegualities

(24) fl—fz+IIf2§COHSta.>0, fzéO,Vd
are sufficient for the valhdity of the following mequality:

= ogtr d2

(®) I assume that f; and f, are bounded.
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Hence the theorem holds for Reiner-Rivlin fluids if f; and f» sa-
tisty (24).

The constitutive equation of incompressible fluids of second grade
1s [7, Chapter V1]

t = —*1)1—|-MA1+051A.2+%A12,

where A, and A. are first and second Rivlin-Ericksen tensors; u, o

and o are constants and p, the hydrostatic pressure, is an arbitrary
funetion of x and {. Recalling that |7, § I1.11]

A, 2d,

{

A, A, + A, grad v + (A, grad v)¥,

we obtain

tr (td) =2u frd* 4+ o1 tr d* + 4 (o1 + a2) ir d3.
Following the steps necessary to derive (5)s from (1)s, we arrive at

(25) — g(v'v—{—QQ)—i—al tr 2| dV = —

- f (20 tr d2 4+ 4 (0 + an) tr d3] dV.

Now reasoning similar to the one presented in section 3 shows that
the 1nequalities

(26) u>0, o > 0, o+ 0o =0,
are sufficient for the solution w of (5); and (25) under the boundary

conditions (10); o and suitable initial conditions to exhibit the fol-
lowing behavior:

ffuzdv-}o, t—> o
(27) j ird*—0,t— x

Iim f 002dV exists as { —>
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provided (12); holds. That (26) leads to (27) complements the known
result [7, § VI.b] that the condition a; < 0 implies some sort of
instability.
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