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Axial and tangential thickness shear vibrations of a circular cylindrical piezoelectric shell of 
monoclinic crystals are studied. The problems are solved analytically, and the frequency equations 
are derived. For a cylinder made of a rotated Y-cut quartz, the resonant frequencies are computed 
numerically, and it is shown that they approach that of a flat plate as the inner radius of the cylinder 
of finite thickness approaches infinity. 

PACS numbers: 43.40.Ey 

INTRODUCTION 

Thickness shear vibrations of crystals and piezoelectric 
plates have been studied either by using the three- 
dimensional equations of piezoelectricity or the two- 
dimensional equations of the plate theory. 1-3 The interest in 
these problems arises because of their applications as reso- 
nators. Vibrations of a circular cylindrical piezoelectric shell, 
with deformations assumed to be either axisymmetric or with 
the tangential displacement taken to be zero, and made of 
ceramics poled in various directions, have also been 
studied. 4-? In this paper, axial and tangential thickness shear 
vibrations of a circular cylindrical piezoelectric shell made of 
a monoclinic crystal are studied. We derive exact solutions of 
the three-dimensional quasistatic piezoelectricity equations 
governing the free vibrations of a cylindrical shell with 
traction-free and electroded inner and outer surfaces. Fre- 

quency equations are also derived and solved numerically. 

I. THICKNESS SHEAR VIBRATIONS OF A PLATE 

Results for the thickness shear vibrations of a mono- 

clinic piezoelectric plate 2 are summarized below for easy 
reference. Consider an infinite plate, shown in Fig. 1, of 
thickness 2h with traction-free and electroded boundaries at 

x2= _+h. Equations governing the deformations of the plate 
and the relevant boundary conditions are 

rji,j=l•iii, -h<x2<h, (1) 

Did=O, -h<x2<h, (2) 

r2i= 0, qb= 0 at x 2 = _+ h, (3) 

where 

Tq = Cij•tSkt- ekiiE•, (4) 

Dr = e ijkS jk + •ijE j , (5) 

Si• = «(uid + u/.i), (6) 

Ei= - q•,i , (7) 

In Eqs. (1)-(7) and hereafter, Tq, u•, Di, Siy , and E i are the 
components of the stress 'tensor, mechanical displacement, 
electric displacement, the strain tensor appropriate for infim- 
tesimal deformations, and the electric field, respectively, p 
and •b the mass density and the electric potential, and 
eqt, and eq the elastic, piezoelectric, and dielectric con- 
stants, respectively. Furthermore, a comma followed by in- 
dex j indicates partial differentiation with respect to x i , a 
superimposed dot indicates differentiation with respect to 
time t, and a repeated index implies summation over the 
range of the index. 

Equation (1) expresses the balance of linear momentum 
and Eq. (2) is the Gauss equation. The boundary conditions 
(3)1 and (3)2 imply that the bounding surfaces x 2 = ___ h are 
traction-free and have null electric potential prescribed there. 
Equations (4) and (5) are 'the constitutive relations and Eq. 
(6) is the strain-displacement relation; Eq. (7) is the electric- 
field-potential relation. Regarding Tij=Tdi and Si.•=S•i as 
vectors in a six-dimensional space_with T•=T•, T2=T2:,,, 
•'3 = T33, ]'4 = T23, ]'•= T2;•, and T6= T•2 etc., the material 
constants Cijkl and eni j rrtay be written as 6x6 and 6x3 
matrices. For monoclinic crystals, 

•q= •i, •:2 = •3=0. (8) 
For the free-time-harmonic thickness shear vibrations in 

the x] direction, we seek solutions satisfying 

Ul=t•l(x2)e iøt, u2=:O , u3=O, 

q b= •b(x2)ei•Ot. (9) 
Equations (1)-(7) become 

T2L2 =-pw2ul, D::,2=0, -h<x2<h, 

T2•=0, •b=:0 at x2=_+h, 

T3• = 2Cs6S•e- e2sE2, 

D 2 = 2e26S12-Jr ff22E2, 

Tie = 2C66S12- ee6E2, 

D 3= 2e36S12+ e23E 2, 

_1 

S•2-7u],2, E2 =-•0,2 , 

(1o) 

(10 

(14) 
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FIG. 1. Schematic ske_[ch of a piezoelectric plate. 

wherein we have dropped the tildes superimposed upon ut 
and ,•. The general solution of (10) is 

ul=a 1 sin kx2+a 2 cos kx2, (15) 

4,= e2•6 (a 1 sin kx2+a 2 cos kx2)+a3x2+a4, (16) 
•522 

where 

k2= PO2/•766, •66= C6a + e•6/•22, (17) 
and at, a2, a3, and a 4 are arbitrary constants. Substitution 
from (15) and (16) into boundary conditions (11) gives the 
following set of homogeneous equations for the determina- 
tion of a t, a2, a3, and a4: 

k( C66(a ! cos kh-a2 sin kh)+ e•6 (al cos kh •22 

-a 2 sin kh)) +e26a3=O, (18) 
k( C66(al cos kh+a 2 sin kh)+ e226 (a• cos kh 

+a 2 sin kh)) +e26a3=0, (19) 
e2•6 (a 1 sin kh+a 2 cos kh)+a3h+a4=O, (20) 
•22 

e26 
-- (-a I sin kh+a 2 cos kh)-a3h+a4=O. (21) 
E22 

The vanishing of the determinant of the coefficient matrix of 
Eqs. (18)-(21) gives the following frequency equation: 

sin kh(tan kh-kh/k•26)=O, k226=e226/(•66e22. (22) 

II. AXIAL THICKNESS SHEAR VIBRATIONS OF A 
CIRCULAR CYLINDRICAL SHELL 

We consider a cylindrical shell, shown in Fig. 2, made of 
a monoclinic crystal and with inner radius a and outer radius 
b. It is more convenient to use cylindrical coordinates, and 
we refer the reader to Love's book 8 for the governing equa- 
tions (1) and (2), constitutive relations (4), and strain- 
displacement relations (6) written in cylindrical coordinates. 
It is preferable to work in terms of physical components of 

r'x2 L• I 
O•X 3 

FIG. 2. A circular cylindrical shell and the choice of base vectors for study- 
ing its axial thickness shear vibrations. 

stresses, strains, and the electric displacement. The constitu- 
tive relations (4) and (5), and electric-field-potential relations 
(7) become 

rzz = C 11Szz-{'- C12Srr + C13S oo-I- 2C14Sr0- el 1Ez , 

Trr = C12Szz + C22Srr + C23S00+ 2C 2aSro- e12Ez , 

Too = C135zz q- C23Srr q- 033500 + 20345rO- e13Ez, 

Tro = Cl,,Szz+ C2,,Srr + C3,,Soo+ 20445rO- e14Ez, 

T&= 20555oz+ 20565zr-- e25E r- e35Eo, 

Tzr= 2C56S0z+ 2C66Szr_ e26E r _ e36Eo, (23) 

For the free-time-harmonic thickness shear vibrations in the 

axial direction, we seek solutions of the form 

uz=•iz(r)e i'øt, Ur=O, uo=O, 4,=•b(r)e i"'t. (24) 

With (24), and dropping the tildes superimposed upon u z and 
•, the governing equations and the boundary conditions sim- 
plify to 

a<r<b, 

(25) 

`gTr, Trz 1 • 
__+ -- pto2uz, - -- (rDr)=O, 

Or r r Or 

1 `guz `94, 
Szr-2 ̀gr ' Er- `gr ' (26) 

Trz=2C66Srz-e26Er, Dr=2e26Srz+ e22Er, (27a) 

To•= 20555 &- e25Er, D0 = 2e365•+ e23Er, (27b) 

T•=0, •b=0 at r=a,b. (28) 

Substitution from (26) and (27) into (25) yields 

1 

( C 66uz,r + e 26 q•, r) + •' ( C 66tdz,r + e 26 q•,r ) 

= -- pt. O2Uz, (29) 
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FIG. 3. A circular cylindrical shell and the choice of base vectors for study- 
ing its tangential thickness shear vibrations. 

0'• (e26Uz'r--e22qb'r)+ -- (e26Uz'r--e22qb'r)=O' (30) 
The elimination of •b from (29) and (30) gives 

1 

Uz rr q- -- Uz r + k2uz =0, (31) 

where 

k2 = Ptø2/•66, •66 = C66 q- e226/e22 ß (32) 
Solving Eqs. (31) and (30) for u z and •b, we obtain 

uz= C1Jo(kr) + C2Yo(kr), (33) 

4 = e2•6 uz+ e2•6 (C3 In r+C4), (34) 
•22 •22 

where Jo and Yo are zeroth-order Bessel's functions of the 
first and second kind, respectively, and constants C1, C2, C3, 
and C4 are to be determined from the boundary conditions. 
The requirement that functions u• and •b satisfy boundary 
conditions (28) give four homogeneous equations for the de- 
termination of C•, C2, C3, and C4. These four equations 
have a nontrivial solution only if 

kaJ•(ka)ln a/b+k226[Jo(ka)-Jo(kb)] 
kbJ•(kb)ln a/b+k2•6[Jo(ka)-Jo(kb)] 

kaYl(ka)ln a/b + k•6[Yo(ka )- Yo(kb)] 
= kbY•(kb)ln a/b+k•26[Yo(ka)-Yo(kb)] ' (35) 

where relations J; = -J1, Y• = - Y• have been used; J• 
and Y• are first-order Bessel's functions of the first and sec- 
ond kind, respectively. Equation (35) is the equation for the 
determination of the frequency k, and thence o• through Eq. 
(32) 1. 

III. TANGENTIAL THICKNESS SHEAR VIBRATIONS OF 
A CIRCULAR CYLINDRICAL SHELL 

We now study the tangential thickness shear vibrations 
of a cylindrical shell made of a monoclinic crystal aligned as 
shown in Fig. 3 wherein the coordinate system is also de- 
picted. With respect to the coordinate axes shown, the con- 
stitutive relations take the form 

Too = CHS oo+ C12Srrq- C13Szzq- 2C14Srz- eHE o, 

Trr = C12S00 + C22Srr + C23Szz q- 2C24Srz- e•2E o, 

Tzz = C13S ooq- C23Srr q- C33Szz q- 2C34Srz -- e13E o, 

Trz = C14Sooq- C24Srr'{- C34Szz q- 2C44Srz- e•gEo, 

Tzo= 2C35Sz0+ 2C 56S Or- e 25E r- e 35E z , (36) 

Tot = 2C56Sz0+ 2C668 0r- e26E r- e 36Ez , 

D o=e•S oo+ e•2Srr+ e•3S•z+ 2e•4S•z+ eHE o, 

D r = 2e•S o• q- 2e26Sro+ eeeEr + e23E z , 

Dz= 2e35S ozq- 2e36Sro+ e23Er + e33Ez. 

We assume that the free-time-harmonic thickess shear 

vibrations in the tangential direction are given by 

Uo=•o(r)e i•, Ur=O, U•=0, &=•(r)e i•t. (37) 

For motions of this type, the governing equations and bound- 
ary conditions simpli• to 

•T•o 2 I 8 
• -- Tro := -p•2uo, -- (rDr)=O , (38) Or r r • 

Sro=• UO,r-- , Er= -- •,r, (39) 

rzo = 2C56Sr0- e25Er, ror = 2C66Sr0- e26Er, (4(I) 

Dr = 2e26Sro+ e22E r , D z= 2e36Sro+ e33Er, (41) 

TFO=O, •=:0 at r=a,b, (42) 

where we have dropped the tildes superimposed upon u 0 and 
4. A solution of Eq. (38)2 is 

D r = e26C 3/r• (43) 

where C 3 is an arbitrary constant. Equations (43), (41)•, and 
(39)2 result in 

44, •r = •2• 
Substitution from (40), (39)•, and (44) into (38)1 yields 

1 (k2_ I • k•6C3 "O,rr+ 7 (45) 
where k and k26 are defined by Eqs. (32)• and (22)2, respec- 
tively. A solution of Eq. (45) is 

uo = C•J•( kr) + C2Yl( kr) + C3P( kr), (46) 

where C• and C 2 are arbitrary constants, and 

P(kr) = 7 k•o[Y•(kr)F(kr)-J•(kr)G(kr)], (47) 

21() ffr (48) F(•r)=j• • d•, G(•r)= • • 
Substituting from (39)• and (46) into (44), and integrating 
the resulting equation, we .obtain 

•= e22 {C•[J l(kr) -F(kr)] + C2[Y•(kr ) - G(kr)] 
•22 

+ C3[P(kr) - Q(kr) - In r] + C4}, (49) 
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FIG. 4. First four resonant frequencies for axial thickness shear vibrations of 
a circular cylindrical shell (-- 1st; ....... 2rid; ..... 3rd; .... 4th). 

where 

kr P(•) d Q(kr) = f• -•-- •. (50) 

FIG. 5. First four resonant frequencies for tangential thickness shear vibra- 
tions of a circular cylindrical shell (-- lst; ....... 2nd; ..... 3rd; .... 
4th). 

The four homogeneous algebraic equations for C•, Ce, C3, 
and C4 obtained by substituting from (46) and (49) into the 
boundary conditions (42) will have a nontrivial solution only 
if 

I 

[P(kb)- Q(kb) + In a/b]kaJe(ka) + [J•(ka)-J•(kb) +F(kb)]k•6 
[P(kb)- •(kb) + In a/b]kbJ2(kb) + [J•(ka)-J•(kb) +F(kb)][P(kb)- kbP'(kb) + k2•6] 

[P(kb)- Q(kb) + In a/b]kaYe(ka) + [Y•(ka)- r•(kb) + G(kb)]k•6 
[P(kb)- Q(kb) + In a/b]kbY2(kb) + [Y•(ka)- r•(kb) + G(kb)][P(kb)- kbP'(kb) + k226] ' 

(51) 

which is the desired equation for the determination of k and 
of o• via Eq. (17)•. 

IV. NUMERICAL RESULTS 

For a rotated Y-cut quartz, 9 
C66=29.01 GPa, 

e26=-0.095 C/m e, 

e22 = 39.82 x 10- •2 C/V m, 

frequency equations (35) and (51) are solved numerically, 
and the first four frequencies are depicted in Figs. 4 and 5, 
respectively. In Figs. 4 and 5, R = (a + b)/2 is the average 
radius of the cylinder. Keeping 2h = b-a fixed and letting 
a-,m, we see that in each case the resonant frequencies of 
the cylindrical shell approach those of the fiat plate given by 
(22). 

v, CONCLUSIONS 

We have studied analytically the axial and the tangential 
thickness shear vibrations of a circular cylindrical piezoelec- 
tric shell, and have computed the first four resonant frequen- 
cies for a rotated Y-cut quartz shell. 
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