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Based on the theory of invariants, polynomial constitutive relatrons for transversely isotropic
piezoelectric porous materials are derived from the polynomial integrity bases for an energy density
function depending on a symmetric second-order tensor and two vectors. They are assumed to be
smooth functions of their arguments, are expanded about the values their arguments take in the
reference configuration and all terms up to the quadratic terms in the gradients of the mechanical
displacement, the electric potential, and the gradients of the v>lume fraction are kept. The
second-order constitutive relations so obtained are then specialized to the case of infinitesimal
deformations and weak electric fields, and also to the case of infinitesimal deformations and strong

electric fields.

PACS numbers: 43.20.Jr, 43.25.Dc, 43.38.Fx

INTRODUCTION

The effect of nonlinearity in the constitutive relations of
piezoelectric ceramics has been of recent interest because of
their use in smart structures. Nelson' has given, for all crys-
tal classes, representations of quadratic piezoelectric consti-
tutive relations generated by an energy density function of a
symmetric second-order tensor and a vector.

Many piezoelectric materials are porous.”~* Here, based
on the theory of invariants, nonlinear form invariant polyno-
mial constitutive relations for transversely isotropic piezo-
electric porous materials are derived. They are then reduced
to second-order and linear constitutive relations, and consti-

tutive relations for small deformations and strong electric
fields.

l. EQUATIONS FOR A NONLINEAR PIEZOELECTRIC
POROUS MATERIAL

Let the coordinates of a material particle with respect to
a rectangular Cartesian coordinate system be Xy in the ref-
erence configuration, its spatial coordinates in the current
configuration be x;, then the balance laws for a nonlinear
piezoelectric porous material are®~

po=p7, F=det(x; k),
[Txrxpr+ 7X 1€ EXE 1= 3E mE m )] k+ Pof

=P05kKUK:
(Mg + FXk 1€0Er) k=0, (1)
hgxt po(l+g)=po@,

where p is the mass density, p,y is the mass density of the
porous material in the reference configuration, Ty; is the
second Piola—Kirchhoff stress tensor, Uy is the mechanical
displacement vector, &y is the shifter, Il is the material
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electric polarization, E;,= — ¢, is the electric field, ¢ is elec-
tric potential, €, is the permittivity of the free space, J;; is
the Kronecker delta, Ay is the equilibrated stress, g is the
intrinsic equilibrated body force, I is the extrinsic equili-
brated body force. k is the equilibrated inertia, and  is the
volume fraction of voids or the porosity of the material.
Throughout this paper, a repeated index implies summation
over the range of the index, and a comma followed by K
(i) implies partial differentiation with respect to Xg (x;). A
dot above a quantity signifies its material time derivative.
Balance laws (1) are accompanied by constitutive relations

A% i) 0%
TKL:_—’ K=~ > hK:_r (2)
IE L Wk IV

where 3 (Eg; ,Wg,Vk) is an energy density function that
also depends on ¢, that dependence is not written explicitly.
In Eq. (2) E, is the Green—Lagrange strain tensor, Wy is
the electric field :n material form, and Vi is the material
gradient of ¢«

Exq=H{Ux U x+ U xUnp)s
Wy=x kEy =Xk Pp=— bk Vi=x¥i=9¥x- @)

I1. FORM INVARIANT POLYNOMIAL CONSTITUTIVE
RELATIONS

Let the material be invariant under rotations about a unit
vector a and reflections about planes containing a. Then any
scalar polynomial function of a symmetric tensor E and two
vectors W and V must be a polynomial function of the fol-
lowing invariants called the polynomial integrity bases:’

I,=a-E-a, IL,b=ttE, I[,=a-W, [,=a'V,
II=a-E*a, IL,=uE? II,=W-W,
II,=a-E-W+W-E-a, II;=V.V,
I¢=a-E-V+V-E.a, II,=W-V, [€))
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nr=u B, IIIL,=W-E-W, symmetric tensor E and vectors W and V can be written as

III3=3'E2‘W+W'E2‘3, III4=V'E'V) 2;‘2(11,..., 14,111,...,117, IIII,...,IIIG), (5)

= . 2. . 2. = . . . .
Mis=a-E-V+V-Ea, [Hg=W-E-V+V-E-W, where 2 is a general polynomial function of its arguments.
where a-b indicates the inner product between vectors a and  From (2) and (5), we obtain the following general form for
b, and tr E equals the sum of the diagonal terms of E. With  the polynomial constitutive relations for a nonlinear trans-
(4), any scalar form invariant polynomial function of the  versely isotropic material:

a>, az

az, az, 3z, az,
T=—a®a+ — 1+ —(a®FE.a+a-EQa)+2—— E+ —(a@W+W®@a) + —

2
al, al, = all, all, aIl, (a®V+V®a)+ 3 E

oIl aIll,

P eWt 2 VeVt - (WeV+ VaW)+ -
Yo,V eVt i, VOV o, (WeVVeW o

(aQE-W+W-E®a+WQE-a+a-EQW)

)
+ (a®E-V+V-E®a+VRE-a+a-EQV), (6)
3l

11—62 a+2 azE +2 o 7% W+ 32v+ 7 EXa+2 7 E-W+2
LM e, A e Y e, e, T o, alll,

h= o2 +2 ‘EE +aE W+2 azv +2 E2.a+2 E-W+2
o e, A A, oIl ams @ am6 : aIll,

E-V, @)

E-V, 8

where 1 is the identity tensor and u®v denotes tensor product between tensors u and v. In order to derive a second-order
theory, we assume that 3, is a smooth function of its arguments and write its Taylor series expansion about the values the
arguments take in the reference configuration and only keep all terms up to degree three in E, W, and V:

S=ad + ayly+ Bl + yl+ oL+ b5+ el L+ c 0l + cslly + .5+ 6113+ k2 + 1ol s+ e, LI+ exl Iy + e300,
+ filid g+ folod 4+ fall g+ g Il s+ oIl N yI3 + N oI+ N3 T2y + N T2 + NI Ty + Nl 15+ NI o0 + NGl Tl
+ NI+ p B3+ pod Il + € 5+ E 11T+ v L+ v L1 + vl ol + vl o+ s L+ vl Iy + v L + vl 51,
+volIyly + gl Ly + vid Ll + vyl Iy + vigl I3+ vy Lol s+ B+ oIl + 130304+ ud i+ eI d 4+ 16T 100
+ mallsTy + gl sly + mol Il + ol Isly+ Tl s+ mpl 4+ sl s+ I L+ G151+ LI+ G,
+ LI sl y+ LTI+ LI+ 8111150 4+ 8150504+ 8311 4+ ST I3+ 851151, + 86II I+ 85111 g, 9)

where a;, a,, B, and y will be shown to represent initial fields. Here, c;—c5, €, €, Ky, k2, €1—€3, f1—f3, &1, and
g are 17 constants for the quadratic terms in 3, or for the linear constitutive relations; A, — A represent cubic terms containing
E alone, w; and p, cubic terms containing W alone, &; and £, cubic terms containing V alone, v, — v4 cubic terms containing
E and W, 7, — 1,4 cubic terms containing E and V, {,— {s cubic terms containing W and V, and &, — 8; cubic terms

containing E, W, and V. There are 54 constants in all for cubic terms in 2, or the quadratic constitutive relations. Substitution
of (9) into (6)—(8) gives

T=(ay+2c;+esly+ e+ fily+ 3N+ 2N T+ N g+ NIy + Nyl L+ 20 I I3+ vl 5+ vyl I+ wgl L+ viglo1
+ 200+ ol il s+ poll+ myadod 4+ 81514+ 85117)a®@a+ (ay+2c,D,+ 31y +eyl3+ ol 4+ 3015+ N3 13
N T+ NI+ Mgl I+ 20T, L5+ v 02+ wgl s+ vy J 1+ v 0 I3+ 2 3ol g+ 02+ nglls+ nyolls+ nod I+ S5,
+ 86117)1+ (c4+ NsIy + NI, + vsI3+ s, ) (a®E-a+a-EQa) + 2(cs+ Nyl + Nglr + vl 3+ 1761 ) )E+ (€3 + vol 1 + vyl
+ vy 03+ 551,)(a@ W+ WRa) + (f3+ 7oly + 710l + 73l s+ 8415)(a®@V+ VRa)+ INgE2+ v ;WO W+ 7,,VRV+ v y5(a
QE-W+W-EQa+WQE-a+a-EQW)+ 7,;(a®E-V+V.EQa+ VRE-a+a.EQV)+ 8,(WaV+VaW), (10)
~MI=(B+2€ I3 +e ] +exdr+ gl 4+ 3 da+ polly+ v+ 2ol 50+ w32+ 2u 0505+ vl + vl I+ vy L+ vy 41,
+ 201514+ LI+ LT+ EsdIy+ 81144+ 8,150 4+ 8,11 g)a+2(e3+ vol y + vl + vy I3+ 8314)E-a
+2( €&+ pol 3+ valy + vgly+ LYW (go+ LI+ Ll s+ 85I+ 8515)V+2v3E2-a+ 2v,E-W+2S5E-V, (11)
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h=(y+2x, 0+ fil + foly+gils+ 361+ EdT s+ I+ 2mo0 0+ 9aD3+ 2,0 Lo+ T+ nel Lo+ yydT 6+ 1ydd (I

+200a0 4+ L5+ Lyt Ll + 80 I3+ 8,105+ 85Il )a+2(f3+ nol |+ miolo+ miul s+ 8,05)E-a

+(g2+§513+§614+ 5511+ 5612)W+ 2(K2+§214+ 77711+ 77812+§4I3)V"'27713jE2'a+267E'w+27]12E'V. (12)

Equations (10)—(12) are polynomial representations of
T, I, and h of degree two in components of E, W, and V. It
can be seen that terms in (10) involving @; and a, do not
depend upon E, W, or V and hence represent the initial
stress. Terms involving B in (11) and v in (12) are similar.
The derivations in this section are for the constitutive rela-
tions generated by an energy density function of a symmetric
tensor and two vectors in general. When applied to the case
of a piezoelectric porous material, all of the material param-
eters should be considered as functions of ¢, the porosity of
the material.

Passman and Batra® assumed that T, 11, and h also de-
pend upon ¢, the rate of change of the porosity. If we adopt
this assumption, then the material parameters will also de-
pend upon . Henceforth, we disregard the dependence of T,
I1, and h upon ¢. "

lll. SECOND-ORDER CONSTITUTIVE RELATIONS

By second-order constitutive relations we mean relations
that contain all quadratic terms of the mechanical displace-
ment gradient, electric potential gradient, and the gradient of
the volume fraction of voids. Equations (10)—(12) contain
some higher-order terms in this sense. To get second-order
constitutive relations, we make the following decomposi-
tions:

E=E"+E®?), E§<1£= (U + U k),

EQ)=3 Uy xUns, (13)
W=W, wl=—g,, V=V, Vil=y,,

and expansions
L=1+1%, [V=aEV.a [P=a.E.q,
L=1"+1%, V=aEY, [P=aE?,
L=1Y, 1I{'=wW.a, 1,=1{", 1P=v.q,
I=1+..., [IP=a (EM).q, (14)
HP=tu(E)?, [P =wh.w,
Hﬁf):a,E(l)_‘W(l)+w(1),E(1),a’ ng)=V(1)-V(1),
11(62)=a-E(l)'V(I)+V(1)-E(l)-a, 11(72)=w(1),v(1)’

where a superscript enclosed in parentheses indicates the or-
der of the quantity. We have written W and V as W(!) and
V) to make formally superscripts of different terms homo-
geneous. Substituting (13) and (14) into (10)—(12), and keep-
ing terms up to second order, we obtain the following
second-order representations for T, II, and h:

T=a,a®a+ ¢, 1+ T+ T3
I=—-ga+ 1MV +11?), (15)
h=ya+h"+h?),

where

T =2¢ {0+ el +e, D+ fLID)aa+ (2¢,15 + 31V + eV + £,11) 14 c,(a® B a+ a-EV®@a) + 2¢;ED

+e3(a@ W+ WRa)+ f(ae VIV + VD ga),

(16)

T =[2c, 1P + ¢l + 30 (I{) 2+ 201010 + 0 (UD) 2+ N T2 + M2 + 20 1 O1Y + 0y (1) 2+ v 1D + vl 1P

+ o ST+ 29 11D + (D)2 4 TP + ol T 2 + 7 J 01 + 8,001 + 5112 a@ a+ [ 202 + 41 P

+ 3N (I0) 24+ Ny (I 2+ 2N IO + NI T2 4 N gITD + 20 DI + 0y (1) 4 01D + v TP + v, 1O 1D

+ 273l + 9a (I + gl 19+ myol 1+ 7 V10 + 818010 + 811 114+ (STD + 018D+ w550 + 751 D)

X(a®EV-a+a-EV®a)+c,(a®E® .a+a-EP®a) + 2(A {1+ NgI{V + vV + 5 IV EN + 20, E?

(vl {4+ vyl + v I+ 8510) (a@ WD+ W@ a) + (gD + 1o+ I + 8,10) (a@ VIV + V(@ a)

+3Ng(EM) 24+ 0, W @W + 5 VD@V + 3 (a@ ED . WD + WD.ED@a+ WHQED .a+a.EVe WD)

+73(a@EN. VU4 VIV EDga+ VIVQED .a+a-EVe V) + §,(W D@ V) 4+ v g W) (17)

MW=—2e{V+e 0+ etV + g1 )a—2e,EV .a— 26, W~ g, VD), (18)

M=~V + e, P43, (1) 24 ol I + v (1024 20,01 + 0y (189)2 4 20,010 + 01D + 0 11R)

oI+ v IO+ 24 EPTD + LU+ LT+ (11D + 8,101 + 8,101 + 841 a
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= 2(vol{N+ vy IV + v IV + 1) EW ca— 22, E@a— 2(pol 0 + vV + v IV + £, 10y WD)

— (&SI + LI+ 8N+ 8NV =20, (EM)2.a— 21, EN. WD —2 5 ED . VD, (19)
W= 2k 0+ LI+ fLI0+ g, 1 )a+ 2 f,ED a+ g, W + 24, VO, (20)
WP =[P+ folP + 386U+ LITP+ D)+ 20t OED + 9y (102 + 2 V1D + sl + I 1P+ 3, 1T

+ 9 PIO+ 201010 + U2+ GIEP + LI TP + 8 11 + 8,101 + 8,01 ]a

+2( ol + il N+ 9 P+ SIIED ca+ 2 ED a+ (L1 + LIV + 8510+ 5 10ywD)

+2( &IV + 9V + gV + £, DYV + 2 5 (ED) 2.2+ 2 5,ED . W+ 2 5 ,ED) . VD), (21)

IV. LINEAR CONSTITUTIVE RELATIONS

The linear or first-order constitutive relations (16), (18), and (20), when terms are rearranged according to the order of

dependence on ED, W, and V), are

TO=2¢, I{"+cslMaga+ (2c s+ el 1+ c,(a®ED -a+a-EV@a) + 2¢sEV + e, [{Na®a+e,I{V1

+e;(a@ W+ Wga)+ fiINaga+ fLI{V1+ f3(ad VIV + VD @a),
MW=~ (e, 1"+ e M)a~2e;EM.a— 26 1{Va~26,WV) — g, 1{Va— g, V), (22)
WO =(F 10+ f10)a+2f,ED-a+ g,/ Va+ g, W+ 26,12+ 21, VO.

These can be written a matrix form.??

V. SMALL DEFORMATIONS AND STRONG ELECTRIC FIELDS

In this case, (15), (16), (18), and (20) remain the same. Equations (17), (19), and (21) reduce to
TO=[vy(I§)2+ vl IPla®a+ [ vy (1) 2+ vl IP 11+ v, IV (a@ W+ WD @a) + v, ;W WD), (23)

® == [30,(187)+ il 1A= 2 WE,

W =[£,(I{")2+ L 11P)a+ 1P WD),

which can also be written in a matrix form.s'9

VI. CONCLUSIONS

Constitutive relations (22) imply that for a linear theory,
contributions to stresses, electric polarization, and the equili-
brated stresses from the mechanical strains, the electric field,
and the porosity gradients are additive. However, such is not
the case in the nonlinear theory as should be evident from the
second-order constitutive relations (15)—(21). When the
changes in porosity are also infinitesimal, then the above-
stated constitutive relations can be suitably modified. In
them, the material parameters will depend upon the initial
value of the porosity.
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