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circular voids 

Summary. We study finite plane strain deformations of an infinite body containing two circular voids and 
made of a Blatz-Ko material. The body is subjected to either uniform tensile tractions at infinity or a uniform 
pressure on the void surfaces. In each case, the effect of varying the distance between the void centers on the 
deformations of the body is analyzed. When the voids are located close to each other, a uniform pressure on 
the void surfaces results in noncircular deformed voids, and for a fixed value of the pressure, the deformation 
induced increases as the voids get closer to each other. When the body is subjected to uniform tensile 
tractions at infinity, say along the x-axis, the voids are deformed into ellipsoids with major axes aligned along 
the x-axis. 

1 Introduction 

Because of the recent interest in ceramics and other parts  manufactured by using powder  

metal lurgy techniques, there have been many studies [1] - [5] concerning porous  materials.  Many  

[1] - [3] of these have assumed voids to be r andomly  distr ibuted within the body and thus treated 

the porous  medium as a continuum. Others  [4] - [5] have studied deformations of a void in an 

otherwise homogeneous  solid body. The body  has been assumed to be made of either an elastic 

mater ia l  or an elastic/plastic material.  Of course, the determinat ion of stresses at the tips of an 

ell ipsoidal void in a l inear elastic body  goes back to the work  of Inglis [6]. Here we aim at s tudying 

the interact ion between two identical circular voids in a compressible, homogeneous  and 

isotropic nonl inear  elastic body  made of a Blatz-Ko mater ial  [7] undergoing quasistatic plane 

strain deformations.  In order  to simplify the problem the body is assumed to be infinite. Either 

a uniform pressure is appl ied to the circular holes or  a uniform tensile load is appl ied at infinity. 

In  each case the effect of varying the distance between the circular voids on the deformations of 

their surfaces and of the adjoining mater ia l  is studied. I t  is found that  the two voids start  

interacting with each other  when the distance between their centers is about  five times the radius 

of each void. 

2 Formulation of the problem 

We use rectangular  Cartesian coordinates  with x l -axis  along the line joining the centers of two 

circular voids, xz-axis perpendicular  to it and the origin midway between the void centers to 

study finite plane strain deformations of a homogeneous  infinite body  having two identical 

circular cylindrical voids and made of an isotropic Blatz-Ko material.  Assuming that  the body  
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deforms quasistatically, equations governing its mechanical deformations are 

T~,~ = 0, i =  1,2; e =  1,2, (1) 

where T~, is the first Piola-Kirchhoff stress tensor, a comma followed by an index c~ indicates 
partial differentiation with respect to X~, and a repeated index implies summation over the range 
of the index. We assume that the deformations of the body are symmetrical with respect to the 
horizontal and vertical centroidal axes, and accordingly study deformations of the quarter of the 
body in the first quadrant. Because of the assumed symmetry of deformations, normal 
displacements and tangential tractions vanish on the left vertical and bottom horizontal surfaces. 

Two different loadings are considered. In the first case, 

TI~N~ = - p n i  (2.1) 

on the surface of the circular void, and 

ITi~N,I --' 0 as Xl 2 + X22 ---9. 00. (2.2) 

That is, a uniform pressure p is applied on the inner surface of the voids, and the bounding 
surfaces of the body are taken to be traction free. Here N~ and nl denote, respectively, a unit 
outwardly directed normal to a bounding surface in the reference and present configurations. In 
the second case, 

T~N~ = 0 (3.1) 

on the surface of the void, and 

TI~N~ = t611 (3.2) 

on the right surface at infinity. Thus the body is subjected at infinity to uniform tensile tractions 
t in the xl-direction only, and the upper surface is assumed to be traction free. For a linear elastic 
body, Thompson [8] showed that for a precise statement of the problem, one should also specify 
the rates at which tractions approach their limiting values as (X12 + X22) ~/2 ~ or. One will 
assume that such should be the case for a nonlinear elastic body, too. However, for the problem at 
hand, there is no hope of proving an existence or uniqueness theorem at present, and we will 
eventually seek an approximate solution of the problem. Thus a specification of these rates of 
decay of tractions at infinity is not considered necessary: 

The objective is to analyze deformations of the body and in particular that of the material 
adjoining the voids as a function of the distance 2h between their centers, and either pressure 
p applied to the voids or tractions t applied to the right bounding surface. 

For plane strain deformations of a Blatz-Ko [7] material the strain energy density per unit 
reference volume is given by 

W = ~  + 2 J - 4  , (4) 

where J = det F is the Jacobian or the determinant of the deformation gradient F defined by 

~3xl 
F ~  - - x i , ~ ,  (5) 

~X, 

x~ being the present position of a material particle that occupied place X~ in the reference 
configuration, 

I = tr (FF r) = tr (FrF) (6) 
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is the first invariant of the left or right Cauchy-Green tensor, and # is the shear modulus of the 
material at zero strain. For plane strain deformations of the Blatz-Ko material the Cauchy stress 
tensor ~, related to the first Piola-Kirchhoff stress tensor T by 

a = J -  1 T F  r ' (7) 

has the expression 

( ') a = #  1 - - ~ g  I + - ~ B ~  (8 )  

where 

B = F F  T (9) 

is the left Cauchy-Green tensor. The stress-strain curve [7] and the strain energy density vs. the 
axial stretch curve for a Blatz-Ko material deformed in simple tension reveal that the axial stress 
reaches a limiting value with an increase in the axial stretch and equals nearly 0,95p for axial 
stretches exceeding 2.5, but the strain energy density continues to increase monotonically with an 
increase in the axial stretch. 

Substitution from Eqs. (5) through (9) into Eq. (1) gives two coupled highly nonlinear partial 
differential equations which ought to be solved, for xl and Xz, under the pertinent boundary 
conditions stated above. We are unable to solve these equations analytically, so we seek an 
approximate solution of the problem by the finite element method. 

3 Numerical solution and results 

The numerical solution of the problem necessitates the consideration of a finite region. The 
length of the finite region studied herein equals at least 26a in the xx-direction and 20a in the 
x2-direction; a being the radius of the circular void. However, for large values of h/a, where 2h 
equals the distance between void centers, the length of the finite region studied is suitably 
increased. That the region studied is adequate was verified by ensuring that the deformations of 
the body near the top surface were negligibly small and that of the material adjoining the right 
surface were also either negligibly small or essentially homogeneous, depending upon whether 
tractions there are prescribed to be zero or positive. The governing Eqs. (2) are first cast into their 
weak form by using the Galerkin approximation [9]. Note that the weak formulation of the 
problem incorporates natural boundary conditions. The resulting nonlinear algebraic equations 
are solved by the Newton-Raphson method. The applied load is divided into several steps, and 
within each load step, equilibrium iterations are used until, at each node point, 

lAg[ < 10_3, (10) lul = 

where Au is the just computed increment in the displacement because of the unbalanced forces 
and u is the total computed displacement of that node. We note that even in the referential 
description of motion, the computation of forces at node points on the boundary from the surface 
tractions applied thereon must account for the deformations of the boundary. 

The finite domain is divided into four-noded isoparametric quadrilateral elements, and 2 x 2 
Gauss quadrature rule is used to evaluate various integrals numerically. The finite element mesh 
used is extremely fine in the region surrounding the void and gradually becomes coarser as we 
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move away from the void surface. The developed code has been val idated by analyzing the plane 

strain deformations of an infinite elastic body  containing a circular void and studied analytically 

by Abeyara tne  and Horgan  [10]. A uniform pressure is appl ied to the void surface. This test 

problem is quite similar to the problem being studied herein. The maximum difference between 

the values of the hoop  stress at any point  on the inner surface of the void as obtained from the 

analytical  and numerical  solutions was found to be less than 1%; this validates the code. 
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Fig. 1. a Deformed shapes of the initially circular void for h/a = 2, 3, 5, and 26 when void surfaces are 
subjected to pressure p = 1.5#. The void in the undeformed configuration, represented by the solid curve, is 
shown for reference, b Distribution of the hoop stress on the inner surface of the deformed void for different 
values of h/a when pressure p = 1.5# is applied to the void surfaces 
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3.1 Results for pressure applied to void surfaces 

We first present and discuss results for the case when pressure is appl ied to the void surface. When  

there is no interact ion between the two voids, one expects that  circular voids will be deformed 

into circular voids. We have plot ted in Fig. 1 the deformed shapes of voids and the dis tr ibut ion of 

the hoop  stress on their inner surfaces for four different values of h/a with the value of the pressure 

p kept  fixed at p/tt = 1.5. I t  is clear that  the deformed shapes of the void for h/a = 2 and 3 are 

noncircular,  and that  for h/a = 26 is circular. The abscissa is measured from the undeformed 

posi t ion of the void center. The distr ibution of the hoop  stress ~00 on the inner surface of the 
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Fig. 2. Deformed shapes of the initially circular void for different values of the internal pressure for h/a = 2, 5, 
and 26 
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deformed void, depicted in Fig. 1, shows that for large values of h/a, when there is no interaction 
between the voids, the hoop stress stays essentially constant on the inner surface of the void. 
However, for smaller values of h/a signifying interaction between the voids the hoop stress on the 
inner surface of the void is nonuniformly distributed, and the point where the hoop stress is 
lowest depends upon the distance between the voids. These plots suggest that the voids start 
interacting when h/a < 10. The angular position of a point is measured counterclockwise from 
the horizontal axis. Figure 2 exhibits the deformed shapes of the void for h/a = 2, 5, and 26 and 
for different values of the pressure p. For h/a = 2, as the applied pressure increases the left void 
surface becomes increasingly vertical with its curvature at the point of intersection with the 
horizontal axis approaching zero. However, for h/a = 5 and 26, the deformed surfaces of the void 
appear circular for all three values of p considered. A closer examination indicates that for 
h/a = 5 and for p = 1.0# and 1.5# the deformed shape of the inner surface of the void deviates 
somewhat from a circle. 

In linear elasticity one often invokes Saint-Venant's Principle, which states that in a body 
subjected to surface tractions whose resultant force and moment vanish, the strain energy density 
will decay to zero as one moves away from the point of application of the tractions. Toupin [11], 
Knowles [12], Sternberg [13], and Batra [14] have given precise statements of the principle and 
have also derived expressions for the decay rate of the strain energy density. In order to ascertain 
whether or not such a principle holds for the nonlinear elastic problem being studied herein, we 
have plotted in Fig. 3 the distribution of the strain-energy density W per unit volume in the 
reference configuration on the horizontal centroidal axis and also on the vertical line passing 
through the void center. In these plots, the distance of a point is measured from the center of the 
undeformed void and has been nondimensionalized by using the radius of the undeformed void 
as the length scale; points to the left of the void center have been assigned negative values of the 
abscissa. It is clear that the strain energy density does not decay that rapidly to the left of the void 
because of the interaction between the two voids. For h/a = 2, the strain energy density W takes 
on very high values at points to the left of the void surface as compared to the case when h/a > 3. 
However, to the right of the void, the strain energy density decays to almost zero within 
a distance of three times the void radius. The same holds for the decay of the strain energy density 
along the vertical line through the void center. Thus, except for points between the two voids, the 
strain energy density does decay quite rapidly. 

Abeyaratne and Horgan [10] found that for axisymmetric deformations of an infinite body 
made of a Blatz-Ko material containing a circular cavity and loaded internally by a uniform 
pressure p, equations governing the deformations of the body lose ellipticity when the internal 
pressure p equals 1.021#. Knowles and Sternberg [15] proved that these equations are elliptic at 
a point, provided that 

2 - V3 < 21/22 < 2 + V~, (11) 

where 21 and 22 are the principal stretches. Our numerical results for h/a = 26 give that 
inequalities (11) are violated somewhere in the body when p = 0.95#. During the solution of the 
problem, we employed load steps equal to 0.05#. The loss of ellipticity occurred first at points on 
the inner surface of the void and, upon further loading, spread outward. When two voids are 

Fig. 3. Distribution of the strain energy density per unit reference volume on the horizontal centroidal axis 
and also on the vertical line through the void center for different values ofh/a and pressure p = 1.5p applied 
to the void surfaces 
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located close to each other, say h/a = 2, 3, etc., the ellipticity condition did not fail simultaneously 

at all points on the inner surface. Rather, it first failed at points on the inner surface of the void 

that are close to the other void and, upon further loading, the ellipticity condition also failed at 
other points on the inner surface of the void. 

The plot of er2z at points on the horizontal centroidal axis and to the right of the void surface 

for h/a -- 5 and p = 1.5# indicated that o'22 stayed continuous even after the ellipticity condition 
had failed. The ellipticity condition failed to hold at points on the horizontal centroidal axis for 

which xl < 2.19a, but of course greater than the deformed position of the right void tip. The 

numerical computations progressed smoothly, even when the ellipticity condition failed. 
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Fig. 4. Deformed shapes of the initially circular void for hla = 2, 3, 5, and 26 when void surfaces are traction 
free and a uniform tensile traction t = 0.5# is applied to the vertical surfaces, and for different values of the 
traction t when h/a = 2, 5, and 26 



Interaction between two circular voids 169 

3.2 Results for tensile tractions applied at right bounding surfaces 

In this case the circular void is deformed into an ellipsoid regardless of the magnitude of tensile 

tractions applied to the vertical bounding surfaces. However, the lengths of the major and minor 
axes of the ellipsoid do depend upon the distance between the void centers. Figure 4 depicts, for 

t/# = 0.5, the deformed shapes of the initially circular void surfaces for h/a = 2, 3, 5, and 26, and 
for different values of the traction when h/a = 2, 5, and 26. It is evident that the length of the 

minor axis of the deformed ellipse does not depend much upon h/a. For  h/a = 5 and 26, the 

deformed shapes of the void surface are virtually unchanged for each value of the applied traction 

considered. However, for h/a = 2, the deformed shape of the void surface is unsymmetrical about 
the vertical line passing through the void center; the void tip to the right of the center moves 

farther to the right than the displacement to the left of the other void tip. The interaction between 

the two voids is thus manifested in the asymmetry, about the vertical line passing through the 

void center, of the deformations of the void surface. In Fig. 5 we have plotted the distribution of 
the hoop stress on the inner surface of the void for h/a = 2, 3, 5, and 26. Since the curvature of the 

deformed void surface at 0 = 90 ~ decreases and that at 0 = 0 ~ and 180 ~ increases, the hoop stress 

is positive in the region near 0 = 90 ~ and negative in the region close to 0 = 0 ~ and 180 ~ The 
hoop stress is symmetric about 0 = 90 ~ for h/a = 26, but loses this symmetry as h/a becomes 

small because of the interaction between the two voids. 
The variations of the strain energy density per unit reference volume on the horizontal 

centroidal axis and also on the vertical line through the void center for t = 0.5# and for h/a = 2, 3, 
5, and 26 are plotted in Fig. 6. The abscissa indicates the position of a point relative to the center 

of the undeformed void; points to the left of the void center have negative values of the abscissa. 

Recall that the farthest point to the left of the void center is on the vertical centroidal axis. The 
values of the strain energy density W at points between the two voids are quite small as compared 

to those on the vertical line through the void center or at points on the horizontal centroidal axis, 
but to the right of the void surface. On the horizontal centroidal axis, W approaches 

asymptotically its limiting value at the right bounding surface where tractions are applied. It 
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should be evident from the plots of W in Fig. 6 and of the hoop  stress given in Fig. 5 that  the 

deformations of the body are more severe at points adjoining the vertex of the minor  axis of the 

deformed ellipsoid than at points near the tips of the ellipsoid on its major  axis. 

4 Conclusions 

We have studied finite plane strain deformations of a body made of a Blatz-Ko mater ial  and 

containing two circular voids in the undeformed configuration. The body is deformed either by 

applying a uniform pressure to the void surfaces or by applying uniform tensile t ract ions to the 
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vertical surfaces. F o r  the lat ter  case, the voids are deformed into ellipsoids, irrespective of the 

distance between their centers. The hoop  stress is compressive at points  on the void surface which 

are near  the vertices of the major  axis of the deformed elliptical surface, but  tensile elsewhere. The 

deformed void surface is symmetrical  about  the vertical line passing through the center of the 

void for h/a > 3, but  nonsymmetr ical  for h/a  = 2. Here 2h is the distance between void centers, 

and a equals the radius of the undeformed void. 

When  a uniform pressure p is appl ied to void surfaces, they are deformed into circles for 

h/a > 5, but  noncircular  shapes for smaller values of h/a. The hoop  stress at  points  on the void 

surface is uniform for h/a = 26, but  nonuniform for h/a < 10. F o r  h/a = 26, the ellipticity 

condi t ion failed for p = 0.95/~, compared  to the analytical  value of 1.021/~. F o r  other values of h/a, 
the loss of ellipticity of the governing equations occurred at different values of p. The normal  

stress a22 was found to be continuous on the horizontal  centroidal  axis, even when the ellipticity 

condi t ion had  failed at its connected subinterval.  
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