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Abstract

We use molecular statics simulations with the embedded atom method potential to delineate yielding (material instability) and buck-
ling (structural instability) in gold nanowires deformed axially in compression. It is found that both local (stacking faults) and global
instabilities occur when the gold nanowire yields but only global instabilities occur when the nanowire buckles. Furthermore strong sur-
face effects reorient the lattice structure which significantly increases Young’s modulus in the axial direction and cause a nanowire of
relatively small slenderness ratio (e.g., 14) to buckle. Upon complete unloading of the nanowires, the average axial stress and the total
potential energy revert to their values in the reference configuration for the nanowires that buckled but not for the one that yielded.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Gold (Au) nanowires have been experimentally pro-
duced by contact of a metal surface with a scanning tunnel-
ing microscope [1,2] and also from thin films [3,4]. They
have potential applications in nanotechnology due to their
capacity for biomolecule functionalization [5,6], high con-
ductivity [7] and distinct optical properties [8]. However,
nanowires have a large (surface area)/volume ratio as com-
pared to bulk materials and their structural properties can
be quite different from those of bulk materials. For exam-
ple, Gall et al. [9] have observed that for an Au nanowire
the magnitude of the tensile yield stress is much larger than
that of the compressive yield stress. Furthermore, for a
h1 0 0i initial crystal orientation and cross-sectional area
less than 4 nm2, surface stresses alone cause Au nanowires
to transform from a face-centered-cubic (FCC) structure to
a body-centered-tetragonal (BCT) structure [10]. It has also
been experimentally found that the free surface energy
1359-6454/$36.00 � 2009 Acta Materialia Inc. Published by Elsevier Ltd. All

doi:10.1016/j.actamat.2009.06.062

* Corresponding author. Tel.: +1 5402316051; fax: +1 5402314574.
E-mail addresses: wjiang@vt.edu (W. Jiang), rbatra@vt.edu (R.C.

Batra).
could increase the apparent in-plane bi-axial modulus of
a metal film [11].

Besides surface effects, one should also consider defect
nucleation when investigating an atomic system. Contin-
uum level concepts and instability criteria have been
extended to the nanoscale level to identify or to predict
the onset of instability in an atomic system. An instability
criterion in continuum mechanics (see, e.g., [12]) is
expressed as a strong ellipticity condition which ensures
the uniqueness of the solution of equations governing static
deformations of a homogeneous elastic body. The loss of
strong ellipticity indicates that an acceleration wave [13]
cannot propagate or a local bifurcation [14] becomes
admissible in a homogeneous deformation field. Several
approaches have been suggested to extend the contin-
uum-scale criterion to the nanoscale (e.g., see [15–23]).
Kitamura et al. [17,18] postulated that an atomic system
becomes globally unstable when the minimum eigenvalue
of the Hessian of its potential energy vanishes. Instabilities
in an atomic system have also been studied by the normal
mode analysis [19] which exploits symmetries of the system
to reduce the number of degrees of freedom. For a system
having no spatial symmetries, the normal mode analysis is
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equivalent to the method used in [17,18]. To reduce the
computational cost, some researchers have proposed local
instability criteria. For example, van Vliet et al. [16] devel-
oped the K criterion based on Hill’s [13] theory, and Lu and
Zhang [22] the equivalent mono-mode convexity condition.
These researchers investigated the positive-definiteness of
the atomistic counterpart of the continuum acoustic tensor.
Recently, Miller and Rodney [21], Delph et al. [20],
Pacheco and Batra [33] and Batra and Pacheco [38] used
a criterion based on the non-positive value of an eigenvalue
of the Hessian of a group of atoms surrounding the atom
whose instability is being studied.

Here we use molecular statics (MS) simulations with the
embedded atom method (EAM) potential to study defor-
mations of an Au nanowire deformed in axial compression.
In Section 2, we briefly describe the EAM potential and
how numerical simulations are conducted. We discuss the
two types of instabilities in Section 3 by analyzing the load-
ing and the unloading curves, geometric indicators related
to atom positions and local instability criteria. The role of
surface effects in the compression of Au nanowires is dis-
cussed in Section 4, and conclusions of the work are sum-
marized in Section 5.

2. Molecular statics (MS) simulations

We use the freely available open-source code LAMMPS
(Large-scale Atomic/Molecular Massively Parallel Simula-
tor) [24,25] to conduct MS simulations of Au nanowire
Fig. 1. (a) Perfect lattice, and (b) the relaxed configurations of a
20.4 Å � 408 Å � 20.4 Å Au lattice. (For interpretation of the references
to colours in this figure, the reader is referred to the web version of this
paper.)
deformed in axial compression. As shown in Fig. 1, an Au
nanowire with dimensions h � l � h is compressed along
the x2-axis, where the x1-, the x2- and the x3-axis are aligned
along the [0 0 1], [0 1 0] and [0 0 1] directions of an FCC lat-
tice, respectively. We start numerical simulations by assign-
ing the initial position of each atom in the system in a perfect
lattice configuration (cf. Fig. 1a) and then minimize the
potential energy of the system by the Polak–Ribiere conju-
gate gradient method. The minimization involves an outer
iteration loop that sets the search direction along which
coordinates change. It is followed by an inner iteration using
a line search algorithm evaluating forces and energies several
times to set new coordinates. We set the maximum number
of outer iterations and the maximum number of force/
energy evaluations to be very large so that the relaxation
process will cease only when the change in the energy
between two successive outer iterations is less than
1.0e�16 eV/Å. Fig. 1b depicts the relaxed configuration of
the system with the starting perfect lattice shown in
Fig. 1a. Differences between the two configurations can be
observed when the surface area to volume ratio of the system
is large, e.g., 0.20 Å�1 for the 20.4 Å � 408 Å � 20.4 Å Au
nanowire shown in Fig. 1. In order to compute strains we
take the relaxed configuration as the reference configuration.

We compress the Au nanowire by fixing atoms on the
bottom layer of the lattice and axially moving downwards
atoms on the top surface. After each 0.1 Å increment in the
prescribed axial displacement the potential energy of the
system is minimized to obtain an equilibrium configuration
of nanowire. Shrink-wrapped boundary conditions are
used in all three directions, i.e., no atoms are allowed to
enter the atomic system from the opposite side. Interac-
tions among Au atoms are modeled by the EAM potential
[26,27]. The EAM assumes that the density of the electron
gas can be approximated by the sum of electron densities
from surrounding atoms, and adds a repulsive term to
account for the core–core interactions. The total binding
energy of a collection of atoms is given by the sum of ener-
gies for each atom. That is,

U ¼
X

a

Ea; ð1Þ

Ea ¼ 1

2

X
b

/ rab
� �

þ F 0
X

b

q0 rab
� � !

: ð2Þ

The function /(rab) represents the core–core repulsion, F0 is
the embedding function, and q0(rab) is the contribution to
the electron density at the site of atom a from atom b. Here
and below, Greek superscripts refer to atom number, Latin
subscripts to components of a tensor with respect to a rect-
angular Cartesian coordinate system, and summations only
on Latin repeated indices are implied.

3. Analysis of buckling and yielding

We perform MS simulations on the following three Au
nanowires:
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Nanowire 1: 20.4 Å � 408 Å � 20.4 Å (l/h = 20),
containing 12,161 atoms.
Nanowire 2: 40.8 Å � 816 Å � 40.8 Å (l/h = 20),
containing 88,421 atoms.
Nanowire 3: 40.8 Å � 2040 Å � 40.8 Å (l/h = 50),
containing 220,721 atoms.

As discussed below, we found that nanowires 1 and 3
buckled but nanowire 2 yielded. In this section, we study
details of these two instabilities by comparing deforma-
tions of the specimens during loading and unloading, and
changes in the lattice geometry. Effects of surface stresses
in nanowire 1 will be discussed in Section 4.
3.1. Loading and unloading of nanowires

3.1.1. Definition of atomic stress and strain

A commonly used definition of stress tensor in atomistic
studies is the virial stress that is based on a generalization
of the virial theorem of Clausius [28] for gas pressure. It
has two parts; one part is associated with the motion of
atoms across a fixed spatial surface through a point and
postulates that this motion of atoms ‘exerts’ forces on the
surface. The other part of the virial stress arises from inter-
atomic forces. Considering these two effects Lutsko [29] has
derived an expression similar to the virial stress by applying
the continuum equation of the balance of linear momen-
tum to an atomic system, and averaging computed stresses
over the volume of the continuum region perceived to
equal the region occupied by the atomic system. Some
investigators do not agree with contributions from the
kinetic terms to Lutsko’s definition of the stress tensor
(e.g., see [30–32]). However, kinetic terms do not appear
in MS simulations in which the temperature of all atoms
is assumed to be steady and equal 0 K, and atoms are
assumed to move rather slowly so as not to affect their tem-
peratures. Therefore, the average Cauchy stress �r in a
region of volume X can be written as:

�r ¼ 1

2

X
a

J aXa

X�
X
bð–aÞ

@/ðrabÞ
@rab

rab � rab

rab

" #
; ð3Þ

where X� ¼
P

aJ aXa is the volume of the atomic system
after deformation, J a ¼ detFa, Xa equals the volume asso-
ciated with atom a in the reference configuration, /(rab)
is the energy of the atomic system, � denotes the tensor
product between two vectors, and the deformation gradient
Fa at the position of atom a can be found from positions of
atoms in the current and the reference configurations either
by the least squares interpolation or by using the modified
smooth particle hydrodynamics (MSPH) method (e.g., see
[33,39]). In Eq. (7) rab = rb � ra gives the relative position
of atom b with respect to that of atom a, and for radially
symmetric potentials such as pairwise potentials found by
the EAM with the potential energy of a system of atoms
depending only on the interatomic distance, the inter-
atomic force fab exerted on atom a by atom b is assumed
to be given by

fab ¼ @/ðr
abÞ

@rab
¼ @/ðr

abÞ
@rab

rab

rab
: ð4Þ

Thus in MS simulations, the local Cauchy stress ra in the
equivalent continuum structure at the point that corre-
sponds to atom a can be written as:

ra ¼ 1

2Xa

X
bð–aÞ

rab � fab: ð5Þ

We use the Cauchy–Born rule to define the deformation
gradient Fa through the relation

rab ¼ FaRab; ð6Þ
where atom b is adjacent to atom a, and Rab = Rb � Ra is
the vector between atoms a and b in the reference configu-
ration. The method of least squares is used to find Fa, i.e.,
we minimize the function H defined by

H ¼
X

b
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�� ��2
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We set
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to obtain a system of nine simultaneous equations whose
solution is
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and Da
ij is calculated by replacing the jth column of Da with

the vector
P
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With Fa and ra known we can compute other stress and
strain tensors by using continuum mechanics relations
amongst them.
3.1.2. Loading and unloading curves

In Fig. 2, we have plotted the average axial stress �r22 vs.
the average axial strain �e ¼ ðl� l0Þ=l0 for the three nano-
wires deformed in axial compression; l and l0 equal, respec-
tively, lengths of a nanowire in the present and the
references configurations. In these and other Figures, the
compressive axial stress and the compressive axial strain
are taken as positive. Initially, the average axial stress
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Fig. 2. Average axial stress vs. average axial strain for axial compression
of the three Au nanowires. These plots show that instabilities ensue at the
average axial strains of 0.022, 0.027 and 0.010, respectively, for nanowires
with dimensions 20.4 Å � 408 Å � 20.4 Å (nanowire 1), 40.8 Å �
816 Å � 40.8 Å (nanowire 2), and 40.8 Å � 2040 Å � 40.8 Å (nanowire
3) after monotonic increases of average axial stresses with average axial
strain during the initial stage. (For interpretation of the references to
colours in this figure, the reader is referred to the web version of this
paper.)
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ig. 4. Total potential energy change vs. average axial strain curves
uring loading and unloading of the three Au nanowires deformed in axial
ompression; curves for nanowires 1 and 3 are coincident. For nanowires
ith dimensions 20.4 Å � 408 Å � 20.4 Å (nanowire 1), and 40.8 Å �
040 Å � 40.8 Å (nanowire 3), the total potential energy ‘‘recovers” to its
alue in the reference configuration with the removal of the compressive
ad; while irreversible change occurred in the nanowire with dimensions

0.8 Å � 816 Å � 40.8 Å (nanowire 2). (For interpretation of the refer-
nces to colours in this figure, the reader is referred to the web version of
is paper.)

4924 W. Jiang, R.C. Batra / Acta Materialia 57 (2009) 4921–4932
monotonically increases with an increase in the average
axial strain but the average axial stress abruptly decreases
when the average axial strain reaches 0.022, 0.027 and
0.010, respectively, for nanowires 1, 2 and 3. This sudden
drop in the axial stress indicates the occurrence of instabil-
ities in atomic systems. Figs. 3 and 4 depict, respectively,
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Fig. 3. Average axial stress vs. average axial strain curves during loading
and unloading of the three Au nanowires deformed in axial compression.
For nanowires with dimensions 20.4 Å � 408 Å � 20.4 Å (nanowire 1),
and 40.8 Å � 2040 Å � 40.8 Å (nanowire 3), the average axial stresses
‘‘recover” to their values in the reference configurations with the removal
of the compressive load; while inelastic deformations occurred in the
nanowire with dimension 40.8 Å � 816 Å � 40.8 Å (nanowire 2). (For
interpretation of the references to colours in this figure, the reader is
referred to the web version of this paper.)
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evolutions of the axial stress and the change in the poten-
tial energy of the system with an increase in the axial com-
pressive strain. Results exhibited in Fig. 4 imply that the
discontinuity in the total potential energy vs. the axial
strain curve also indicates the onset of instability in the
atomic system.

For nanowires 1 and 3 the average axial stress and the
total potential energy ‘‘recover” to their values in the refer-
ence configurations with the removal of the compressive
load accomplished by slowly moving atoms on the top sur-
face to their positions in the reference configuration. These
results coupled with the deformed shapes of nanowires
shown in Figs. 6 and 7 suggest that the nanowires buckled.
However, for nanowire 2, neither the average axial stress
nor the total potential energy revert to their values in the
reference configuration with the removal of imposed axial
displacement implying thereby that inelastic deformations
occurred in the nanowire; accordingly we interpret the sud-
den drop in the axial stress and the potential energy of
nanowire 2 as the onset of yielding. Recall that our simula-
tions are displacement controlled rather than load con-
trolled and that is why there is a residual axial
compressive stress rather than a residual permanent strain.

3.2. Centrosymmetry parameter (CSP) and inhomogeneity

parameter (IHP)

We now examine if changes in the CSP proposed by
Kelchner et al. [34], and the IHP introduced herein help
characterize buckling and yielding instabilities for nano-
wires 2 and 3. Deformations of nanowire 1 will be elabo-



Fig. 5. Distributions of the CSP in the 40.8 Å � 816 Å � 40.8 Å Au nanowire (a) just before instability; (b) soon after instability; (c) just before instability
without surface atoms; and (d) immediately after instability without surface atoms (units: Å2). (For interpretation of the references to colours in this figure,
the reader is referred to the web version of this paper.)

Fig. 6. Distributions of the CSP in the 40.8 Å � 2040 Å � 40.8 Å Au nanowire (a) just before the onset of instability and (b) immediately after the
initiation of instability. Surface atoms have been removed to clearly show the distribution of the CSP (units: Å2). (For interpretation of the references to
colours in this figure, the reader is referred to the web version of this paper.)
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Fig. 7. Distribution of the inhomogeneity parameter in the
40.8 Å � 816 Å � 40.8 Å Au nanowire (a) just before the wire yielded
and (b) immediately after the wire yielded. (For interpretation of the
references to colours in this figure, the reader is referred to the web version
of this paper.)
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rated upon in Section 4 due to its large surface area to vol-
ume ratio.

The CSP for an atom is defined by

CSP ¼
X6

i¼1

jri þ riþ6j2 ð11Þ

where ri and ri+6 are vectors or bonds corresponding to the
six pairs of opposite nearest neighbors in the FCC lattice.
The 12 nearest-neighbor vectors for each atom are first
determined in the perfect FCC lattice. The CSP measures
departure from centrosymmetry in the immediate vicinity
of an atom and is used to determine if the atom is near a
defect. For reference, the CSP equals zero for atoms in a
perfect Au lattice, 24.9 Å2 for surface atoms, 8.3 Å2 for
atoms in an intrinsic stacking fault, and 2.1 Å2 for atoms
halfway between FCC and HCP sites, i.e., in a partial dis-
location. These values assume that the nearest neighbor
distance does not change in the vicinity of these defects
[34]. Since one compares relative values of the CSP before
and after the nucleation of instabilities, there will be no ef-
fect in using these for identifying points where instabilities
have occurred.

In Figs. 5 and 6, we have displayed distributions of the
CSP in configurations just before and immediately after the
nanowire 2 yields and the nanowire 3 buckles. Note that
values of the CSP for surface atoms are always very large.
Accordingly, we have deleted atoms in the three outermost
layers in plots of Figs. 5c,d and 6a,b. It is clear that there is
a noticeable increase in the CSP when the wire yields but
there is no significant increase in the CSP when it buckles.
Said differently, the yielding of Au nanowires is closely
related to the intrinsic stacking faults, while no local dislo-
cations originate when the Au nanowire buckles.

The CSP [34] also indicates the onset of dislocations in
an FCC system, and needs to be modified for use in other
lattices. Furthermore, it cannot be applied to amorphous
materials. Therefore, we introduce the IHP based on values
of the deformation gradient for an atomic system. We
hypothesize that local instabilities initiate where the defor-
mation is highly heterogeneous, i.e., values of one or more
components of Fa are locally very large as compared to
their values at neighboring points. Accordingly, an IHP
is defined by the following expression:

Ca ¼
P

b rab � FaRab
�� ��P

bjR
abj

: ð12Þ

We note that the definition of Ua is independent of the lat-
tice structure, and hence is applicable to FCC, BCC and
HPC lattices and also to an amorphous material. Unlike
the CSP, surface defects do not influence much values of
the IHP. The distribution of the IHP exhibited in Fig. 7
suggests that the IHP is greater than 0.1 in regions contain-
ing stacking faults.

As depicted in Figs. 7 and 8, variations of the IHP and the
CSP are similar to each other just before and immediately
after the onset of instabilities. These suggest that during
yielding of the Au nanowire, deformations become highly
heterogeneous locally in some groups of atoms. However,
such is not the case during the buckling of Au nanowire.

3.3. Acoustic tensor and local Hessian matrix

The equilibrium configuration of a system of N discrete
atoms with external forces acting on it is stable if the poten-
tial energy U of the system is the minimum with respect to
arbitrary small virtual displacements of atoms from their
equilibrium positions [35]. The system potential energy
when expanded in terms of the virtual displacements can
be written as

U ¼ U0 þ
XN

a¼1

X3

i¼1

@U
@�ua

i
� f a

i

� �
�ua

i þ
1

2

XN

a;b¼1

X3

i;j¼1

@2U

@�ua
i @�ub

j

�ua
i �u

b
j ;

ð13Þ
where U0 is the potential of atoms when they are all located
in their initial equilibrium positions, and �ua is the virtual
displacement of atom a. The second term on the right hand
side of Eq. (13) vanishes because the system is in equilib-
rium. Thus the stability condition can be written as

XN

a;b¼1

X3

i;j¼1

@2U

@�ua
i @�ub

j

�ua
i �u

b
j > 0; ð14Þ

which requires that the matrix @2U
@�ua

i @�ub
j

� �
be positive definite.

This stability condition is equivalent to requiring that all
long wavelength acoustic lattice waves have positive



Fig. 8. Distribution of the inhomogeneity parameter in the 40.8 Å � 2040 Å � 40.8 Å Au nanowire (a) just before the wire buckled and (b) immediately
after the wire buckled. (For interpretation of the references to colours in this figure, the reader is referred to the web version of this paper.)
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energies. Moreover, the satisfaction of this requirement
insures the decay with time of small phonon disturbances
[35].

The inequality (14) has been satisfied by Kitamura et al.
[17,18] and Miller and Rodney [21] by requiring that the min-
imum eigenvalue of the global Hessian matrix be positive.
Components of the Hessian matrix equal second order differ-
entials of the total potential energy with respect to coordi-

nates of atoms, @2U
@ra

i @rb
j

� �
. However, this is difficult to apply

to a large atomic system due to the excessive computational
resources needed. Therefore, a local instability criterion is
used instead, which involves checking the positive-definite-
ness of the local Hessian matrix of each atom [33], i.e.,

H a
3cþi;3dþj ¼

@2Ua

@rc
i@rd

j

; ð15Þ

where 1 6 c, d 6 Nf and Nf equals the number of atoms
within the cut-off distance of atom a.

In Figs. 9 and 10, we have exhibited the non-positive
minimum eigenvalue of the local Hessian matrix just before
and immediately after yielding or buckling of the Au nano-
wires. The local Hessian matrix is positive definite almost
everywhere before instabilities initiate in the Au lattice,
but becomes non-positive definite in zones of stacking
faults identified by rather large values of the geometric
parameters CSP and IHP. Recall that these stacking faults
form only when the Au nanowire yields. However, the local
Hessian matrices remain positive definite even after the Au
nanowire has buckled.
On the continuum scale, the decay of small wavelike dis-
turbances forms the basis for the strong ellipticity condi-
tion of Hill [13]. The strong ellipticity condition is
equivalent to the Wallace criterion for a sufficiently large
domain, and has been extended to the atomic level by
van Vliet et al. [16] and Lu and Zhang [22]. That is, an
atom is stable in the present position if and only if all

Qg
ij ¼

XN

a;b¼1

XN

c;d¼1

rab � n
� � @2Ug

@rab
i @rcd

j

rcd � n
� �

; ð16Þ

where |n| = 1 are positive.
In Figs. 11 and 12, we have plotted non-positive mini-

mum eigenvalues of the local acoustic tensor just before
and immediately after yielding or buckling of the Au nano-
wires. The local acoustic tensor is positive definite almost
everywhere except at atoms on edges before instabilities
ensue but becomes non-positive around the area of stack-
ing faults identified by relatively large values of the geomet-
ric parameters CSP and IHP. However, the local acoustic
tensor for atoms in the Au lattice, except for atoms near
the edges, remains positive definite during the buckling of
the Au nanowire.

Nanowires 2 and 3 have the same cross-section but dif-
ferent length. For l/h = 20, local instabilities (stacking
faults) cause the Au nanowire to yield, while for l/h = 50,
the Au nanowire buckles before any local instabilities initi-
ate. For both buckling and yielding instabilities, the aver-
age axial stress vs. the axial strain curve and the total
potential energy vs. the axial strain exhibit discontinuities.
Since the average axial stress and the total potential energy



Fig. 10. Non-positive minimum eigenvalues of the local Hessian matrix for the 40.8 Å � 2040 Å � 40.8 Å Au nanowire (a) just before the onset of
instability and (b) immediately after the onset of instability (units: eV/Å2). (For interpretation of the references to colours in this figure, the reader is
referred to the web version of this paper.)

Fig. 9. Non-positive minimum eigenvalues of the local Hessian matrix for the 40.8 Å � 816 Å � 40.8 Å Au nanowire (a) just before the onset of instability
and (b) immediately after the onset of instability (units: eV/Å2). (For interpretation of the references to colours in this figure, the reader is referred to the
web version of this paper.)
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return to their initial values when axial loads on the buck-
led nanowire are removed, we conclude that only structural
instabilities occur instead of the material instabilities
appearing during the yielding of nanowires.
4. Surface effects

During the minimization of the potential energy in going
from a starting configuration with a perfect lattice to the



Fig. 11. Non-positive minimum eigenvalues of the local acoustic tensor for the 40.8 Å � 816 Å � 40.8 Å Au nanowire (a) just before the onset of an
instability and (b) immediately after the initiation of instability (units: eV). (For interpretation of the references to colours in this figure, the reader is
referred to the web version of this paper.)
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reference configuration, a tensile axial stress is induced at
points on the four lateral bounding surfaces of the nano-
wire. This is equilibrated by a compressive axial stress at
interior points. In the reference configuration, the magni-
tude of the induced compressive axial stress can be esti-
mated as 4sh/A, where s is the average axial surface
stress along the x2-direction on the bounding surfaces, h

is the width of a nanowire, and A is the area of cross-sec-
tion. In an equilibrium configuration, the resultant axial
force on a cross-section vanishes.

The compressive surface stress can be expressed as a lin-
ear function of the axial surface strain e22 as follows [36]

s ¼ s0 þ Se22; ð17Þ
where s0 is the surface axial stress in the reference configu-
ration and S is the surface elastic modulus. The average ax-
ial stress can be approximated as

�r22 ¼ 4ðs0 þ S�e22Þh=Aþ E2�e22; ð18Þ
where E2 equals Young’s modulus for the bulk material in
the axial direction and �e22 the average axial strain. The effec-
tive Young’s modulus along the x2-direction is given by

E2 ¼ E2 þ 4Sh=A: ð19Þ
For the EAM potential being used here, E2 and S equal
35.2 GPa and -0.901 eV/Å2, respectively [37], therefore
E2 < E2 and E2 of different Au nanowires of the same
cross-section will be the same. It is clear from the plots
of the average axial stress vs. the average axial strain curves
given in Fig. 1 that E2, which equals the slope of these
curves, has the same value of 18.4 GPa for nanowires 2
and 3 with 40.8 Å � 40.8 Å cross-section and it is close to
the theoretical value of 21.0 GPa calculated from Eq. (19).

However, for nanowire 1 E2 equals 87.1 GPa which is
much greater than the value of E2 due to the phase trans-
formation in the 20.4 Å � 20.4 Å Au nanowire because of
its small cross-sectional area. Fig. 13 shows cross-sections
of the central region of the unrelaxed and the relaxed
20.4 Å � 408 Å � 20.4 Å nanowire as seen from the x1-
direction. Only two adjacent lattice planes of atoms are
shown as the lattice planes repeat in an ABAB stacking
sequence and atoms in the A and the B planes are shown
as open and filled circles, respectively. After relaxation,
the contraction of dimension in the x2-direction and expan-
sion of dimensions in the x1- and the x3-directions change
the structure of the wire from the original FCC with lattice
parameters of a = 4.08 Å to BCT with lattice parameters



Fig. 12. Non-positive minimum eigenvalues of local acoustic tensor of 40.8 Å � 2040 Å � 40.8 Å Au nanowire (a) just before the onset of instability and
(b) soon after the onset of instability (units: eV). (For interpretation of the references to colours in this figure, the reader is referred to the web version of
this paper.)
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a0 ¼ 4:08=
ffiffiffi
2
p

Å = 2.88 Å. This reorientation phenomenon
was also reported by Diao et al. [10] who used the modified
EAM potential.

For nanowires 1 and 3, the buckling load cannot be pre-
dicted well by the Euler buckling theory which might be
due to the large residual axial stress in the reference config-
Fig. 13. Phase transformation in the 20.4 Å � 408 Å � 20.4 Å w
uration, as shown in Fig. 14. A quantitative analysis of this
problem is left for a future study.

Sears and Batra [40,41] found that the Euler buckling
theory predicts well the axial strain at buckling in single-
wall carbon nanotubes provided that the length/diameter
is large.
ire (a) unrelaxed and (b) relaxed configurations of the wire.



Fig. 14. Axial stress distribution in the reference configuration of the 20.4 Å � 408 Å � 20.4 Å Au wire. (For interpretation of the references to colours in
this figure, the reader is referred to the web version of this paper.)

Fig. 15. For the 20.4 Å � 408 Å � 20.4 Å Au nanowire without surface atoms, distributions of the CSP and the IHP in two different configurations; (a
and c) just before instability; (b and d) soon after instability (units: Å2). (For interpretation of the references to colours in this figure, the reader is referred
to the web version of this paper.)
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The reorientation of the lattice structure and the
induced residual stress in the reference configuration result
in very large values of the CSP and the IHP when the
20.4 Å � 408 Å � 20.4 Å nanowire buckles; cf. Fig. 15.
Furthermore, the minimum eigenvalues of the local Hes-
sian matrix and the acoustic tensor being positive are not
good indicators of the stability of an Au nanowire if its sur-
face area to volume is large (i.e., the cross-sectional dimen-
sions of a nanowire are small).
5. Conclusions

We have used MS simulations with the EAM potential
to study deformations of three gold nanowires having
dimensions: 20.4 Å � 408 Å � 20.4 Å with 12,161 atoms,
40.8 Å � 816 Å � 40.8 Å with 88,421 atoms and 40.8 Å �
2040 Å � 40.8 Å with 220,721 atoms. The results of this
work are summarized below.

(1) Nanowires of the same cross-section (40.8 Å �
40.8 Å) but of different lengths show two types of
instabilities. One is yielding in which both local
(stacking faults) and global instabilities can be
observed for l/h = 20; while for l/h = 50, buckling
precedes local instabilities and the average axial stres-
ses and the total potential energy is fully recovered
during complete unloading of the specimen. One
may say that the buckling phenomenon is synony-
mous with structural instabilities, and material insta-
bilities accompany yielding.

(2) For the 20.4 Å � 408 Å � 20.4 Å nanowire, strong
surface effects reorient the lattice structure, which
greatly increases Young’s modulus and also causes
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the nanowire to buckle even when l/h = 20 (in the
reference configuration, this ratio is approximately
14).

(3) Relatively large values of the inhomogeneity parame-
ter (IHP) indicate where local instabilities ensue. The
IHP is independent of the lattice structure and can be
applied to an amorphous structure.

(4) Strong surface effects should be considered when using
geometric parameters (CSP and IHP) and local insta-
bility criteria (the minimum eigenvalues of the local
Hessian matrix and the acoustic tensor must be posi-
tive for stability) to characterize local instabilities.
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