
Available online at www.sciencedirect.com
www.elsevier.com/locate/actamat

Acta Materialia 58 (2010) 3131–3161
Changes in internal stress distributions during yielding
of square prismatic gold nano-specimens

R.C. Batra a,*, A.A. Pacheco b

a Department of Engineering Science and Mechanics, M/C 0219, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
b Universidad del Norte, Department of Mechanical Engineering, Barranquilla, Colombia

Received 19 October 2009; received in revised form 29 January 2010; accepted 30 January 2010
Available online 2 March 2010
Abstract

We use molecular statics simulations with the tight-binding potential to analyze stress evolution in nanosize square prismatic gold
specimens of different aspect ratios (length/width) deformed in either simple tension/compression or tension/compression. In the former
case atoms on end faces are displaced axially but are free to move laterally, and in the latter case atoms on end faces are restrained from
moving laterally during their axial displacement. It is found that the stress distribution in the unloaded reference configuration is non-
uniform, and it satisfies the local and the global equilibrium equations. Large values of the von Mises stress and the maximum shear
stress occur on atoms located at the third layer beneath the traction free surfaces forming different patterns for specimens loaded in ten-
sion and compression. The specimen is assumed to yield when its total strain energy drops noticeably. Maximum values of the von Mises
stress and the maximum shear stress at yielding are essentially independent of specimen’s length for specimens deformed in tension. For
specimens deformed in compression, wave-like patterns of stresses along the axial centroidal axis are observed when the specimen yields.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Mechanical properties of a structure with one or more
dimensions of the order of nanometers are generally different
from those of the corresponding macroscopic body. One rea-
son for these differences is the existence of in-plane stresses
induced in traction free bounding surfaces and resulting
stresses developed in the interior of the body. Atoms on trac-
tion free surfaces and on surfaces beneath them have a differ-
ent environment as compared to those in the specimen
interior (bulk atoms). Since there are atoms only on one side
of the traction free surface the inter-atomic spacing between
atoms near traction free surfaces is altered, generating in-
plane stresses that balance the force exerted on them by
interior atoms. This has been studied in molecular statics/
molecular dynamics (MS/MD) simulations of tensile defor-
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mations of nanowires [1,2]. Diao et al. [1] used the modified
embedded atom method (EAM) potential [3] to simulate ten-
sile deformations of gold (Au) specimens of square cross-sec-
tion oriented in the [1, 0, 0] and [1, 1, 1] crystallographic
directions, and found that for nanowires oriented in the
[1, 0, 0] direction the effective Young’s modulus E varied
from 42.3 GPa for 3 nm thick to 127 GPa for 1.83 nm thick
wires. For a nanowire the magnitude of the compressive
stress at an interior point exceeded 1.6 GPa, which is approx-
imately the yield stress in compression for a bulk material.

Using the EAM potential, Gall et al. [4] simulated tensile
deformations of rhombic nanowires with axis along the
[1, 1, 0] direction and {1, 1, 1} side surfaces, and of multi-
shell nanowires composed of a single atomic chain sur-
rounded by a helix of six atoms. The yielding of the wire
was signified by a sharp discontinuity in the average axial
stress–average axial strain curve. For a 0.7 (2.2) nm diameter
multishell (rhombic) wire the average axial stress and the
average axial strain at yield were 13 (3) GPa and 14% (7%),
rights reserved.
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respectively. They pointed out that the initial compressive
stresses in the specimen interior cause the experimentally
observed asymmetry in the yield stress for a few nanometer
diameter specimen deformed in tension and compression.

Diao et al. [2] have proposed that dislocations nucleate at
points where the resolved shear stress reaches a material
dependent critical value. Isothermal MD simulations at
2 K of tensile and compressive deformations of Au speci-
mens of square cross-section with [1, 0, 0] and [1, 1, 1] axial
orientation were performed using periodic boundary condi-
tions in the length direction. For [1, 0, 0] nanowires less than
2.45 nm in thickness some material points in the reference
configuration had yielded. With an increase in the axial
strain imposed upon the reference configuration of the
4 nm thick nanowire oriented in the [1, 0, 0] direction, the
average axial strain and the average axial stress at yield
equaled ��4.8% and ��0.7 GPa, respectively, in compres-
sion, and �10% and �4 GPa, respectively, in tension. For
the same nanowire oriented in the [1, 1, 1] direction the aver-
age axial yield stress in tension and compression was
�5 GPa. The Schmidt factor for a bulk material at the onset
of yield for the most favorable slip system in the [1, 0, 0]
nanowire is larger in compression than that in tension, caus-
ing the [1, 0, 0] nanowire to yield at a lower value of the axial
stress in compression than that in tension. However, the
Schmidt factor for the most favorable slip system in the
[1, 1, 1] nanowire is larger in tension than that in compres-
sion but the residual compressive stresses counteract this
effect producing an equal value of the yield stress in tension
and compression. Even though Diao et al. [2] found that
the critical resolved shear stress does not change appreciably
with the cross-sectional area of the nanowire and that it can
be used as a criterion for the nucleation of defects, Liu et al.
[5] and Miller and Rodney [6] have stated that the slip system
with the highest resolved shear stress is not always activated
at the yield point.

Zhang et al. [7] using the linear elasticity theory consid-
ered effects of the surface and the initial stresses to find ana-
lytical expressions for the effective Young’s modulus, strains,
stresses, and the yield stress in tension/compression for an
isotropic circular nanowire. They found that the effective
Young’s modulus and, in general, elastic constants of the
nanowire do not depend upon the residual stresses. Assum-
ing the von Mises yield criterion, they derived an expression
for the yield stress in tension and compression which showed
that the initial stress induces the asymmetry observed in the
yield stress in tension and compression. It was also found
that the influence of elastic properties of the surface and of
the initial stresses on the effective elastic properties of a nano-
wire and its yield stress diminish with an increase in the
radius of the nanowire. It seems that the assumption of resid-
ual stresses being uniform is not realistic for a nanowire.

Refs. [32,33] used the following criteria to delineate local
instabilities in shearing, simple shearing, tension/compres-
sion and simple tension/compression deformations of Au
specimens: (i) a component of the second-order spatial gra-
dients of the displacement field having large values relative
to its average value in the body, (ii) the minimum eigenvalue
of the Hessian of the local energy of an atom becoming non-
positive, (iii) structural changes represented by a high value
of the common neighborhood parameter, and (iv) the local
atomic acoustic tensor has at least one non-positive eigen-
value. It was found that for the shear and the simple shear
deformations, the initiation of the local instability is not
accurately predicted by a vanishing of an eigenvalue of the
local atomic acoustic tensor. The occurrence of local insta-
bilities is related to one or more components of the second-
order spatial gradients of the displacement becoming very
large as compared to their average values in the body. For
all types of deformations studied, the criterion (ii) with the
local energy computed by considering atoms within the shell
of radius one atomic spacing centered at the atom whose sta-
bility is being studied gave results that generally agreed with
those from criteria (i) to (iii).

Here we use the tight-binding (TB) potential [8] and MS
simulations to study the evolution of local and average stres-
ses in a system of Au atoms deformed in either simple ten-
sion/compression or in tension/compression. The local
Cauchy stress tensor is found with Hardy’s method [9]. To
verify the accuracy of this measure, the divergence of the
Cauchy stress tensor is computed at atomic positions by
using the modified smoothed particle hydrodynamics
(MSPH) method [10]. For a square sample containing
�60,000 atoms, it was found that components of the diver-
gence of the local Cauchy stress tensor vanish everywhere
in the system except at the specimen edges. To verify our sim-
ulations we have studied isochoric (volume preserving) triax-
ial tension/compression deformations of an Au cube and
have compared computed average stresses and strain energy
densities with those of geometrically identical hyperelastic
bodies. The stored energy function for the hyperelastic body
is derived from the TB potential using the Cauchy–Born rule
[11]. The two sets of curves essentially overlap each other.

The von Mises stress and the maximum shear stress at
atomic positions where instabilities occur are found to be
much larger than their average values in the specimen.
Unstable points are identified by the vanishing of eigen-
values of the Hessian of the local energy computed by con-
sidering only the degrees of freedom of atoms located
within the first shell around the atom whose cohesive
energy is being analyzed. This is similar to the approach
of Miller and Rodney [6] except that we consider atoms
in a sphere of radius equal to the inter-atomic spacing
and they considered rectangular domains. Even though
some eigenvalues of the local Hessian where instabilities
ensue are negative and indeed give a good representation
of the distribution of unstable points (dislocations), our
goal here is not to propose a criterion for the nucleation
of dislocations; this will be studied in a future work.

It is found that unstable points (atoms) located right
beneath the traction free surfaces are in zones of high stress
gradients. A specimen is assumed to have yielded when
there is a sharp drop in the average axial stress–average
axial strain curve. For tensile loading, the average yield
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stress equals �5 GPa for specimens with aspect ratios
(length/width) varying from 1 to 20. However, the average
yield stress in compression differs by 44% for specimens
with L/H = 1 and L/H = 20.

We also delineate effects of different boundary condi-
tions on the end faces of prismatic specimens, and show
the existence of permanent strains after a yielded specimen
has been completely unloaded. However, there is no resid-
ual permanent strain left in a specimen if it is unloaded
from a configuration just before the one in which it yielded.

2. The local stress tensor in atomic simulations

There have been several efforts to identify continuum
quantities such as stresses and strains in atomistic simula-
tions [11–21]. Starting from statistical mechanics principles,
quantities such as temperature, velocity, displacement,
pressure, inter-atomic forces and internal energy have been
used to describe a system of particles (atoms). Concepts
like temperature, kinetic energy, inter-atomic force,
moment of inertia, pressure and linear momentum were
studied by Clausius, who also proposed the virial stress ten-
sor that is related to the volume average of the Cauchy
stress tensor for a system at 0 K.

For a system comprising N atoms at 0 K, the average
values �rab of components of the Cauchy stress tensor can
be computed by using the relation [20]

�rab ¼ �
1

2XT

XN

i¼1

XN

j¼1
j–i

f ðijÞa rðijÞb ; ð1Þ

where XT equals the volume occupied by the system, f ðijÞa

equals the component of the interaction force between
atoms i and j along the xa coordinate and rðijÞb the compo-
nent of the relative position vector between atoms i and j

along the xb coordinate. This expression is equivalent to
the configurational part of the virial stress tensor.

The virial stress tensor extends the concept of pressure
introduced in statistical mechanics. The general expression
for the absolute pressure p for a group of N particles inter-
acting with each other under a potential V, having average
kinetic energy hEkis and contained in a vessel of volume XT

is given by [18]

p ¼ � 1

3XT

XN

k¼1

XN

j¼1
j<k

@V
@rðkjÞ r

ðkjÞ

* +

s

þ 2

3XT hEkis; ð2Þ

where his indicates the average value of a quantity over a
period of time s and r(kj) the magnitude of the relative posi-
tion vector between particles k and j. For an ideal gas in
which there is no interaction among particles except for
perfect elastic collisions, the term corresponding to the
internal energy V vanishes and the final result is the rela-
tion between the pressure in the system and the average ki-
netic energy hEkis over a time period s. The first term on
the right-hand side of Eq. (2), containing the derivative
of the internal energy with respect to the relative distance
between particles, is called the internal virial. Eq. (2) can
be rearranged as the averaged value of the internal virial
and twice the kinetic energy:

p ¼ 1

3XT �
XN

k¼1

XN

j¼1
j<k

@V
@rðkjÞ r

ðkjÞ þ
XN

k¼1

mðkÞmðkÞ � mðkÞ
* +

s

; ð3Þ

where m(k) and m(k) equal, respectively, the mass and the
velocity vector of atom k. The negative of this quantity,
�p, is the pressure that the system exerts on walls of the
container. The pressure of the system of particles is also de-
fined as one-third of the trace of the average pressure
tensor P:

p ¼ 1

3
traceðPÞ; ð4Þ

where

Pab ¼
1

XT

XN

k¼1

f ðkÞa rðkÞb þ
XN

k¼1

mðkÞvðkÞa vðkÞb

* +
s

: ð5Þ

In Eq. (5) the internal virial is expressed in terms of internal
forces to emphasize the dependence of the pressure tensor
on the inter-atomic inter-actions. The virial stress tensor
r* is defined as the negative of the average pressure tensor,
i.e., r�ab ¼ �Pab [18,22]. Values of components r�ab of the
average virial stress tensor are given by

r�ab ¼
1
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ð6Þ
The local virial stress tensor r�ðiÞab is given by [23]

r�ðiÞab ¼
1

XðiÞ
�mðiÞvðiÞa vðiÞb þ

1

2

XN

j¼1
j–i

@V
@rðijÞ

rðijÞa rðijÞb

rðijÞ

* +

s

; ð7Þ

where X(i) equals the volume of the region associated with
atom i, i.e., a representative volume containing atom i. The
pressure and the stress tensor have two parts, a part which
takes into account the internal forces and the other part
that contains the linear momentum of the system of parti-
cles. The first term on the right-hand side of Eq. (7) involv-
ing the tensor product between the linear momentum of a
particle and its velocity has been questioned by some
authors (e.g., [14,16]). They argue that the linear momen-
tum of particles crossing the surface of a control volume
is not related to the Cauchy stress tensor defined in contin-
uum mechanics. Recently, Hoover et al. [22] have per-
formed 2D MD simulations of a group of particles
interacting through a harmonic potential subjected to body
forces. They show that components of the Cauchy stress
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tensor found from analytic solutions in the elasticity theory
agree with those computed using the virial stress, the Cau-
chy stress tensor is indeed the negative of the pressure ten-
sor, and the kinematic part should be included in the
computation of the Cauchy stress. This difference of opin-
ions does not affect our results since the systems under
study remain at 0 K during the loading process.

Using the local virial stress tensor, and either the hydro-
dynamic equivalence based on localization functions
[9,13,16,24], or the hyperelastic assumption for the material
behavior at the atomic scale [17,25], or the direct computa-
tion of the traction vector [12,26], or the principle of virtual
work [14], one can find an approximation of the local Cau-
chy stress tensor defined at each atomic position. Here we
use the hydrodynamic equivalence between a discrete and a
continuous system to find stresses at the atomic level
[9,13,24]; see also Ref. [35] for a discussion of Hardy’s
approach to a system described by a multi-body potential.

In an attempt to describe continuum quantities in terms
of properties of a discrete group of particles, Irving and
Kirkwood [24] introduced the concept of a point function
stress. As for the virial stress, this stress tensor has two con-
tributions: a kinetic contribution that comes from the lin-
ear momentum transferred per unit time due to the
microscopic (atomic) velocities as viewed from a coordi-
nate system moving with the macroscopic (continuum)
velocity at a given point R in space; the other term is the
contribution of internal forces to the stress tensor (internal
virial). They thus introduced a localization function W(r) to
compute continuum quantities at a given point R in the
domain as the sum of contributions of each particle to that
property. The localization function chosen by Irving and
Kirkwood is Dirac’s delta function d(r) with r = r(i) � R.
Hardy [9] has pointed out the following difficulties in
implementing the expression for the local stress tensor pro-
posed by Irving and Kirkwood [24]: (i) the validity of the
conservation laws for the equivalent continuum appears
to depend on a particular ensemble average, (ii) the
obtained formula for the configurational part of the stress
tensor contains an infinite series that needs to be truncated,
and (iii) the difficulty in evaluating an expression that con-
tains Dirac’s delta function. Hardy [9] proposed to replace
Dirac’s delta function by a localization function W (the
units of this function are 1/L3) that satisfies following con-
ditions [27]:

1. W(r(i) � R) has a global maximum at r(i) = R.
2. W(r(i) � R) ? 0 as |r(i) � R| ?1.
3. W(r(i) � R) is smooth and non-negative.
4.
R
X

W(r(i) � R)dX = 1.

Following Hardy’s approach, the linear momentum
density p at the position R in a given continuum domain
at time t has the form

pðR; tÞ ¼
XN

i¼1

mðiÞvðiÞWðrðiÞ � RÞ: ð8Þ
The partial differentiation of both sides of Eq. (8) with re-
spect to time gives an equation similar to the balance of linear
momentum in continuum mechanics. For quasi-static prob-
lems the contribution of inertia forces to the linear momen-
tum equation is neglected. Thus, in the absence of body
forces, the equilibrium equation at each material point re-
quires the divergence of the Cauchy stress tensor to be zero.
The divergence of the Cauchy stress tensor represents the
internal force per unit volume (force density) acting at a
material point. Taking into account the total force f(i) on
each particle (atom), the following equivalence between the
force density in the continuum and the atomic system holds:

divr ¼ @

@R
� r ¼

XN

i¼1

f ðiÞWðrðiÞ � RÞ: ð9Þ

Since the internal force on a particle comes from its inter-

action with other particles, i.e., f ðiÞ ¼
PN
j¼1
j–i

f ðijÞ (f(ij) is the

force between particles i and j), and by Newton’s third
law, f(ij) = �f(ji), Eq. (9) can be written as

divr ¼ 1

2

XN

i¼1

XN

j¼1
j–i

f ðijÞðWðrðiÞ � RÞ �WðrðjÞ � RÞÞ: ð10Þ

The bond function B(ij)(R) between two atoms i and j is de-
fined as [9]

BðijÞðRÞ �
Z 1

0

WðkrðijÞ þ rðjÞ � RÞdk; ð11Þ

and represents, for the case of a radial step function, the
fraction of the atomic bond between atoms i and j that is
contained in a representative volume defined around each
material point R; only properties of particles (atoms) inside
this representative volume are utilized to define continuum
quantities at R. The extension of this representative volume
has to be chosen carefully in order not to smear the local
properties or neglect inter-actions with neighboring parti-
cles (atoms). Taking the derivative of WðkrðijÞ þ rðjÞ � RÞ
with respect to k we get

@WðkrðijÞ þ rðjÞ � RÞ
@k

¼ �rðijÞ:
@WðkrðijÞ þ rðjÞ � RÞ

@R
: ð12Þ

Integrating both sides of Eq. (12) with respect to k from
k = 0 to k = 1, we get

WðrðiÞ � RÞ �WðrðjÞ � RÞ ¼ �rðijÞ � @BðijÞðRÞ
@R

: ð13Þ

Substitution from Eq. (13) into Eq. (10) gives

@

@R
� r ¼ � 1

2

XN

i¼1

XN

j¼1
j–i

f ðijÞrðijÞ � @BðijÞðRÞ
@R

: ð14Þ

The solution of Eq. (14) has the general form
r = r(p) + r(c), where r(p) is a particular solution and r(c)

is a solution of the homogeneous equation div(r(c)) = 0.

A particular solution of Eq. (14) can be derived as follows:
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i¼1

XN

j¼1
j–i

f ðijÞrðijÞ � @BðijÞðRÞ
@R

;

@

@R
� rðpÞ þ 1

2

XN

i¼1

XN

j¼1
j–i

rðijÞ � f ðijÞBðijÞðRÞ

0
BB@

1
CCA ¼ 0;

ð15Þ

rðpÞ ¼ � 1

2

XN

i¼1

XN

j¼1
j–i

rðijÞ � f ðijÞBðijÞðRÞ ð16Þ

where a� b denotes the tensor product between vectors a
and b.

Wajnryb et al. [28] have established the uniqueness of
the configurational part of the local stress tensor provided
that it satisfies the following conditions:

1. The divergence of the stress tensor must be equal to the
internal force per unit volume at every point in the
domain (in the dynamic case the internal force includes
the inertia force).

2. The stress tensor must produce the correct contribution
to the equilibrium pressure of the system (see Eq. (3)).

3. The configurational part of the stress tensor must be
symmetric.

4. The stress tensor must be a translationally and rotation-
ally invariant function of the position vector R and the
atomic position vector r(i).

5. The stress tensor must be invariant under all permuta-
tions of particle indices.

6. The stress tensor must be independent of particle inter-
actions such that when particles are linearly arrayed, the
direction of the traction vector t shall be parallel to the
linear array.

Wajnryb et al. [28] have proved that for r(c) to satisfy these
conditions it must be identically zero, and therefore
r = r(p). Thus the Cauchy stress tensor for quasi-static
problems is given by

r ¼ � 1

2

XN

i¼1

XN

j¼1
j–i

rðijÞ � f ðijÞBðijÞðRÞ: ð17Þ

Eq. (17) for local stresses can be used in systems with ener-
getics described by multi-body potentials and is not re-
stricted to pairwise potentials [29].

Using Hardy’s method Zimmerman et al. [20] compared
the local Cauchy stress tensor with the local virial stress ten-
sor and analyzed the influence of two different localization
functions. A system of 3072 copper (Cu) atoms with energet-
ics described by the EAM potential was analyzed under sim-
ple tensile deformations. Periodic boundary conditions were
applied on all bounding surfaces of the specimen with
8 � 8 � 12 unit cells. Two localization functions were used:
a radial step function and a cubic function. The averaging
volume X(i) in Eq. (17) for each atomic position was taken
to be a sphere of radius RC. It was shown that values of the
Cauchy stress computed with the step function decreased
to zero as the radius of the averaging volume increased and
fluctuations in the normal stress components were significant
for RC equal to the lattice parameter. However, the ampli-
tude of the fluctuations was effectively suppressed to zero
by using the cubic spline function as the localization func-
tion. They also obtained the oscillatory behavior while com-
puting normal stresses near free surfaces; we note that
Hardy’s approach reduces the wavelength of these oscilla-
tions and keeps the mean value of the normal stress close
to zero. There is a lower limit for the spatial resolution when
trying to validate the equivalence between a group of atoms
and a continuum, and this connection cannot be made for a
very small atomic system. When the representative volume
increases, i.e., when more particles are used to compute
properties at a given material point, components of the
Cauchy stress tensor computed by Hardy’s method converge
to the average values given by Eq. (7) for every choice of the
localization function.

Webb et al. [30] have computed the stress field around an
edge dislocation embedded in an elastic material using
Hardýs method. The EAM potential for aluminum was used
in MS simulations of the edge dislocation in a cylindrical disk
of radius 40 nm and thickness 4 nm. Displacement boundary
conditions consistent with this type of imperfection in an
anisotropic crystal were prescribed on the lateral surface of
the cylinder while periodic boundary conditions were
enforced along the cylinder axis. The specimen was oriented
with the {0, 0, 1} family of crystalline planes parallel to the
coordinate planes such that the Y-axis was parallel to the cyl-
inder axis and the X-axis parallel to Burgers vector. The
stress tensor at each atomic position was computed by defin-
ing a representative cylindrical volume. The rxx distribution
was obtained by using Eq. (17) with radial step functions and
results compared with analytical solutions from the linear
elasticity theory. The two distributions of rxx agreed well
with each other at points far from the core of the imperfec-
tion. Close to the core, the solution from the linear elasticity
theory diverges while stress components computed from the
MS simulation results converged to zero.

We use Eq. (17) and the following cubic spline as the
localization function:

WðRÞ ¼ 1

ph3

1� 3
2
s2 þ 3

4
s3

� �
; s 6 1;

1
4
ð2� sÞ3; 1 < s 6 2;

0; otherwise;

8><
>: ð18Þ

s ¼ jkrðijÞ þ rðjÞ � Rj
h

; ð19Þ

to compute the local Cauchy stress; here h is the smoothing
length that determines the size of the compact support of
the localization function. A spherical averaging volume
of radius 2a is defined at each atomic position where a

equals the lattice parameter of an Au crystal at 0 K; 2a

equals the smoothing length of the localization function.
The 5-point Gauss quadrature rule was found to be suffi-
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cient to evaluate the one-dimensional integral in Eq. (17)
since the difference in results computed with five and eight
integration points was less than 0.1%. Results computed
using an exponential localization function

WðRÞ ¼ 1

ð
ffiffiffi
p
p

hÞ3
expð�s2Þ; ð20Þ

with h = a were found to be the same as those computed
using Eq. (18). It is shown in Ref. [23] that for hydrostatic
deformations a smoothing length of 1.02a gives good val-
ues of the stress tensor at an atomic position.

3. Molecular statics simulations

The MS simulations address homothermal static defor-
mations at 0 K of an atomic system. Here we simulate ten-
sile and compressive deformations of Au square nano-
specimens of width H = �37 Å and lengths ranging from
�37 Å for L/H = 1 to �742 Å for L/H = 20. The bounding
faces of each specimen are aligned with the coordinate
planes {1, 0, 0}, {0, 1, 0} and {0, 0, 1}. For the tension/
compression simulations, atoms in the reference configura-
tion located on end faces Y = Ymin and Y = Ymax are con-
strained from moving in the X- and the Z-directions, and
their Y-displacements are prescribed. For the simple ten-
sion/compression simulations, atoms on end faces
Y = Ymin and Y = Ymax and located along the centroidal
line parallel to the X-axis are constrained from moving in
the Z-direction and atoms on the centroidal line parallel
to the Z-axis are constrained from moving in the X-direc-
tion, thus allowing all cross-sections of a specimen to
expand or contract. In every case, the Y-displacement is
prescribed in increments of 0.25 Å, and no external forces
in the X- and the Z-directions are applied on atoms at
the end faces. Once a discontinuity in the total strain
energy vs. the axial strain curve is observed, simulations
are restarted from the immediately preceding configuration
with the prescribed Y-displacements incremented by 0.1 Å.
There are no external forces applied on the four lateral
surfaces.

We start numerical simulations by assigning the initial
position vector X

ðiÞ
I of each atom in the system in a per-

fect lattice configuration. Without applying any external
force, each atom is allowed to move freely till the poten-
tial energy of the system has reached a local minimum
(within 1 � 10–8 eV Å

0 �1) by using the conjugate gradient
(CG) with warranted descent technique of Hager and
Zhang [31]. The position vector of an atom in the
relaxed configuration is denoted by X

ðiÞ
R , and this config-

uration is taken as the reference configuration. After
each increment in prescribed displacements of atoms on
the end faces of the body, the total potential energy is
minimized. The change in the potential energy of the sys-
tem from that in the reference configuration equals the
strain energy of deformation. The process is continued
till atoms on the end faces have been displaced by the
prescribed amount.
4. Verification of the approach

To verify computations of stresses by Hardy’s method
we performed MS simulations of the specimens described
in Section 3 deformed by prescribing normal displacements
on all bounding surfaces, and compared results from MS
simulations with those of a hyperelastic body whose strain
energy density is derived from the TB potential and the
Cauchy–Born rule. Recalling that Poisson’s ratio for an
Au crystal at 0 K is �0.47, for simplifying the analysis,
we consider isochoric deformations of the hyperelastic
body. Analytical expressions for components of the aver-
age Cauchy stress tensor of the boundary-value problem
with the deformation gradient F = diag{k1, k2, k3}, where
k1 = k3 = 1=

ffiffiffiffiffi
k2

p
can be obtained. Here k1, k2 and k3 are

stretches along the x-, the y-, and the z-axes, respectively,
in the reference configuration. The first Piola–Kirchhoff
stress tensor P equals the derivate of the strain energy den-
sity with respect to the deformation gradient, i.e.,

P ¼ @W 0

@F
¼ @

@F

XN

i¼1

V ðiÞ

XðiÞR

 !
; ð21Þ

or equivalently

Pab ¼
XN

i¼1

XN

k¼1
k–i

1

XðiÞR

@V ðiÞ

@rðikÞ
@rðikÞ

@rðikÞc

@rðikÞc

@Fab

¼
XN

i;k¼1
i–k

1

XðiÞR

1

rðikÞ
@V ðiÞ

@rðikÞ
rðikÞa RðikÞb ; ð22Þ

where XðiÞR and RðikÞb equal the volume of the region associ-
ated with atom i and the component of the relative position
vector between atoms i and k along the xb-coordinate in
the reference configuration. From expression (22) and the
relation between p and r, we obtain the following for the
Cauchy stress tensor:

½�r	 ¼
XN

i;k¼1
i–k

1

XðiÞ
1

rðijÞ
@V ðiÞ

@rðikÞ
½HðikÞðk1; k2; k3Þ	; ð23Þ

where

½HðikÞðk1; k2; k3Þ	 ¼
k1; k1RðikÞxx k1; k2RðikÞxy k1; k3RðikÞxz

k2; k1RðikÞyx k2; k2RðikÞyy k2; k3RðikÞyz

k1; k3RðikÞxz k3; k2RðikÞzy k3; k3RðikÞzz

2
664

3
775;

RðikÞxy ¼ RðikÞx RðikÞy ;RðikÞyy ¼ RðikÞy RðikÞy ; . . . Here we have set
XðiÞ ¼ JXðiÞR ¼ XðiÞR since J = det [F] = 1.

For a specimen deformed in tension/compression along
the y-axis, Figs. 1a and b and 2 exhibit the evolution with
the average axial strain e of the average axial stress ryy, the
average axial stress rxx and the strain energy density
obtained from MS simulations of deformations. It is clear
that prior to the onset of an instability indicated by a sharp
drop in ryy, rxx and the strain energy density for an infin-
itesimal increase in e, results from MS simulations agree
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Fig. 1. Variation with the axial strain e of the average components of the
Cauchy stress tensor for tension/compression with essential boundary
conditions prescribed on all bounding surfaces (F = diag{k1, k2, k3}, where
k1 ¼ k3 ¼ 1=
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p
) for different L/H ratios. (a) ryy; (b) rxx.

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
0

1

2

3

4

5

6

7

8
x 10-3

L/H = 5 - Hyperelastic
L/H = 5
L/H = 10 - Hyperelastic
L/H = 10
L/H = 20 - Hyperelastic
L/H = 20 

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
0

1

2

3

4

5

6

7

8
x 10-3

L/H = 5 - Hyperelastic
L/H = 5
L/H = 10 - Hyperelastic
L/H = 10
L/H = 20 - Hyperelastic
L/H = 20 

Axial strain ε [A/A][Å/ Å]Axial strain ε [A/A][Å/ Å]

St
ra

in
 e

ne
rg

y 
de

ns
ity

 
]

[e
V/

 Å
3 ]]

[e
V/

 Å
3
]

Fig. 2. Variation with the axial strain e of the strain energy density for
tension/compression with essential boundary conditions prescribed on all
bounding surfaces (F = diag{k1, k2, k3}, where k1 ¼ k3 ¼ 1=

ffiffiffiffiffi
k2

p
) for

different L/H ratios.

R.C. Batra, A.A. Pacheco / Acta Materialia 58 (2010) 3131–3161 3137
well with those from the analytical solution for specimens
with L/H = 5, 10 and 20. The close agreement between
stresses and the strain energy density computed from
results of MS simulations and the analytic expression ver-
ifies our use of Hardy’s method for computing stresses. A
similar close agreement between stresses computed by the
two approaches was obtained for simple shearing deforma-
tions in Ref. [32].
Fig. 3. For a cubic specimen of side 100 Å
0
, distribution in the reference

configuration of stresses on the mid-section; (a) rxx; (b) rxy; (c) rVM.



Fig. 4. For a cubic specimen of side 100 Å
0
, distributions of components of div(r) on the bounding surfaces and on the mid-section Z = 50 Å in the

reference configuration; (a) and (b) (div(r))x; (c) and (d) (div(r))y; (e) and (f) (div(r))z.

Table 1
For specimens with different L/H ratios, the relative change in the total potential energy (V), the relative change in the total volume (XT), and the axial
strain (e) induced during the minimization of the potential energy of the initial unloaded configuration.

L/H L (Å) No. atoms DV
V I
ðeV=eVÞ DXT

XT
I

(Å3/Å3) Axial strain (Å/Å)

1 �32 3480 3.763 � 10�3 �2.021 � 10�2 �2.081 � 10�2

1 �50 7813 2.549 � 10�3 �1.486 � 10�2 �1.713 � 10�2

1 �100 58,825 1.044 � 10�3 �6.923 � 10�3 �1.036 � 10�2

3 �110 9928 2.616 � 10�3 �1.531 � 10�2 �1.589 � 10�2

5 �188 16,787 2.369 � 10�3 �1.518 � 10�2 �1.518 � 10�2

10 �367 32,671 2.197 � 10�3 �1.361 � 10�2 �1.469 � 10�2

20 �742 65,883 2.105 � 10�3 �1.316 � 10�2 �1.430 � 10�2
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density in simple tension/compression tests.
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5. Results and discussion

5.1. Stress distribution in the reference configuration

For a cubic specimen of size 100 Å
0

Fig. 3 shows distri-
butions in the reference configuration of components rxx

and rxy of the Cauchy stress tensor, and the von Mises
stress rVM. The effect of surface tension in bounding sur-
Table 2
Values of the average axial stress and the average axial strain at the yield
point for specimens with different L/H ratios deformed in tension and
compression.

L/H Tension Compression

ryield
yy ðGPaÞ eyield

yy ð%Þ ryield
yy ðGPaÞ eyield

yy ð%Þ
1 7.317 9.597 �3.698 �7.789
3 6.481 9.745 �1.783 �6.182
5 6.344 9.809 �1.788 �6.764

10 6.256 9.883 �1.704 �5.460
20 6.242 9.942 �1.209 �3.245
faces of the specimen is reflected in non-vanishing values
of the initial local stresses. The distribution of rxx in
Fig. 3a shows a compressive stress of �0.5 GPa at the cen-
troid of the specimen; rxx equals zero on free surfaces per-
pendicular to the x-axis and has a maximum tensile value
Table 3
Values of the average axial stress and the average axial strain at the yield
point for specimens with different L/H ratios deformed in simple tension
and compression.

L/H Simple tension Simple compression

ryield
yy ðGPaÞ eyield

yy ð%Þ ryield
yy ðGPaÞ eyield

yy ð%Þ
1 5.134 7.928 �2.498 �8.345
3 5.050 8.119 �1.784 �6.643
5 4.996 8.117 �1.810 �6.897

10 4.990 8.086 �1.671 �5.157
20 4.618 7.584 �1.387 �3.874
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of �1.8 GPa on the remaining four surfaces. Similar distri-
butions were obtained for ryy and rzz components. The
shear stress rxy is zero everywhere in the specimen except
at edges parallel to the z-axis where it has a magnitude of
�0.9 GPa. Except for atoms located on the edges, surface
tractions at atoms on the bounding surfaces are close to
zero and thus satisfy boundary conditions from the contin-
uum mechanics point of view. For atomic level simulations,
stresses are defined at atomic locations only, so stresses in
the empty space are interpolated values from those at
atoms. The distribution of the von Mises stress depicted
in Fig. 3c shows that the highest value, �2 GPa, occurs
at points on free surfaces and rVM = 0.2 GPa at points
on the specimen centroid. Even though the distribution
of stresses in the reference configuration is qualitatively
the same for the three cubic specimens of sides 32, 50
and 100 Å, their magnitudes differ. For the three cubic
and four rectangular specimens, we have listed in Table 1
relative change in the total volume, the relative change in
Fig. 8. For simulations of the simple compressive deformations of the specime
tensor on (a and b) the bounding surfaces, (c and d) the mid-section, X = 18 Å,
matrix has become negative; for Figs. (a, c and e) e = �5.15%; and for (b, d a
the total potential energy, and the average axial strain
(change in length per unit initial length) in the x-direction
in going from the initial perfect lattice configuration to
the unloaded relaxed (reference) configuration. The total
volume of a specimen was computed by adding the Voro-
noi volume assigned to each atom. Values listed in Table 1
indicate that the average volumetric strain and the average
axial strain for the smallest specimen equal �2%, and are
�1.5% for larger specimens. The change in the total poten-
tial energy of a specimen during the minimization of its
potential energy is not significant for any one of the seven
specimens; it is �0.37% for the specimen with 3480 atoms
and only �0.1% for the specimen with 58,825 atoms. These
geometrical changes are accompanied by the development
of residual stresses. For the smallest (largest) cubic sample,
rxx � �1.6 (��0.5) GPa at the specimen centroid. In order
to balance the resultant forces coming from the interior,
the space between under-coordinated atoms near bounding
surfaces is reduced, causing the outermost layers of the
n with L/H = 10, distribution of ryy component of the local Cauchy stress
and (e and f) at points where the minimum eigenvalues of the local Hessian
nd f) e = �5.16%.
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specimen to act as membranes that compress the bulk
atoms.

We have plotted in Fig. 4a–f the x-, the y- and the z-

components of div(r) on the bounding surfaces and on
the mid-surface z = H/2. It is clear that except for points
near the edges, div(r) is nearly zero everywhere, attesting
to the satisfaction of the local equilibrium equations in
the reference configuration. The gradients of stresses from
their values at atomic positions were found by the MSPH
method [10] using cubic splines in Eq. (18) as smoothing
functions.

5.2. Average stresses and strains from numerical simulations

5.2.1. Tension/compression

For different values of L/H, Fig. 5a, b shows the varia-
tion with the average axial strain e (change in length per
unit initial length) of the average values of rxx and ryy com-
ponents of the Cauchy stress tensor. It is observed that the
variation with e of the average ryy stress is the same for
Fig. 9. For simulations of the simple compressive deformations of the specime
tensor on (a and b) the bounding surfaces, (c and d) the mid-section, X = 18 Å,
matrix has become negative; for Figs. (a, c and e) e = �5.15%; and for (b, d a
L/H P 3. For L/H = 1 all normal stresses are of the same
order of magnitude showing a very different behavior as
compared to that for samples having L/H P 3. For a
square cross-section rzz equals rxx. Note that atoms on
the end faces are constrained to move axially only; thus
these cross-sections do not change. With an increase in
L/H, the average values of rxx and rzz decrease and are
nearly one-tenth of the average value of ryy. The average
values of all shear stresses are negligible till discontinuities
in the ryy vs. e curve occur. Subsequent to the occurrence of
these discontinuities, values of local shear stresses may not
be very small and are comparable to the values of the local
normal stresses in regions close to edges, vertices of the
specimen and places where defects are present. In Table 2
we have listed, for different values of L/H, average values
of ryy and e at yield identified by a sharp drop in the aver-
age axial stress for an infinitesimal increase in the average
axial strain. Values of the axial yield stress and the corre-
sponding axial strain for L/H P 3 for tension are
�6.2 GPa and �9.8%, respectively. However, values of
n with L/H = 10, distribution of rxx component of the local Cauchy stress
and (e and f) at points where the minimum eigenvalue of the local Hessian
nd f) e = �5.16%.



Fig. 10. For simulations of the simple compressive deformations of the specimen with L/H = 10, distribution of rxy component of the local Cauchy stress
tensor on (a and b) the bounding surfaces, (c and d) the mid-section, X = 18 Å, and (e and f) at points where the minimum eigenvalue of the local Hessian
matrix has become negative; for Figs. (a, c and e) e = �5.15%; and for (b, d and f) e = �5.16%.
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the axial stress and the axial strain at the yield point in
compression for L/H = 1 and 20 differ noticeably from
those for L/H = 3, 5 and 10.

For the same L/H ratio asymmetry in the yield stress in
tension and compression is apparent from values listed in
Table 2 as was also found by Diao et al. [1,2], and Zhang
et al. [7] This asymmetry is attributed to initial stresses in
the reference configurations of specimens. The internal
compressive stresses induced by the surface tension cause
a local critical stress in compression to be reached at a
smaller value of the axial strain than that in an initially
stress-free specimen, whereas the average axial stress vs.
the average axial strain curve is essentially linear in tension
it is nonlinear in compression.

5.2.2. Simple tension/compression

For different values of L/H, as for the simulations of
tension/compression deformations, it is observed that the
variation with e of the average value of ryy is the same
for specimens with L/H P 3. However, for the simple ten-
sion/compression simulations, the average values of rzz
and rxx are negligible as compared to the average values
of ryy. The applied boundary conditions allow atoms on
the end faces to move freely in the x- and the z-directions;
consequently, edge effects are negligible and averaged val-
ues of rzz and rxx are very small.

Fig. 6 shows the variation with the average axial strain
of the strain energy density. The ryy vs. e curves (not
included here for the sake of brevity) show a discontinuity
at the strain level where the strain energy density for the
entire system decreases noticeably; it corresponds to the
system becoming globally unstable, and we take this as
characterizing yielding of the material. The variation of
the strain energy density for L/H = 1 is different from that
for specimens with L/H P 3. For 3 6 L/H 6 20, the varia-
tion with the average axial strain of the strain energy den-
sity is essentially independent of the aspect ratio L/H.
However, the yield stress in simple compression depends
noticeably upon the value of L/H.

In Fig. 7 we have plotted the average axial stress vs. the
average axial strain during unloading from two configura-
tions – one just before the drop in the average axial stress
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vs. the average axial strain curve and the other just after
this drop. When the specimen is unloaded from the config-
uration just before the average axial stress drops notice-
ably, the average axial stress vs. the average axial strain
curve during unloading overlaps that during loading sug-
gesting that the specimen deformed elastically. However,
when the specimen is unloaded by reversing the direction
of prescribed axial incremental displacements from the
configuration just after the severe drop in the axial stress
or the strain energy density, there is a residual average axial
strain at zero average axial stress. It confirms that the spec-
imen deformed plastically during the instant the average
stress dropped.

As in the tension/compression tests the average values of
all shear stresses are negligible up to the discontinuity in
the ryy vs. e curves. In Table 3 we have listed, for different
L/H ratios, values of the average ryy stress and the average
axial strain at the yield point. Values of the average axial
stress and the average axial strain at yield for 10 P L/
H P 3 for the simple tension case are �5 GPa and �8%
respectively; the corresponding values from Table 2 for
Fig. 11. For simulations of the simple compressive deformations of the specim
surfaces, (c and d) the mid-section, X = 18 Å, and (e and f) at points where the
Figs. (a, c and e) e = �5.15%; and for (b, d and f) e = �5.16%.
the tension simulations are �6.2 GPa and �9.8%. Thus
boundary conditions at the end faces influence when the
material yields. In simple compression, a dependence of
the axial yield stress and the average axial strain at yield
on the L/H ratio is also observed. For a given value of
L/H, the yield stress in simple tension is higher than that
in simple compression. Because of residual stresses in the
reference configuration, the difference in the yield stress
in simple tension and simple compression cannot be attrib-
uted to the Bauschinger effect.

From the elastic constants of Au at 0 K used to find val-
ues of parameters in the TB potential, Young’s modulus E

in the Y-direction is found to equal 46.5 GPa. For the com-
putation of E from results of the MS simulations a repre-
sentative length Lg was defined around the mid-section of
each specimen. A straight line by the least squares method
was fit to values of the average axial stress and the average
axial strain obtained by taking contributions of atoms
inside the length Lg; the slope of the line equals E. Let a

equal the inter-atomic spacing in a perfect Au lattice. For
Lg/a < 10 the value of E varies between 46.8 GPa and
en with L/H = 10, distribution of rVM stress on (a and b) the bounding
minimum eigenvalue of the local Hessian matrix has become negative; for
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47.9 GPa; the difference between the maximum and the
minimum values of E is only 2.3%, and the minimum value
46.8 GPa of E differs from the expected value 46.5 GPa by
only 0.7%. For 10 < Lg/a < 40 the value of E equals
�47.1 GPa. Thus it is better to consider a small gage length
centered at the middle of the specimen. Boundary effects
are reflected in changes of the distribution of inter-atomic
forces but their influence along the axial direction goes
up to 1 or 1.5 times specimen’s width which agrees with
Saint–Venant’s principle. Poisson’s ratio m was computed
from the lateral and the axial strains averaged over atoms
in the length Lg. For the specimen having L/H = 10, and
for 10 < Lg/a < 30, the computed value 0.478 of m agrees
well with the expected value 0.453 obtained from values
of material parameters used to find constants in the TB
potential.

5.3. Stress distributions in the specimen

5.3.1. Simple compression

For L/H = 10, Figs. 8–12 show, respectively, distribu-
tions of ryy, rxx, rxy, rVM and smax at e ¼ eyield

yy ¼ �5:15%
Fig. 12. For simulations of the simple compressive deformations of the specim
surfaces, (c and d) the mid-section, X = 18 Å, and (e and f) at points where the
Figs. (a, c and e) e = �5.15%; and for (b, d and f) e = �5.16%.
and at e = �5.16% that just exceeds eyield
yy . The distribution

of ryy on bounding surfaces in Fig. 8a at e = �5.15% is ten-
sile even though overall deformations are compressive. The
maximum value, 0.896 GPa, of the tensile axial stress
nearly equals the magnitude, 0.807 GPa, of the compres-
sive axial stress at the specimen centroid. The distribution
of ryy on the bounding surfaces is symmetric about the
three centroidal planes. Values of ryy at points on the edges
and at points in the middle of the bounding surface are
quite large. At a slightly larger value of the axial strain that
just exceeds the axial strain at yield, values of ryy on the
bounding surfaces are nearly uniform, are tensile and equal
1.32 GPa; however, its values are compressive at interior
points of the specimen. Values of ryy at the eight corners
and at points on the four edges are not very high as com-
pared to those at the interior points. For a 3D square pris-
matic continuous body composed of a linear elastic
material, one expects at least one component of the Cauchy
stress to have very large values at the vertices and at points
on the corners.

For e = �5.15%, Fig. 8c shows the distribution of ryy on
the mid-section; ryy is compressive and nearly uniform in
en with L/H = 10, distribution of 2smax stress on (a and b) the bounding
minimum eigenvalue of the local Hessian matrix has become negative; for



Fig. 13. For simulations of the simple tensile deformations of the specimen with L/H = 10, distribution of ryy component of the local Cauchy stress tensor
on (a and b) the bounding surfaces, (c and d) the mid-section, X = 18 Å, and (e and f) at points where instabilities have initiated; for Figs. (a, c and e)
e = 8.08%; and for (b, d and f) e = 8.15%.
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the interior of the sample with values between �2.51 and
�2.94 GPa. Near the free surfaces the stress changes from
negative to positive values in a very short distance of �4 Å.
Two groups of atoms having smaller compressive stress
than that in atoms at the center of the specimen are sym-
metrically located at a distance of �L/4 from each end of
the specimen. Close to the end faces, the compressive stress
in a small group of atoms forming a dark blue circle in the
figure equals �3.36 GPa, which is more than twice the
average value of ryy in the specimen.

In Fig. 8d we have displayed the distribution of ryy on
the mid-section when e = �5.15%. The tensile axial stress
on the free lateral surface Z = Zmax increases from
�0.7 GPa at e ¼ eyield

yy to �1.3 GPa just after yielding. Thus
the onset of yielding does not decrease stresses everywhere.
The axial stress at points on the end faces where displace-
ments are prescribed remains essentially unchanged with
a small increase in e from �5.15% to �5.16%. However,
at points in the interior of the specimen, the axial stress
drops from �2.7 GPa to �1.7 GPa. The size of regions of
high compressive stresses close to the edges present in
Fig. 8c corresponding to e ¼ eyield

yy is diminished in Fig. 8d
but there are still two small groups of atoms with
|ryy| = �1.5 GPa near the center of the specimen and close
to the end faces.

A closer view of the stress level at unstable points after
the specimen has yielded is given in Fig. 8e and f. These
points correspond to atomic positions where the minimum
eigenvalue of the local Hessian matrix is negative. Unstable
points are located far from the two end faces and are con-
centrated near the center of the specimen on planes of high
atomic density. At e ¼ eyield

yy , in every one of the rhombic
forms of unstable atoms, the axial stress is nearly uniform
and is ��2.7 GPa at the center and changes rapidly from
compressive to tensile for atoms close to the free surfaces.
For atoms at the center a drop in the stress level to
��1.7 GPa is observed after yielding. The reduction in
the magnitude of the compressive stress in the interior is
accompanied by an increase in the tensile stress at atoms
on the traction free bounding surfaces.

Fig. 9 depicts distributions of rxx on different planes at
e = �5.15% and �5.16%. From results plotted in Fig. 9a
and those in previous configurations not included here,
we conclude that till e ¼ eyield

yy the distribution of rxx is sym-
metric with respect to the three centroidal planes, and rxx

at points on the bounding plane, X = 36 Å, is negligible
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as compared to the maximum value, �1.9 GPa, of rxx at
other points. The condition of zero traction and hence zero
normal stress should be satisfied on this plane. However,
the computed values of rxx on this plane are not exactly
zero because it is not perfectly flat in the reference config-
uration obtained after the minimization of the potential
energy.

Fig. 9c shows the distribution of rxx on the mid-section,
X = 18 Å. Values of rxx in the interior of the specimen
range from �0.436 to �0.777 GPa; these values are one-
fifth of those of ryy at the same locations. Values of rxx

change along the Z-direction from compressive for atoms
in the interior to tensile for atoms on the boundary. The
distributions of rxx in Fig. 9e and f for atoms that have
become unstable are very similar for configurations just
before and just after the discontinuity in the stress–strain
curve. The pattern on each one of the rhombic planes is
not uniform but is symmetric with respect to the centroidal
axes of the planes. Even though the number of unstable
points in the configuration at e = �5.16% is more than that
in the configuration at e = �5.15% the general distribution
and the magnitude of rxx remain essentially unchanged.

For e = �5.15% and �5.16% distributions of the shear
stress rxy are depicted in Fig. 10. Values of rxy are close
to zero except at points located on the two end faces of
Fig. 14. For simulations of the simple tensile deformations of the specimen with
on (a and b) the bounding surfaces, (c and d) the mid-section, X = 18 Å, and
e = 8.08%; and for (b, d and f) e = 8.15%.
the specimen. These atomic positions with nonzero values
of rxy are located along edges parallel to the Z-axis. The
same behavior is observed for distributions of rxz and ryz

components except that the nonzero values are along edges
parallel to the Y- and the X-axes respectively. From Fig. 8e,
f, we conclude that even at atoms that have become unsta-
ble, values of shear stresses for the present choice of the
coordinate planes remain negligible as compared to values
of ryy.

To compare stress levels at different points in the speci-
men and their relation, if any, with the nucleation of insta-
bilities, values of the von Mises stress and the maximum
shear stress were computed. These two quantities are com-
pared with the yield stress of the material in simple tension/
compression to possibly formulate a yield criterion in the
continuum theory. The distributions of rVM depicted in
Fig. 11a, b shows values ranging from 1.31 to 1.76 GPa
at points on the four lateral surfaces. Values around
0.5 GPa before and after the nucleation of instabilities
are observed on edges along the Y-axis and at the corners
of the specimen. Maximum values of rVM, �2.67 GPa,
occur on planes where boundary conditions are applied.
After the drop in the average axial stress–average axial
strain curve, values of rVM at points on the two end faces
vary between 2.0 and 2.4 GPa. The value of rVM is almost
L/H = 10, distribution of rxx component of the local Cauchy stress tensor
(e and f) at points where instabilities have initiated; for Figs. (a, c and e)
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constant at points in the interior of the specimen prior to
the nucleation of instabilities and it ranges from 2.0 to
2.22 GPa except for atoms located close to the end faces.
Near the end faces there are groups of atoms having values
of rVM between 0.63 and 1.31 GPa. However, atoms with
the same stress level as that in atoms at the center enclose
these regions. After the drop in the average axial stress–
average axial strain curve, values of rVM at most points
in the interior of the specimen vary between 1.0 and
2.0 GPa. The lowest value, �0.18 GPa, of rVM is found
at the same group of atoms close to the two end faces as
was observed for the configuration just before the nucle-
ation of instabilities.

Of special interest are atoms on four lines parallel to the
Y-axis with a high value of rVM as compared to that at the
remaining atoms in the specimen. These lines are located
three atomic layers below the lateral free surfaces and
atoms on them have a stress level between �2.22 and
�2.44 GPa. From fringe plots of Fig. 11e and f we see that
values of rVM at points on these lines (orange dots in the
planar surfaces) drop from �2.7 GPa to �1.3 GPa when
|e| is increased from 5.15% to 5.16%; after the nucleation
of instabilities rVM at atoms in the interior of the specimen
equals �1.3 GPa. Even though the value of rVM at atoms
on these four lines is higher than that at atoms in the inte-
Fig. 15. For simulations of the simple tensile deformations of the specimen with
on (a and b) the bounding surfaces, (c and d) the mid-section, X = 18 Å, and
e = 8.08%; and for (b, d and f) e = 8.15%.
rior of the specimen the difference between the two values is
less than the difference between the values of rVM at atoms
in the interior of the specimen and at atoms located on the
end surfaces where boundary conditions are applied. We
note that none of the atoms on surfaces with prescribed
displacements where the highest values of rVM occur
become unstable. Atoms that become unstable are located
away from the end faces by at least one-tenth of the spec-
imen length.

Fig. 12a, b depicts, for e = �5.15% and e = �5.16%, the
distribution of 2smax in the specimen, i.e., the absolute
value of the difference between the minimum and the max-
imum eigenvalues of the Cauchy stress tensor at each
atomic position. The distribution of 2smax is uniform over
the four lateral surfaces with values ranging from 1.1 to
2.0 GPa. The value of 2smax peaks at �2.75 GPa for atoms
located on the two end faces of the specimen. Fig. 12c
shows, prior to the nucleation of instabilities, values of
2smax between 2.0 and 2.3 GPa for atoms around the cent-
roidal line parallel to the Y-axis. From the fringe plots on
the mid-section X = 18 Å reported in Fig. 12c we notice
two lines parallel to the Y-axis on which 2smax is the same
as that on the two end faces. These atoms of high shear
stress are located on a square band that surrounds the inte-
rior of the specimen. The shear stress at atoms located 3a/2
L/H = 10, distribution of rxy component of the local Cauchy stress tensor
(e and f) at points where instabilities have initiated; for Figs. (a, c and e)
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from the free surface (e.g., yellow regions close to the lat-
eral surfaces) nearly equals that at atoms at the center of
the specimen.

Fig. 12e, f depicts the distribution of 2smax at atoms just
before and immediately after their becoming unstable.
After the nucleation of instabilities 2smax drops from
�2.75 to �1.8 GPa for points that had maximum values
of 2smax prior to their becoming unstable and from �2.1
to �1.13 GPa for points at the specimen center. As was
also observed in the distributions of ryy and rVM, stresses
at most atoms in the system decrease after the nucleation
of instabilities.

Contrary to the distribution of the maximum values of
rVM prior to the occurrence of instabilities, the distribution
of 2smax shows that the maximum values of shear stresses
occur in regions where instabilities nucleate. Values of
2smax at points on the traction free surfaces are nearly
one-quarter of the maximum values at atoms just below
the free surfaces.

5.3.2. Simple tension

For L/H = 10, Fig. 13 exhibits the distribution of ryy in
configurations corresponding to e = 8.08% and e = 8.15%.
In contrast to the distribution of ryy for simple compres-
sion, the distribution of ryy in Fig. 13a for simple tension
on the lateral surfaces is uniform along the Y-direction,
and ryy = �4.93 GPa. Smaller values, �3.2 GPa, of ryy
Fig. 16. For simulations of the simple tensile deformations of the specimen wit
d) the mid-section, X = 18 Å, and (e and f) at points where instabilities have
occur at points near the edges. At points near the two
end faces ryy equals one-fifth of its maximum value at
points on the lateral surfaces. Subsequent to the initiation
of instabilities, the distribution of ryy displayed in
Fig. 13b is non-uniform and ryy on the lateral surfaces
has dropped from �4.9 GPa to �3 GPa.

Fig. 13c depicts the distribution of ryy on the mid-sec-
tion, X = 18 Å, when e = 8.08%. The magnitude of ryy

increases from �0.5 GPa at the centroid of the specimen
to �4.93 GPa at points on the free lateral surfaces. An ini-
tially compressive stress of ��1.5 GPa at points on the
centroidal axis in the reference configuration changes to
tensile stress with increasing axial deformations. The mag-
nitude of the in-plane tensile stress at atoms on the traction
free lateral surfaces increases from �1.8 GPa at e = 0% to
�4.5 GPa at e = 8.08%. Fringe plots of ryy exhibited in
Fig. 13d reveal that at points around the center of the spec-
imen, ryy is relaxed from �2.8 GPa before the nucleation
of instabilities to �1.4 GPa just after the nucleation of
instabilities; for atoms on traction free surfaces this reduc-
tion in ryy is from �4.5 GPa to �2.6 GPa.

From the distributions of ryy on planes of atoms that
become unstable during the next load step, shown in
Fig. 13f, it is clear that the axial stress increases from
�2.8 GPa at the center to �4.5 GPa at points on the free
surfaces. This is different from that in the simple compres-
sive deformations where a high gradient in ryy occurs at
h L/H = 10, distribution of rVM on (a and b) the bounding surfaces, (c and
initiated; for Figs. (a, c and e) e = 8.08%; and for (b, d and f) e = 8.15%.
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points close to the lateral traction free surfaces due to the
difference in the signs of the axial stress (compressive at
the center and tensile at points on the free surfaces). During
the nucleation of instabilities at these atoms ryy drops by
�40%; e.g. compare fringe plots in Fig. 13e, f.

The distribution of rxx depicted in Fig. 14a is similar to
the one observed in simple compressive deformations. On
lateral surfaces, X = 0, 36 Å, the value of rxx is negligible,
consistent with the boundary conditions of null traction on
these surfaces. However, at lateral surfaces, Z = 0, 36 Å,
rxx 
 2.25 GPa. From the fringe plots of Fig. 14c it can
be noticed that rxx at the specimen centroid is compressive
and its magnitude equals that of the tensile stress at points
on traction free surfaces, Z = 0, 36 Å. After the occurrence
of local instabilities the symmetry in the distribution of rxx

is lost but the magnitude of rxx remains essentially
unchanged even at atoms that have become unstable (see
Fig. 14c, f). At a point in the specimen rzz and rxx are equal
till e = 8.05%; subsequently no major qualitative changes
occur in rzz and rxx.

As for simple compressive deformations values of rxy

are negligibly small till e ¼ eyield
yy , i.e., 8.08%, except at

atoms along the four vertical edges parallel to the Z-axis
(cf. Fig. 15a, c). After the occurrence of local instabilities
Fig. 17. For simulations of the simple tensile deformations on the specimen w
and d) the mid-section, X = 18 Å, and (e and f) at points where instabilities hav
the magnitude of rxy reaches a maximum of �0.76 GPa
at some points located close to the bounding surfaces.

The distribution of rVM on the bounding surfaces is
depicted in Fig. 16a, b; it is essentially uniform on these sur-
faces prior to the nucleation of instabilities with values rang-
ing from�2.22 to�4.61 GPa. Fringe plots of Fig. 16c show
that on the mid-section, X = 18 Å, values of rVM at points
near the end faces of the specimen are higher than those at
points on its lateral surfaces. Two groups of atoms, starting
with the third layer from the end faces, have the maximum
value �5.57 GPa of rVM; it rapidly decreases to �4.3 GPa,
and stays at that value on atoms near the longitudinal cent-
roidal axis of the specimen. At points near the center, values
of rVM vary between �4.3 GPa and �3.8 GPa along the Z-
and the X-axes. A high gradient in the values of rVM is found
at points close to the free lateral surfaces while that at points
near the center is moderate. The distribution of rVM at points
where instabilities have initiated, depicted in Fig. 14e, shows
the presence of four lines of atoms with rVM = �5.57 GPa,
which is nearly the same as that at points close to the edges
of the mid-section. At these points, after the nucleation of
instabilities, the rVM drops to �2 GPa; a similar drop in
the stress level occurs at all atoms in the rhombic planes of
unstable atoms shown in Fig. 16f. We note that none of the
ith L/H = 10, distribution of 2smax on (a and b) the bounding surfaces, (c
e initiated; for Figs. (a, c and e) e = 8.08%; and for (b, d and f) e = 8.15%.
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Fig. 18. For simulations of the simple tensile deformations, variation with the average axial strain e of ryy component of the local Cauchy stress tensor
along the centroidal axis; (a) L/H = 5, (b) L/H = 10, and (c) L/H = 20.

3150 R.C. Batra, A.A. Pacheco / Acta Materialia 58 (2010) 3131–3161
atoms with high values of rVM located at the end faces
becomes unstable.

The distributions of 2smax in Fig. 17a–f are similar to
those of rVM in Fig. 16a–f. For establishing a relation, if
any, between the stress level and the nucleation of instabil-
ities, we note that the maximum values of 2smax and rVM at
e ¼ eyield

yy at points that have become unstable are different
for simple tension and simple compression. For simple
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compression, the maximum values of 2smax and rVM are
2.75 and 2.33 GPa, respectively. For simple tension, 2smax

and rVM equal 5.95 and 5.57 GPa, respectively. There is
a difference of �100% between these values, showing that
for this specific case

ðsmaxÞtension ¼� 2ðsmaxÞcompression and

ðrVMÞtension ¼� 2ðrVMÞcompression:
5.4. Effect of the aspect ratio L/H

5.4.1. Simple tension

For simple tension and L/H = 5, 10 and 20, Fig. 18a–c
exhibits distributions of ryy on the centroidal axis at vari-
ous values of the average axial strain e. For e < eyield

yy , ryy

changes rapidly at points close to the end faces, Y = Ymin

and Y = Ymax, and saturates to a constant value at the
center. At e = 0, i.e., the reference configuration, ryy is
close to zero at points near the two end faces but it is com-
pressive at other points on the centroidal axis; the maxi-
mum magnitude of ryy � 1.7 GPa is at points whose
distance from the end faces equals 20 Å. At points near
the center of the specimen ryy � �1.2 GPa for the three
L/H values. The ryy at a point increases with an increase
in the deformation. At e = �1%, the stress at points near
the end faces becomes tensile. At e = 4%, ryy is positive
(tensile) at all points on the centroidal axis. Until
e ¼ eyield

yy , the qualitative and the quantitative evolutions
of ryy are the same for L/H = 5, 10 and 20. The material
yields at e = �8% with a stress level of ryy = �2.8 GPa at
the center for L/H = 5 and 10 and ryy = �2.4 GPa for
L/H = 20.

The black curves in Fig. 18a–c give the distribution of
ryy on the centroidal axis for e slightly greater than eyield

yy .



Fig. 20. For simulations of the simple tensile deformations, distribution of
the local Cauchy stress tensor component ryy on the mid-section X = H/2
at e ¼ eyield

yy ; (a) L/H = 5, (b) L/H = 10, and (c) L/H = 20.
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After the nucleation of local instabilities in the specimen,
the distribution of ryy becomes asymmetric about the plane
Y = L/2; ryy decreases by different amounts at various
points on the centroidal axis and its distribution depends
upon the value of L/H. This asymmetry could be due to
atoms on the end face Y = Ymin being restrained from mov-
ing in the Y-direction but those on the end face Y = Ymax

moved axially. We recall that the distribution of unstable
points in the specimen is not the same for all L/H ratios.

Fig. 19a shows, for L/H = 10, the variation of ryy on the
centroidal line Y = L/2, Z = H/2. At e = 0, ryy is compres-
sive at points away from the lateral traction free surfaces.
As the axial deformation increases ryy in the cross-section
becomes positive. At e = �3%, ryy > 0 everywhere on the
centroidal line. For e < eyield

yy , the distribution of ryy on
the centroidal line is symmetric about X = H/2. The varia-
tion of ryy on the centroidal axis Y = L/2, X = H/2 is sim-
ilar to that on the centroidal axis Y = L/2, Z = H/2.

Fig. 20a–c depicts distributions on the mid-surface
X = H/2 of ryy at e ¼ eyield

yy for L/H = 5, 10 and 20 respec-
tively. The three distributions are qualitatively similar in
that the maximum tensile stress �5 GPa occurs at points
on the lateral surfaces, and the minimum tensile stress
�2.8 GPa at points on and near the centroidal axis.
Fig. 21a and b depicts, for four different values of L/H,
distributions of rxx and ryy on the centroidal axis for the
four specimens in configurations corresponding to e = 0
and e ¼ eyield

yy . Results have been plotted in the reference
configuration and the horizontal axis has been normalized
by the length of the specimen in the reference configura-
tion. From Fig. 21a we see that the distribution of ryy on
the centroidal axis is similar for the four specimens. At
e = 0, ryy equals zero at atoms close to the end faces and
is compressive at other points. Assuming that the surface
stress ryy is proportional to the curvature of the surface,
the plots of Fig. 21a imply that the curvature of the bound-
ing surface in the reference configuration varies smoothly
as one goes inwards from the end faces.

With an increase in the axial tensile strain, ryy switches
from compressive to tensile at points on the centroidal axis.
However, rxx at points on the centroidal axis stays compres-
sive with its magnitude increasing with an increase in e. For
L/H = 20, at the specimen centroid, rxx = �0.7 GPa,
ryy = �1.35 GPa when e = 0, and rxx = �1.5 GPa,
ryy = 2.5 GPa when e ¼ eyield

yy , whereas, initially,
rxx = rzz 
 0.5 ryy at the specimen centroid, at yielding
|rxx| = |rzz| 
 0.6 ryy. Note that in the reference configura-
tion the three normal stresses are compressive but in the
deformed configuration corresponding to e ¼ eyield

yy , rxx and
rzz are compressive but ryy is tensile.

5.4.2. Simple compression

At different strain levels for L/H = 5, 10 and 20
Fig. 22a–c shows, respectively, distributions of ryy along
the centroidal line parallel to the Y-axis. For different val-
ues of the axial strain e, distributions of ryy on the centroi-
dal line parallel to the Y-axis are qualitatively and
quantitatively similar to each other for L/H = 5, 10 and
20. The magnitude of the compressive stress at a point con-
tinuously increases with an increase in the axial deforma-
tion up to e ¼ eyield

yy . For L/H = 5, at e = �-3%, a
concavity in the distribution of ryy at the center of the spec-
imen is observed. This small concavity, not observed for L/
H = 10 and 20, becomes more pronounced with increasing
compressive deformation. After |e| > �5%, |ryy| at points
on the centroidal line for the specimen with L/H = 5 does
not increase appreciably; in Fig. 22a curves for |e| P �6%
almost overlap each other until the yield point is reached.
At |e| just greater than jeyield

yy j the variation of ryy with Y

depends upon the specimen size.
Fig. 19b shows, for L/H = 10, the variation of ryy along

the centroidal line parallel to the X-axis. The initially ten-
sile stresses on the free surfaces X = Xmin and X = Xmax

decrease and the compressive stresses in the interior
increase monotonically till e = �5.15%. As ryy in the spec-
imen approaches the yield stress the rate of change of ryy

with e decreases at the specimen centroid. However, gradi-
ents of stresses at points close to the free surfaces remain
essentially unchanged. This differs substantially from that
in tensile deformations (see Fig. 19a).
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Fig. 23a–c depicts the distribution at e ¼ eyield
yy of ryy on

the mid-section X = H/2 of specimens with L/H = 5, 10
and 20 respectively. The distribution in the specimen of
the axial stress at the yield point for L/H = 5 is quite differ-
ent from that in specimens with L/H = 10 and 20. At the
yield point |ryy| at points on the lateral traction free sur-
faces varies from �0.005 to �0.444 GPa; only small groups
of atoms on the lateral traction free surfaces located at
�30 Å from the two loaded end faces have higher tensile
stress ryy than that at atoms at the center of the lateral sur-
faces. These high values of the tensile stress on the lateral
surface are observed in those cross-sections that have high
values of compressive stresses at interior points. For L/
H = 10 and L/H = 20 atoms on lateral surfaces with high
positive values of ryy are spread along the length of the
specimen. At points far from the two loaded end faces,
the distribution in the specimen of ryy is nearly uniform.
On a cross-section the stress ryy changes gradually from
negative at the centroid to positive at the free surface.

In Fig. 24 at e = 0 and e ¼ eyield
yy the variations of rxx and

ryy along the Y-centroidal line have been plotted for spec-
imens with L/H = 3, 5, 10 and 20. The distributions of rxx

and ryy in the reference configuration are similar for the
four specimens. The maximum compressive stresses occur
at the same relative locations and their values become uni-
form on the central four-tenths of the specimen length.
However, at the yield point, the stress distribution depends
upon L/H. For L/H = 3 and 5 the stress distribution on the
central portion of the specimen length is non-uniform but
for L/H = 10 and 20 it is uniform. Values of rxx and ryy

in the central four-tenths of the specimen length depend
upon L/H; their magnitudes are the maximum for L/
H = 3 and the minimum for L/H = 20. At e ¼ eyield

yy ,
rxx 
 0.46 ryy, 0.6 ryy, 0.85 ryy and 0.9 ryy for L/H = 20,
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Fig. 22. For simulation of the simple compressive deformations, variation with the average axial strain e of ryy component of the local Cauchy stress
tensor along the centroidal axis; (a) L/H = 5, (b) L/H = 10, and (c) L/H = 20.

3154 R.C. Batra, A.A. Pacheco / Acta Materialia 58 (2010) 3131–3161



Fig. 23. For simulations of the simple compressive deformations, distri-
bution of the ryy component of the local Cauchy stress tensor on the mid-
section X = H/2 at e ¼ eyield

yy ; (a) L/H = 5, (b) L/H = 10, and (c) L/H = 20.
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10, 5, and 3, respectively, whereas at e = 0, rxx 
 0.5 ryy for
each one of the four values of L/H.

5.5. Comparison of the maximum shear and the von Mises

stresses at points where instabilities have initiated

5.5.1. Simple compression
For points where instabilities have initiated just after

e ¼ eyield
yy , i.e., points identified by negative eigenvalues of

H(i), stresses in the configuration for e ¼ eyield
yy have been

computed. For L/H = 5, 10 and 20, Fig. 25a–c depicts,
respectively, distributions of 2smax on unstable points.
Large values, �2.5 GPa, of smax at unstable points are
observed on atoms three layers below the lateral free sur-
faces. These atoms are located near the edges of the speci-
men (corners of the rhombic shape of unstable atoms) for
the three L/H ratios. As the average axial strain increases
the number of these atoms increases around the corners
of the specimen (see red arrows in Fig. 25). Even though
there are differences among the average axial yield stresses
for the three specimens, the maximum shear stress at yield
is about the same (see Table 4). The maximum value of the
average axial yield stress is for the specimen with L/H = 5.
It is clear from the results exhibited in Fig. 25a that large
values of 2smax occur at points on the third and the fourth
layers of atoms located parallel to the lateral traction free
surfaces. Points in the interior experience higher shear
stresses as the strain level increases; this is evidenced by
the increase in the number of atoms in the orange band sur-
rounding atoms with high values of 2smax. It is important
to note that atoms with the maximum value of the shear
stress are not located on the traction free surfaces but
beneath them.

For L/H = 5, 10 and 20, Fig. 26a–c depicts distributions
of rVM at unstable points. As for the distributions of 2smax

the highest values of the von Mises stress occur at points
near the four corners of the specimens that are on the third
layer below the traction free surface. The maximum value,
�2.23 GPa, of rVM is almost the same for specimens with
L/H = 5 and L/H = 10. The maximum value, �2.1 GPa,
for L/H = 20, is slightly less than that for the other two
specimens.

5.5.2. Simple tension

The distributions of 2smax at e ¼ eyield
yy for simulations of

the simple tensile deformations of specimens with L/H = 5,
10 and 20 are depicted in Fig. 27a–c. As for simple com-
pressive deformations, atoms with high values of the max-
imum shear stress are near the edges of the specimen (the
corners of the rhombic plane of unstable atoms). Points
with high values of 2smax are located right beneath the lat-
eral free surfaces. In contrast to results for simple compres-
sion, the pattern for the distribution of stresses is the same
for the three specimens. The maximum value, �5.9 GPa, of
2smax is also the same for the three specimens.

As the average axial stress increases, high values of
2smax occur at atoms located along the diagonals of the
cross-section near the center of the specimen. This distribu-
tion contrasts with the one observed in simple compression
where interior atoms having high stress levels form a closed
rectangular band. Values of 2smax decrease from 5.9 GPa at
points on the edges, to 4.5, 4.3 and 3.9 GPa at the centroid
of the specimen for L/H = 5, 10 and 20, respectively.

For L/H = 5, 10 and 20 and e ¼ eyield
yy , Fig. 28a–c depicts

distributions of rVM on unstable atoms. The distribution of
rVM is similar to that for 2smax with large values at atoms
localized in clusters near the corners of the rhombic planes
of unstable atoms. The minimum value of rVM among val-
ues at unstable points does not occur at the atom at the
specimen centroid.

From the distributions of rVM and 2smax for simulations
of the simple tensile deformations we note that the maxi-
mum stress levels are reached at the same locations in the
three specimens; these results are summarized in Table 5.

6. Remarks

The mechanical behavior of an atomic system depends
upon the temperature. Parameters for empirical potentials
like the TB and the EAM are fitted via elastic constants,
lattice parameter and equilibrium conditions at 0 K. For
performing simulations at a temperature other than 0 K,
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one needs to use a thermostat and keep either the volume
or the pressure constant that brings another variable into
the problem. Furthermore, integration of the governing
equations with respect to time requires time steps of the
order of pico- or femto-seconds, making simulations for
reasonable axial strains computationally very expensive.

At temperatures other than 0 K, it is not clear whether
or not the computation of the stress tensor should contain
contributions from the linear momentum terms. Further-
more, as recently mentioned by Subramaniyan and Sun
[34], some empirical potentials are not temperature-com-
pensated. These authors heated a model atomistic solid
and computed the stress tensor under different boundary
conditions using the Irving–Kirkwood expression [24],
which contains potential and kinetic terms, and concluded
that the term containing the kinetic part cannot be
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Fig. 24. For simple compressive deformations at e = 0 and e ¼ eyield
yy , variation

and (b) rxx.
neglected from the calculation as suggested by Zhou [14].
Hoover et al. [22] have computed the stress tensor of an
elastic rotating disk and a system of particles under gravi-
tational forces. They compared their MD results at differ-
ent temperatures with the analytical results and obtained
almost a perfect match. In addition, the authors empha-
sized that the stress tensor is the negative of the pressure
tensor, the co-rotating momentum flux. These results
evince that kinetic terms play a role in the computation
of stresses at finite temperature but various authors inter-
pret these quantities differently.

Whereas we have used here the TB potential, Jiang and
Batra [35] used the EAM potential and the software LAM-
MS to study axial compression of an Au nanowire. Since
the LAMMS is a highly optimized software developed over
several years and our in-house software has not been
0.8 1

L/H = 3 - Initial
L/H = 3 - Yield
L/H = 5 - Initial
L/H = 5 - Yield
L/H = 10 - Initial
L/H = 10 - Yield
L/H = 20 - Initial
L/H = 20 - Yield

0.8 1

L/H = 3 - Initial
L/H = 3 - Yield
L/H = 5 - Initial
L/H = 5 - Yield
L/H = 10 - Initial
L/H = 10 - Yield
L/H = 20 - Initial
L/H = 20 - Yield

of the local Cauchy stresses ryy and rxx along the Y-centroidal line; (a) ryy



Fig. 25. For simulations of the simple compressive deformations, the
distribution of 2smax at the unstable points when e ¼ eyield

yy ; (a) L/H = 5, (b)
L/H = 10, and (c) L/H = 20. Red arrows indicate points with high stress
values. Values of ryy, rVM and 2smax at these points are summarized in
Table 4. The blue arrows indicate sections for which an expanded view is
provided.
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optimized, it is unfair to compare the computational perfor-
mance of the two software. Leaving the detailed compari-
son of results from the two potentials for a future study,
we note that the two sets of results are different. We note
that Pu et al. [36] used three semiempirical potentials,
namely, Vorter and Chen’s [37] EAM potential, the glue
model potential of Ercolessi et al. [38], and the TB potential.
They compared results of MD simulations for a tension test
on an Au cluster composed of 256 atoms using the three
potentials. The accuracy of a potential was determined by
comparing predictions of the potential energy in the relaxed
Table 4
For specimens with different L/H ratios deformed in simple compression, max
corresponding values for atoms on the centroidal axis. Points with the maxim

L/H Maximum values Maximum

ryy (GPa) rVM (GPa) 2smax (GPa) ryy (GPa

5 �2.772 2.276 2.555 �2.537
10 �2.789 2.601 2.601 �2.533
20 �2.584 2.097 2.422 �2.371
configuration and of the ultimate force at the breaking
point with results obtained by using the density functional
theory (DFT), which were taken as the reference values.
The force at the breaking point for an atomic chain of Au
atoms was found experimentally by Rubio–Bollinger et al.
[39] to be 1.5 ± 0.3 nN. Predictions from the TB potential
were found to agree well with the DFT results and the
experimental data. The EAM and the glue model potentials
overestimated the value of the potential energy of the sys-
tems in the initial configuration (no external load applied)
and also showed the initial shape of the specimen not agree-
ing with that obtained through the DFT calculations. It was
concluded that the EAM and the glue model potentials are
not adequate to describe the energetics of systems with a
large number of under-coordinated atoms.

Sen and Buehler [40] have used the Rice–Peierls model
to study the initiation of dislocations from the tip of a
semi-infinite crack in a thin strip. The inter-atomic inter-
actions were defined by the Morse and the harmonic poten-
tials. They found the existence of intrinsic length scales that
depend only on material parameters and the particular
geometry. These characteristic length scales separate
regimes of no dislocation activity, partial dislocation plas-
ticity, and complete dislocation plasticity at a crack tip in
ductile metals. In our work there is no a priori defect or
crack introduced in the nano-specimens and dislocations
originate when deformations become unstable.

7. Conclusions

We have used molecular statics (MS) simulations to
study axial tension/compression and simple axial tension/
compression of prismatic gold nanorods of square cross-
section with the tight-binding potential with the goal of
delineating stress distributions in the specimen. For triaxial
deformations of the specimen, we have also compared Cau-
chy stresses computed with Hardy’s method from results of
the MS simulations with those found by assuming that the
material is hyperelastic whose strain energy is derived from
the tight-binding potential and the Cauchy–Born rule.
Conclusions from this work are summarized below:

� For isochoric triaxial deformations, variations with the
average axial strain of components of the average Cau-
chy stress tensor and the strain energy computed from
MS simulations agree well with those derived from the
imum values at e ¼ eyield
yy of ryy, rVM and 2smax for unstable atoms and the

um values are indicated by red arrows in Figs. 23 and 24.

values at points on the centroidal line (ryy)average (GPa)

) rVM (GPa) 2smax (GPa)

2.212 2.341 �1.810
2.087 2.131 �1.671
1.850 1.862 �1.387



Fig. 26. For simulations of the simple compressive deformations, the distribution of rVM on the unstable points when e ¼ eyield
yy ; (a) L/H = 5, (b) L/H = 10,

and (c) L/H = 20. Red arrows indicate points with high stress values. Values of ryy, rVM and 2smax at these points are summarized in Table 4. The blue
arrows indicate sections for which an expanded view is provided.
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analytical expressions obtained by assuming that the
body’s response is hyperelastic and the strain energy
density can be derived from the MS potential by using
the Cauchy–Born rule.
� Stresses within the specimen are distributed non-uni-

formly in the unloaded reference configuration of the
minimum potential energy. The global equations of
equilibrium are satisfied, and the local equilibrium equa-
tions (vanishing of the divergence of the Cauchy stress
tensor) are also satisfied everywhere except at points
on the specimen edges.
� Large values of the von Mises stress, rVM, and the maxi-

mum shear stress, smax, occur on atoms located beneath
the traction free surfaces, and at atoms in the interior that
have become unstable. The places where high values of
2smax occur prior to the onset of global instability (or
yielding) are distributed very differently in simple tension
and simple compression. For simple tension these high
values are found in a thin axial layer extending to three
atomic spaces from the traction free surface whereas for
simple compression these zones form squares around
the center of the specimen that grow as the external load
increases. The number of layers forming this square zone
increases with the decrease in specimen’s length.
� Except for simple tensile deformations, values of the von

Mises stress and the maximum shear stress at specimen’s
yielding depend upon the specimen size and boundary
conditions prescribed on the bounding surfaces.
� The distributions of local stresses on the centroidal lines

are essentially independent of the specimen aspect ratio.
However, during compressive deformations, the distri-
bution of stresses on the axial centroidal line at yield
form a wave-like pattern whose amplitude decreases as
specimen’s length increases. The correlation, if any,
between these wave patterns and instabilities is left for
future study.



Fig. 27. For simulations of the simple tensile deformations, distribution of 2smax on unstable points when e ¼ eyield
yy ; (a) L/H = 5, (b) L/H = 10, and (c)

L/H = 20. Red arrows indicate points with high stress values. Values of ryy, rVM and 2smax at these points are summarized in Table 5. The blue arrows
indicate sections for which an expanded view is provided.

Table 5
For specimens with different L/H ratios deformed in simple tension, maximum values at e ¼ eyield

yy of ryy, rVM and 2smax for unstable atoms and the
corresponding values for atoms on the centroidal axis. Points with the maximum values are indicated by red arrows in Figs. 25 and 26.

L/H Maximum values Maximum values at points on the centroidal line (ryy)average (GPa)

ryy (GPa) rVM (GPa) 2smax (GPa) ryy (GPa) rVM (GPa) 2smax (GPa)

5 4.627 5.204 5.959 2.930 4.322 4.500 4.996
10 4.579 5.155 5.905 2.839 4.285 4.295 4.990
20 4.281 4.865 5.586 2.436 3.907 3.907 4.618
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Fig. 28. For simulations of the simple tensile deformations, distribution of rVM on unstable points when e ¼ eyield
yy ; (a) L/H = 5, (b) L/H = 10, and

(c) L/H = 20. Red arrows indicate points with high stress values. Values of ryy, rVM and 2smax at these points are summarized in Table 5. The blue
arrows indicate sections for which an expanded view is provided.
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