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Abstract We extend the application of the method of initial values (also known as the transfer matrix method)
to find frequencies of free vibrations of a strain-gradient-dependent Euler–Bernoulli beam (EBB) under dif-
ferent boundary conditions at the two end faces of the beam. For the classical EBB, we find the exact matricant
or the carry-over matrix but it is numerically evaluated for the strain-gradient-dependent EBB. For the numer-
ically evaluated matricant, it is found that ten iterations give converged values of the first six frequencies for
the classical and the strain-gradient-dependent EBB. For the strain-gradient EBB, the sixth-order ordinary
differential equation for the lateral deflection and three boundary conditions at each end have been derived
by using the Hamilton principle. The material characteristic length is found to noticeably affect frequencies
of free vibrations. Thus, the difference between frequencies of the classical and the strain-gradient-dependent
EBB can be used to determine the value of the material characteristic length for a nanobeam for which length
scale effects are believed to be dominant.

1 Introduction

The recent interest in nanotechnology has revived activity in gradient-dependent theories, which were devel-
oped, among others, by Toupin [1], Mindlin [2], Gurtin [3], and Eringen [4]. Gurtin [3] showed that the
Clausius–Duhem inequality ruled out the dependence of the strain energy density for an elastic material upon
the gradients of the deformation gradient (or the strain gradient). Batra [5] studied hyperelastic materials whose
strain energy density depends upon the first- and the second-order gradients of the deformation, the temper-
ature, its gradient, and the time rate of change of the temperature. He used an entropy inequality proposed
by Green and Laws [6] to study its compatibility with the second law of thermodynamics. He showed that in
such materials either thermal disturbances propagate with finite speed in the linear theory and the constitutive
quantities do not depend upon the second-order gradients of the deformation or the constitutive quantities may
depend upon the second-order gradients of the deformation, and in the linear theory, thermal disturbances do
not propagate with finite speed. Dillon and Kratochvil [7] and Batra [8] used strain gradient theories to study
elasto-plastic deformations. These theories introduce one or more material characteristic lengths, which are
believed to be related to the atomic structure of the lattice; however, no such clear relation has been exper-
imentally or theoretically established yet. It is outside the scope of this paper to review all works in strain
gradient theories. The introduction of the length scale helps regularize an initial boundary value problem, and
in numerical work, it facilitates finding solutions that are mesh-independent.

Peddieson et al. [9] used a simplified version of Eringen’s non-local theory for elastic materials to study
deformations of Euler–Bernoulli beams (EBBs) and derived a sixth-order ordinary differential equation for the
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lateral deflection of the beam. However, they used only two boundary conditions at each end of the beam and
derived an expression for the deflection of a simply supported beam loaded by a uniformly distributed load.
For typical values of the material characteristic length and the beams used as microelectromechanical devices,
they found that the difference in the maximum deflections of the classical and the strain-gradient-dependent
theories is about 1 %. However, for nanobeams, these differences could be significant.

Lam et al. [10] experimentally studied bending of cantilever beams made of epoxy and showed that for a
fixed beam length the bending rigidity increased significantly with a decrease in the beam thickness, which
could not be explained by considering traditional effects such as surface tension, and the flexibility of the
support. They thus attributed the doubling of the bending rigidity of the beam with a decrease in its thickness
to the presence of strain gradient effects. They derived the sixth-order ordinary differential equation for the
transverse deflection of the beam and the pertinent six boundary conditions. They found analytical solutions
of the boundary problem for loads applied at the tip of a cantilever beam, but did not study its vibrations.

Kong et al. [11] built upon the work of Lam et al. [10] and studied static deflections of a cantilever beam
under a point load at its tip, and free vibrations of the cantilever beam. They showed that the choice of a
higher-order boundary condition noticeably affects the tip deflection and the lowest four frequencies of free
vibration. These values also depend upon the material characteristic length. The free vibration problem was
numerically solved.

Using the displacement field appropriate for the Timoshenko beam (TB) theory, Asghari et al. [12] devel-
oped expressions for strains that contain terms corresponding to the von Karman nonlinearity. Using the
Hamilton principle, they derived governing equations and boundary conditions for a gradient-dependent TB.
They studied free vibrations of the TB with two axially immovable supports for which the governing equations
could be reduced to two fourth-order differential equations in the lateral deflection and the angle of rotation of
a transverse plane. By using the mode shapes corresponding to the fundamental frequency of a classical TB,
they found the first two frequencies of a linear gradient-dependent TB. Results presented below for the EBB
show that mode shapes of the classical and the strain-gradient-dependent beams are different.

Initial boundary value problems as well as eigenvalue problems can be numerically analyzed by using
either the finite element method or a meshless method in which no nodal connectivity is needed. Here, we
generalize the method of initial values (or the transfer matrix method [13]) to find frequencies of a strain-
gradient-dependent Euler–Bernoulli beam (EBB). When the three material characteristic lengths are set equal
to each other in Kong et al.’s work [11], their equations governing frequencies of the beam are identical with
those for the strain gradient beam studied here. Our analysis technique does not involve complex arithmetic
and gives eigenvalues and eigenvectors for different sets of boundary conditions at the two edges of the beam.

The rest of the paper is organized as follows. Section 2 reviews the method of initial values or the transfer
matrix method, provides an exact expression for the carry-over matrix for the classical EBB, and applies
the method to find frequencies and mode shapes of the EBB, which agree with the analytical solution of
the problem. It is also shown in this section that for a carry-over matrix found by the method of successive
approximations, ten terms in the expression for the carry-over matrix provide converged values of the first six
frequencies. The method is applied to numerically evaluate frequencies of the strain gradient EBB in Sect. 3.
Thus, we have successfully generalize the method of initial values previously used for studying vibrations of
the classical EBB theory to the strain gradient EBB theory, which now can be solved by the method of initial
values and the method of matricants. Conclusions of this work are summarized in Sect. 4.

2 The method of initial values

2.1 Brief review of the method

In this section, we briefly review the method of initial values and apply it to find frequencies and mode shapes
of an Euler–Bernoulli beam (EBB). The solution of the initial value problem (IVP)

dy
dx

= Ay, y(0) = y0 (1)

is

y(x) = Y(x, 0) y0, (2)

where Y(x, 0) is the principal (or the carry-over) matrix and is unique for a given IVP. In Eqs. (1) and (2), y0
is the initial value of the unknown n-dimensional function y at the point x = 0, and Y(x, 0) is an n × n square
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matrix mapping the initial value y0 on to the current value y(x) of y at the point x . It is clear from Eq. (2) that
if the principal matrix Y(x, 0) is known, then the solution of the IVP at the point x can be readily found.

For an IVP, the principal matrix Y(x, 0) can be found either analytically or by successive approximations
as follows:

Y(x, x1) = I +
x∫

x1

A(τ ) dτ +
x∫

x1

A(τ )

τ∫

x1

A(σ ) dσ dτ

+
x∫

x1

A(τ )

τ∫

x1

A(σ )

σ∫

x1

A(β) dβ dσ dτ + · · · , (3)

where Y(x, x1) is called a matricant, and A is the matrix appearing in Eq. (1). Thus

Y(x, xn) = Y(x, x1)Y(x1, x2)Y(x2, x3) · · · Y(xn−1, xn), (4.1)

Y(x, x) = I. (4.2)

It is evident that the evaluation of the matricant by successive approximations is rather straight-forward.
Thus, this method to evaluate frequencies is rather simple and may be advantageous over other numerical
methods.

2.2 Application of the method to EBBs

For the sake of completeness, we first apply the method of initial values to study free vibrations of an EBB
made of a linear elastic, isotropic, and homogeneous material governed by

ρ
∂2v̄

∂t2 = ∂2 M̄

∂x2 , (5.1)

M̄ = −E I
∂2v̄

∂x2 , (5.2)

where v̄(x, t) is the transverse deflection of a point x (0 ≤ x ≤ L) at time t , L is the beam length, M̄ is the
bending moment, ρ equals the mass density (mass/length) of the material of the beam, E is Young’s modulus,
and I is the second moment of area of cross-section about the neutral axis. We study beams for which E I and
ρ are constants, which will be the case for a homogeneous beam of uniform cross-section. Equations (5.1) and
(5.2) are supplemented by initial and boundary conditions. In terms of the rotation, ϕ̄(x, t), of a cross-section
about the y-axis and the shear force, T̄ (x, t), defined by

ϕ̄(x, t) = ∂v̄(x, t)

∂x
, T̄ (x, t) = ∂ M̄(x, t)

∂x
, (6)

Eq. (5) becomes

ρ
∂2v̄

∂t2 = ∂ T̄

∂x
, M̄ = −E I

∂ϕ̄

∂x
. (7)

For time-harmonic vibrations of the beam, we seek solutions of the form

v̄(x, t) = v(x)eiωt , ϕ̄(x, t) = ϕ(x)eiωt ,

M̄(x, t) = M(x)eiωt , T̄ (x, t) = T (x)eiωt ,
(8)

where i = √−1 and ω is a natural frequency of the beam. Substitution from Eq. (8) into Eq. (7) gives the
following first-order ordinary differential equation for the four-dimensional vector y = (v, ϕ, M, T ):

dy
dx

= Ay, (9)
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where

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 − 1

E I 0
0 0 0 1

−ρω2 0 0 0

⎤
⎥⎥⎦

⎧⎪⎨
⎪⎩

v
ϕ
M
T

⎫⎪⎬
⎪⎭ , (10)

and y0 = y(0) depends upon boundary conditions prescribed at the end x = 0 of the beam.
We first solve the problem analytically by finding the principal matrix, and then approximately by using

Eqs. (3) and (4).

2.3 Solution of the beam problem with analytical principal matrix

For Eqs. (9) and (10), the analytically found expressions for elements of the principal matrix are listed below:

Y11 = Y22 = Y33 = Y44 = 1

2
(cos α + cosh α) , (11.1)

Y12 = −E I Y23 = Y34 = − Y41

E Iμ2 = sin α + sinh α

2
√

μ
, (11.2)

Y13 = Y24 = Y31

(E Iμ)2 = Y42

(E Iμ)2 = cos α − cosh α

2E Iμ
, (11.3)

Y14 = Y32

(μE I )2 = − Y43

E Iμ2 = sin α − sinh α

2E Iμ3/2 , (11.4)

where

α = x
√

μ, μ2 = ρω2

E I
, (12)

and we have written Yab (a, b = 1, 2, 3, 4) for Yab(x, 0). Thus

y(x) = Y(x, 0) y(0). (13)

2.3.1 Beam clamped at both ends

For a beam clamped at the two ends, the boundary conditions are

v(0) = ϕ(0) = v(L) = ϕ(L) = 0. (14)

Substitution from Eq. (14) into Eq. (13) and setting x = L give⎡
⎢⎣

0
0

M(L)
T (L)

⎤
⎥⎦ =

⎡
⎢⎣

Y11(L , 0) Y12(L , 0) Y13(L , 0) Y14(L , 0)
Y21(L , 0) Y22(L , 0) Y23(L , 0) Y24(L , 0)
Y31(L , 0) Y32(L , 0) Y33(L , 0) Y34(L , 0)
Y41(L , 0) Y42(L , 0) Y43(L , 0) Y44(L , 0)

⎤
⎥⎦

⎡
⎢⎣

0
0

M(0)
T (0)

⎤
⎥⎦ . (15)

Thus

Y13(L , 0)M(0) + Y14(L , 0)T (0) = 0, (16.1)

Y23(L , 0)M(0) + Y24(L , 0)T (0) = 0. (16.2)

For Eq. (16) to have a non-trivial solution for M(0) and T (0), we must have

det

[
Y13(L , 0) Y14(L , 0)
Y23(L , 0) Y24(L , 0)

]
= 0, (17)

or equivalently

cos L
√

μ cosh L
√

μ − 1 = 0, (18)

which is the characteristic equation for the determination of the frequency ω and is the same as that given in
[14]. Solving Eq. (16.1) for M(0) and substituting for y(0) in Eq. (13), we get the following expression for
the corresponding mode shape:
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v(x) = A (−Y14(L , 0)Y13(x, 0) + Y14(x, 0)Y13(L , 0)) . (19)

Here and below, A is a constant that can be evaluated by suitably normalizing the mode shape.

2.3.2 Cantilever beam

For the cantilever beam clamped at the end x = 0, the boundary conditions are

v(0) = 0, ϕ(0) = 0, M(L) = 0, T (L) = 0. (20)

The characteristic equation for finding frequencies is obtained from the following two equations:

Y33(L , 0)M(0) + Y34(L , 0)T (0) = 0, (21.1)

Y43(L , 0)M(0) + Y44(L , 0)T (0) = 0. (21.2)

The requirement that Eqs. (21) have a non-trivial solution for M(0) and T (0) gives the following equation
for finding ω:

cos L
√

μ cosh L
√

μ + 1 = 0. (22)

The corresponding mode shapes are given by

v(x) = A (Y13(x, 0)Y34(L , 0) − Y14(x, 0)Y33(L , 0)) . (23)

Equations (22) and (23) agree with the analytical solution of the problem [14].

2.3.3 Simply supported beam

Boundary conditions for a simply supported beam are

v(0) = v(L) = M(0) = M(L) = 0. (24)

The equation for the natural frequencies is obtained by requiring that the following two equations:

Y12(L , 0)ϕ(0) + Y14(L , 0)T (0) = 0, (25.1)

Y32(L , 0)ϕ(0) + Y34(L , 0)T (0) = 0 (25.2)

have a non-trivial solution. The characteristic equation is

sin L
√

μ sinh L
√

μ = 0, (26)

and the corresponding mode shapes are given by

v(x) = A (Y14(x, 0)Y12(L , 0) − Y12(x, 0)Y14(L , 0)). (27)

Equations (26) and (27) can also be found in [14].

2.3.4 Free-free beam

For a beam with both ends free (e.g., for a beam hanging in air), the boundary conditions are

T (0) = M(0) = T (L) = M(L) = 0. (28)

The equation for the determination of the natural frequencies is obtained from the following two homogeneous
equations:

Y31(L , 0)v(0) + Y32(L , 0)ϕ(0) = 0, (29.1)

Y41(L , 0)v(0) + Y42(L , 0)ϕ(0) = 0. (29.2)

For Eqs. (29.1, 2) to have a non-trivial solution for v(0) and ϕ(0), we must have

cos L
√

μ cosh L
√

μ − 1 = 0, (30)

which is exactly the same as Eq. (18). That is, the free-free beam and the beam clamped at both ends have the
same frequencies; however, the mode shapes are different. Mode shapes of the free-free beam are given by

v(x) = A (Y11(L , x)Y32(L , 0) − Y12(L , x)Y31(L , 0)). (31)

Equations (30) and (31) agree with those given in [14].



2398 R. Artan, R. C. Batra

2.3.5 Clamped-simply supported beam

For a beam clamped at the left end and simply supported at the right end, the boundary conditions are

v(0) = ϕ(0) = M(L) = v(L) = 0. (32)

The equation for the determination of natural frequencies derived from

det

[
Y13(L , 0) Y14(L , 0)
Y33(L , 0) Y34(L , 0)

]
= 0 (33)

is

cos α sinh α − sin α cosh α = 0, (34.1)

and the corresponding mode shapes are given by

v(x) = A (Y13(L , x)Y14(L , 0) − Y14(L , x)Y13(L , 0)). (34.2)

Equations (34.1) and (34.2) are also given in [14].

2.4 Solution of the beam problem with numerically evaluated principal matrix

In some problems (e.g., for the strain gradient beam studied in the next section), the principal matrix cannot
be analytically evaluated. We, therefore, solve a beam problem by using the matricant to ascertain the effect
of the number of terms in Eqs. (4.1, 2) on the accuracy of the solution. For n = 8 in Eq. (4), we get

Y11 = Y22 = Y33 = Y44 = μ2(x − x1)
4
(
μ2(x − x1)

4 + 1,680
)

40,320
+ 1, (35.1)

Y12 = Y34 = −Y23 = − 1

μ2 Y41 = 1

120
μ2(x − x1)

5 + x − x1, (35.2)

Y13 = Y24 = 1

μ2 Y31 = 1

μ2 Y42 = 1

720
(x − x1)

2 (−μ2(x − x1)
4 − 360

)
, (35.3)

Y21 = −Y32 = Y43 = μ2Y14 = μ2(x − x1)
3
(
μ2(x − x1)

4 + 840
)

5,040
, (35.4)

where we have omitted the arguments (x, x1) of Yab(a, b = 1, 2, 3, 4).
For a beam clamped at both ends, we calculate the value of the matricant for 8 intervals by using Eq. (4.1)

and compute frequencies by using Eq. (17). The first six non-dimensional frequencies


i = ωi L2
√

ρ

E I
, i = 1, 2, . . . , (36)

are listed in Table 1. As the number of terms in Eq. (4.1) is increased from 8 to 10, there is no perceptible
difference in the values of the first six frequencies up to six significant digits signifying that the frequencies
have converged. We have also listed in the Table frequencies derived from the analytical expression, Eq. (18).
It is clear that frequencies obtained by keeping 8 terms in Eq. (4.1) agree very well with those deduced from
Eq. (18).

For other boundary conditions, eight terms in Eq. (4.1) were found to give converged values of the first six
frequencies, which are compared with their analytical counterparts in Table 2. Frequencies of a free-free EB
beam were also computed but are omitted since they equal those of a clamped–clamped beam. The analytical
frequencies were computed by using the closed-form expressions given in [14].

For each set of boundary conditions considered, frequencies computed by retaining 8 terms in Eq. (4.1)
match very well with the corresponding analytical results.
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Table 1 Frequencies of an EB beam clamped at both ends

Frequency\number
of terms

5 6 8 10 Analytical


1 22.3754 22.3730 22.3733 22.3733 22.3733

2 61.7893 61.6586 61.6730 61.6728 61.6728

3 122.4670 120.7890 120.9060 120.9030 120.9034

4 210.9680 199.8050 199.857 199.860 199.859

5 376.1830 302.4200 298.277 298.569 298.555

6 484.4390 453.7300 414.3790 417.159 416.9907

Table 2 Frequencies of an EB beam

Frequency Cantilever Simply supported Clamped-simply supported

Numerical Analytical Numerical Analytical Numerical Analytical


1 3.51602 3.5160 9.8696 9.8696 15.4182 15.4182

2 22.0345 22.0345 39.4784 39.45 49.9649 49.9649

3 61.6972 61.6972 88.8264 88.8264 104.248 104.2427

4 120.902 120.902 157.914 157.914 178.270 178.2695

5 199.86 199.860 246.742 246.74 272.037 272.0310

6 298.569 298.569 355.357 335.306 385.6263 385.5314

3 Euler–Bernoulli beam made of strain-gradient-dependent linear elastic material

3.1 Governing equations

We now study vibrations of an EB beam made of a linear elastic, isotropic, and homogeneous material in
which there is a higher-order axial (or a couple) stress τ = −zEγ 2v̄′′′ in addition to the usual axial stress
σ = −zE v̄′′. Here, γ has dimensions of length, z is the vertical distance of a point from the neutral axis, and
v̄′ = ∂v̄/∂x ; γ is usually called the material characteristic length. For a beam with a distributed force q per
unit length acting on it, the Hamiltonian, H , is given by

H =
t1∫

0

dt

L∫

0

[
1

2

(
ρ ˙̄v2

)
− E I

2

((
v̄′′)2 + γ 2 (

v̄′′′)2
)

+ q v̄

]
dx, (37)

where ˙̄v = ∂v̄/∂t , and the positive q and positive v̄ are in opposite directions along the z-axis. Here, we have
assumed that boundary conditions are such that there is no work done by forces acting on the boundaries. As
is often assumed for an EBB, there is no contribution to H from the shear deformations. Furthermore, the
contribution to H from the quadratic term τσ has been neglected in Eq. (37). The Hamilton principle gives
the following equations governing deformations of the beam:

−ρ ¨̄v = E I
(
v̄ I V − γ 2v̄V I

)
+ q, 0 < x < L; (38.1)

δv̄(−v̄′′′ + γ 2v̄V ) = 0, at x = 0, L; (38.2)

δv̄′(v̄′′ − γ 2v̄ I V ) = 0, at x = 0, L; (38.3)

δv̄′′(v̄′′′) = 0, at x = 0, L; (38.4)

v̄(x, 0) = v̄0(x), ˙̄v(x, 0) = ˙̄v0(x). (38.5)

Here, v̄0(x) and ˙̄v0(x) equal the initial transverse displacement and the initial transverse velocity, respectively,
of a point x of the beam.

For studying free harmonic vibrations, we set q(x) = 0 and do not need initial conditions. Assuming a
solution of the form given by Eq. (8), we get the following equations for the determination of the frequency ω:

μ2v = v I V − γ 2vV I , 0 < x < L; (39.1)

δv(v′′′ − γ 2vV ) = 0, x = 0, L; (39.2)

δv′(v′′ − γ 2v I V ) = 0, x = 0, L; (39.3)

δv′′v′′′ = 0, x = 0, L . (39.4)



2400 R. Artan, R. C. Batra

We reduce the sixth-order ordinary differential Eq. (39.1) into six first-order ordinary differential equations
by introducing five additional variables as follows:

v′ = ϕ, ϕ′ = η, η′ = β, M = −E I (η − γ 2β ′), T = M ′. (40)

Thus, Eqs. (39.1–4) become

−ρω2v = T ′, (41.1)

δvT = 0, δv′M = 0, δηβ = 0 at x = 0, L . (41.2)

In this theory, the bending moment, M , and the shear force, T , depend upon v I V and vV , respectively.
For γ = 0, Eqs. (39.1–3) and expressions for M and T reduce to those for a classical EBB.

In terms of the six-dimensional vector

y = (v, ϕ, η, β, M, T ), (42)

Eqs. (40) and (41.1) can be written as

dy
dx

= Ay, (43)

with

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 1

γ 2 0 1
γ 2 E I

0
0 0 0 0 0 1

−ρω2 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (44)

3.2 Matricant for the gradient EB theory

Elements of the matricant matrix, Yab(t, t1), (a, b = 1, 2, 3, 4), evaluated by using 8 terms in Eq. (4) are listed
below.

Y11 = Y22 = 1 − μ2(t − t1)6
(
(t − t1)2 + 56γ 2

)
40,320γ 4 , (45.1)

Y12 = −(1/(E Iμ2))Y61 = Y56 = −μ2(t − t1)7

5,040γ 2 + t − t1, (45.2)

Y13 = Y24 = t2

2
− t t1 + t12

2
+ (t − t1)

4 (
t4 − 4t3t1 + 6t2t1

2 + 56t2γ 2 − 4t t1
3 − γ 4μ2(t − t1)

4

−112t t1γ
2 + t1

4 + 56t1
2γ 2 + 1,680γ 4) /(40,320γ 6), (45.3)

Y14 =
(t − t1)3

(
(t−t1)4

γ 4 + 42(t−t1)2

γ 2 + 840
)

5,040
, (45.4)

Y15 = Y26 = γ 4(t − t1)4 + 1
30γ 2(t − t1)6 + (t−t1)8

1,680

24EIγ 6 , (45.5)

μ2 E I Y16 = −Y21 = −Y32 = −Y54/(γ
2 E I ) = (t − t1)5

(
(t − t1)2 + 42γ 2

)
5,040EIγ 4 , (45.6)

Y23 = Y34 = E Iγ 2Y45 = t − t1 + (t − t1)3
(−γ 4μ2(t − t1)4 + 42γ 2(t − t1)2 + (t − t1)4 + 840γ 4

)
5,040γ 6 ,

(45.7)
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Y25 = 4γ 4(t − t1)3 + 1
5γ 2(t − t1)5 + 1

210 (t − t1)7

24EIγ 6 , (45.8)

Y53 = E Iγ 2Y31 = Y64 = γ 2 E I Y42

= −EIμ2(t − t1)4
(
56γ 2(t − t1)2 + (t − t1)4 + 1,680γ 4

)
40,320γ 4 , (45.9)

Y33 = Y44 = 1 − μ2(t − t1)6
(
(t − t1)2 + 56γ 2

)
40,320γ 4 + 1

γ 2

(
t2

2
− t t1 + t12

2

)

+ 1

γ 2

(
(t − t1)

4 (
t4 − 4t3t1 + 6t2t1

2 + 56t2γ 2 − 4t t1
3 − γ 4μ2(t − t1)

4

−112t t1γ
2 + t1

4 + 56t1
2γ 2 + 1,680γ 4) /(40,320γ 6)

)
, (45.10)

Y35 =
(

− 1

40,320EIγ 8

)
(t − t1)

2
(
−t6 + 6t5t1 − 15t4t1

2 − 56t4γ 2

+20t3t1
3 + 224t3t1γ

2 − 15t2t1
4 − 336t2t1

2γ 2 − 1,680t2γ 4 + 6t t1
5

+ 224t t1
3γ 2 + γ 4μ2(t − t1)

6 + 3,360t t1γ
4 − t1

6 − 56t1
4γ 2

− 1,680t1
2γ 4 − 20160γ 6) , (45.11)

Y36 = 4γ 4(t − t1)3 + 1
5γ 2(t − t1)5 + 1

210 (t − t1)7

24EIγ 6 , (45.12)

Y41 = 1

γ 2 E I
Y63 = −μ2(t − t1)3

(
42γ 2(t − t1)2 + (t − t1)4 + 840γ 4

)
5,040γ 6 , (45.13)

Y43 = −μ2(t − t1)5
(
(t − t1)2 + 42γ 2

)
5,040γ 4

+ (t − t1)3
(−γ 4μ2(t − t1)4 + 42γ 2(t − t1)2 + (t − t1)4 + 840γ 4

)
5,040γ 8 + (t − t1)

γ 2 , (45.14)

Y46 =
(

1

24EIγ 8

)(
12γ 6(t − t1)

2 − γ 4μ2(t − t1)8

1,680
+ γ 4(t − t1)

4

+ 1

30
γ 2(t − t1)

6 + (t − t1)8

1,680

)
, (45.15)

Y51 = Y62 = EIμ4(t − t1)8

40,320γ 2 − 1

2
EIμ2(t − t1)

2, (45.16)

Y55 = Y66 = 1 − μ2(t − t1)6
(
(t − t1)2 + 56γ 2

)
40,320γ 4 , (45.17)

Y52 = −1

6
EIμ2(t − t1)

3, (45.18)

Y65 = −μ2(t − t1)5
(
(t − t1)2 + 42γ 2

)
5,040γ 4 . (45.19)

3.3 Frequencies of a strain gradient EBB

Boundary condition (39.4) implies that at the ends x = 0 and x = L of the beam either v′′′ is prescribed as
zero or v′′ is prescribed. In the absence of a clear picture of which one of these two boundary conditions to
use, we solve the problem for each boundary condition. Even though there are four combinations of these two
boundary conditions, we consider only two, that is, either v′′′ = 0 at x = 0 and x = L or v′′ = 0 at x = 0
and L . Henceforth, we call these boundary conditions higher order. At a free end, the shear force T and the
bending moment M vanish; requiring v′′ to also vanish at a free end implies that v I V vanishes there. However,
v′′′ = γ 2vV at the free end and need not vanish there. We note that three boundary conditions are needed at
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each end point because the differential equation (39.1) is 6th order in v. Kong et al. [11] used v = v′ = v′′ = 0
at a clamped end, and M = T = v′′′ = 0 at a free end. Frequencies for any combination of higher-order
boundary conditions can be computed by adopting the procedure used here.

3.4 Cantilever beam fixed at the end x = 0

We first find frequencies of a cantilever beam under the following boundary conditions:

v(0) = 0, ϕ(0) = 0, η(0) = 0, M(L) = 0, T (L) = 0, η(L) = 0. (46.1)

Thus, Eq. (2) becomes⎡
⎢⎢⎢⎢⎢⎣

v(L)
ϕ(L)

0
β(L)

0
0

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

Y11(L) Y12(L) Y13(L) Y14(L) Y15(L) Y16(L)
Y21(L) Y22(L) Y23(L) Y24(L) Y25(L) Y26(L)
Y31(L) Y32(L) Y33(L) Y34(L) Y35(L) Y36(L)
Y41(L) Y42(L) Y43(L) Y44(L) Y45(L) Y46(L)
Y51(L) Y52(L) Y53(L) Y54(L) Y55(L) Y56(L)
Y61(L) Y62(L) Y63(L) Y64(L) Y65(L) Y66(L)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0
0
0

β(0)
M(0)
T (0)

⎤
⎥⎥⎥⎥⎥⎦

, (46.2)

where we have written Yab(L) for Yab(L , 0), (a, b = 1, 2, 3, 4, 5, 6). Equation (46.2) gives the following
equations:

Y34(L)β(0) + Y35(L)M(0) + Y36(L)T (0) = 0,

Y54(L)β(0) + Y55(L)M(0) + Y56(L)T (0) = 0, (47)

Y64(L)β(0) + Y65(L)M(0) + Y66(L)T (0) = 0.

Thus, the natural frequencies are roots of the equation

det

⎡
⎣Y34(L) Y35(L) Y36(L)

Y54(L) Y55(L) Y56(L)
Y64(L) Y65(L) Y66(L)

⎤
⎦ = 0, (48)

and the mode shapes are given by

v(x) = Y14(x, 0)β(0) + Y15(x, 0)M(0) + Y16(x, 0)T (0), (49)

where

β(0) = −Y35(L , 0)M(0) + Y36(L , 0)T (0)

Y34(L , 0)
, (50.1)

M(0) = −Y64(L , 0)Y56(L , 0) − Y54(L , 0)Y66(L , 0)

Y64(L , 0)Y55(L , 0) − Y54(L , 0)Y65(L , 0)
T (0). (50.2)

We now use the boundary conditions

v(0) = 0, ϕ(0) = 0, β(0) = 0, M(L) = 0, T (L) = 0, β(L) = 0, (51.1)

to find frequencies of a cantilever beam. Proceeding in the same way as for the boundary condition (46.1), we
conclude that the natural frequencies are roots of the equation

det

⎡
⎣Y43(L) Y45(L) Y46(L)

Y53(L) Y55(L) Y56(L)
Y63(L) Y65(L) Y66(L)

⎤
⎦ = 0, (51.2)

and the mode shapes are given by

v(x) = Y13(x, 0)η(0) + Y15(x, 0)M(0) + Y16(x, 0)T (0), (52)

where

η(0) = −Y45(L , 0)M(0) + Y46(L , 0)T (0)

Y43(L , 0)
, (53.1)

M(0) = −Y63(L , 0)Y56(L , 0) − Y53(L , 0)Y66(L , 0)

Y63(L , 0)Y55(L , 0) − Y53(L , 0)Y65(L , 0)
T (0). (53.2)
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Table 3 For γ = L/10, frequencies of the cantilever strain-gradient-dependent EBB with higher-order boundary conditions
η(0) = 0, η(L) = 0

Frequencies\number
of terms

5 6 8 10 Classical EBB


1 4.3087 4.3087 4.3087 4.3087 3.5160

2 28.5958 28.5902 28.5909 28.5909 22.0345

3 89.5499 89.2359 89.2691 89.2686 61.6972

4 204.4314 199.8840 200.1633 200.1562 120.902

5 414.7899 379.4458 379.1888 379.2162 199.860

6 7,874.4228 661.1975 643.7202 644.9710 298.569

Table 4 For γ = L/10, frequencies of the cantilever strain-gradient-dependent EBB with higher-order boundary conditions
β(0) = 0, β(L) = 0

Frequencies\number
of terms

5 6 8 10 Classical EBB


1 3.58434 3.58434 3.58434 3.58434 3.5160

2 24.7183 24.7151 24.7156 24.7156 22.0345

3 78.3248 78.1334 78.1545 78.1543 61.6972

4 178.889 175.983 176.189 176.185 120.902

5 358.146 335.263 335.459 335.460 199.860

6 746.158 582.499 573.455 574.085 298.569

For γ
L = 1

10 , we have listed in Tables 3 and 4 the first six natural frequencies of the strain-gradient-dependent
EBB computed by using 5, 6, 8, and 10 terms in the expression (4.1) of the matricant. We have also listed
frequencies for the EBB with γ = 0 to delineate the effect of the material characteristic length γ on the
computed frequencies. It is clear that retaining ten terms in the expression for Y yields converged values of
the first six frequencies.

3.5 Beam clamped at both ends

For the boundary conditions

v(0) = ϕ(0) = η(0) = 0, v(L) = ϕ(L) = η(L) = 0, (54)

the characteristic equation for the determination of ω2 is

det

⎡
⎣Y14(L) Y15(L) Y16(L)

Y24(L) Y25(L) Y26(L)
Y34(L) Y35(L) Y36(L)

⎤
⎦ = 0. (55)

The corresponding mode shapes are given by

v(x) = Y14(x, 0)β(0) + Y15(x, 0)M(0) + Y16(x, 0)T (0), (56)

where

β(0) = −Y15(L , 0)M(0) + Y16(L , 0)T (0)

Y14(L , 0)
, (57.1)

M(0) = −Y34(L , 0)Y26(L , 0) − Y24(L , 0)Y36(L , 0)

Y34(L , 0)Y25(L , 0) − Y24(L , 0)Y35(L , 0)
T (0). (57.2)

When the boundary conditions are taken to be

v(0) = ϕ(0) = β(0) = 0, v(L) = ϕ(L) = β(L) = 0, (58)

we get the characteristic equation

det

⎡
⎣Y13(L) Y15(L) Y16(L)

Y23(L) Y25(L) Y26(L)
Y43(L) Y45(L) Y66(L)

⎤
⎦ = 0, (59)

for the determination of ω2. The mode shapes are given by
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Table 5 For γ = L/10, frequencies of a clamped–clamped strain-gradient-dependent EBB for two higher-order boundary
conditions

Frequency\boundary
conditions

η(0) = η(L) = 0 β(0) = β(L) = 0 Classical EBB


1 35.8935 26.6861 22.3733

2 108.9315 85.6811 61.6728

3 239.1780 195.6366 120.9034

4 444.2329 374.1191 199.859

5 742.5377 639.5018 298.555

6 1,153.9843 998.9380 416.9907

v(x) = Y13(x, 0)η(0) + Y15(x, 0)M(0) + Y16(x, 0)T (0), (60)

where

η(0) = −Y15(L , 0)M(0) + Y16(L , 0)T (0)

Y13(L , 0)
, (61.1)

M(0) = −Y43(L , 0)Y26(L , 0) − Y23(L , 0)Y26(L , 0)

Y43(L , 0)Y25(L , 0) − Y23(L , 0)Y45(L , 0)
T (0). (61.2)

As for the cantilever strain gradient beam, 8 terms in Eq. (4.1) provide converged values of the first 6 frequencies.
For γ = L/10, these frequencies for the two sets of boundary conditions, (54) and (58), are listed in Table 5.

3.6 Simply supported beam

Henceforth, we list the boundary conditions, the characteristic equation for finding the frequencies, the equation
for the mode shapes, and tabulate converged values of frequencies.

Boundary conditions:

v(0) = 0, η(0) = 0, M(0) = 0, v(L) = 0, η(L) = 0, M(L) = 0. (62.1)

Characteristic equation:

det

⎡
⎣Y12(L) Y14(L) Y16(L)

Y32(L) Y34(L) Y36(L)
Y52(L) Y54(L) Y56(L)

⎤
⎦ = 0. (62.2)

Equation for mode shapes:

v(x) = Y12(x, 0)ϕ(0) + Y14(x, 0)β(0) + Y16(x, 0)T (0), (63)

where

ϕ(0) = −Y14(L , 0)β(0) + Y16(L , 0)T (0)

Y12(L , 0)
, (64.1)

β(0) = Y32(L , 0)Y56(L , 0) − Y52(L , 0)Y36(L , 0)

Y52(L , 0)Y34(L , 0) − Y32(L , 0)Y54(L , 0)
T (0). (64.2)

Boundary conditions:

v(0) = 0, β(0) = 0, M(0) = 0, v(L) = 0, β(L) = 0, M(L) = 0. (65.1)

Characteristic equation:

det

⎡
⎣Y12(L) Y13(L) Y16(L)

Y42(L) Y43(L) Y46(L)
Y52(L) Y53(L) Y56(L)

⎤
⎦ = 0. (65.2)
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Equation for mode shapes:

u(x) = Y12(x, 0)ϕ(0) + Y13(x, 0)η(0) + Y16(x, 0)T (0), (66)

where

ϕ(0) = −Y13(L , 0)η(0) + Y16(L , 0)T (0)

Y12(L , 0)
, (67.1)

η(0) = Y42(L , 0)Y56(L , 0) − Y52(L , 0)Y46(L , 0)

Y52(L , 0)Y43(L , 0) − Y42(L , 0)Y53(L , 0)
T0. (67.2)

For γ /L = 10, the lowest six frequencies for the two sets of boundary conditions, Eqs. (62.1) and (65.1),
are listed in Table 6.

3.7 Clamped-simply supported beam

(a) Boundary conditions:

v(0) = ϕ(0) = η(0) = 0, v(L) = η(L) = M(L) = 0. (68)

Characteristic equation:

det

⎡
⎣Y14(L) Y15(L) Y16(L)

Y34(L) Y35(L) Y36(L)
Y54(L) Y55(L) Y56(L)

⎤
⎦ = 0. (69)

Equation for the mode shapes:

v(x) = Y14(x, 0)β(0) + Y15(x, 0)M(0) + Y16(x, 0)T (0), (70)

where

β(0) = −Y15(L , 0)M(0) + Y16(L , 0)T (0)

Y14(L , 0)
, (71.1)

M(0) = −Y54(L , 0)Y36(L , 0) − Y34(L , 0)Y56(L , 0)

Y54(L , 0)Y35(L , 0) − Y34(L , 0)Y55(L , 0)
T (0). (71.2)

(b) Boundary conditions:

v(0) = ϕ(0) = β(0) = 0, v(L) = β(L) = M(L) = 0. (72)

Characteristic equation:

det

⎡
⎣Y13(L) Y15(L) Y16(L)

Y23(L) Y25(L) Y26(L)
Y43(L) Y45(L) Y66(L)

⎤
⎦ = 0. (73)

Equation for the natural frequencies:

v(x) = Y13(x, 0)η(0) + Y15(x, 0)M(0) + Y16(x, 0)T (0), (74)

where

η(0) = −Y15(L , 0)M(0) + Y16(L , 0)T (0)

Y13(L , 0)
, (75.1)

M(0) = −Y63(L , 0)Y46(L , 0) − Y43(L , 0)Y66(L , 0)

Y63(L , 0)Y45(L , 0) − Y43(L , 0)Y65(L , 0)
T (0). (75.2)



2406 R. Artan, R. C. Batra

6

5

4

3

2

1

0.05 0.06 0.07 0.08 0.09 0.10

0.0

0.2

0.4

0.6

0.8

Material characteristic length,  / L

Material characteristic length,  / L

Material characteristic length,  / L

Material characteristic length,  / L

R
el

at
iv

e 
fr

eq
ue

nc
y 

ch
an

ge
,

gc
gr

ad
cl

sc

cl
sc

(a)

(b)

(c)

(d)

1

6

5

4

3

2

0.05 0.06 0.07 0.08 0.09 0.10

0.0

0.5

1.0

1.5

R
el

at
iv

e
fr

eq
ue

nc
y

ch
an

ge
,

gc
gr

ad
cl

sc

cl
sc

1

2

3

4

5

6

0.05 0.06 0.07 0.08 0.09 0.10

0.0

0.2

0.4

0.6

0.8

R
el

at
iv

e
fr

eq
ue

nc
y

ch
an

ge
,

gc
gr

ad
cl

sc

cl
sc

1

6

5

4

3

2

0.05 0.06 0.07 0.08 0.09 0.10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
fr

eq
ue

nc
y

ch
an

ge
,

gc
gr

ad
cl

sc

cl
sc

Fig. 1 Dependence of the relative frequency change upon the non-dimensional characteristic length for a beam with a both ends
clamped, b cantilever, c clamped-simply supported, and d simply supported. A number on a curve represents the frequency
(1st, 2nd, . . .) for which it is plotted
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Table 6 For γ = L/10, frequencies of a simply supported strain-gradient-dependent EBB for two higher-order boundary
conditions

Frequency\boundary
conditions

η(0) = η(L) = 0 β(0) = β(L) = 0 Classical EBB


1 10.3452 10.1639 9.8696

2 46.6244 44.1696 39.45

3 122.0600 112.0949 88.8264

4 253.6043 228.9214 157.914

5 459.4597 412.3388 246.74

6 758.3004 681.1816 335.306

Table 7 For γ = L/10, frequencies of a clamped-simply supported strain-gradient-dependent EBB for two higher-order boundary
conditions

Frequency\boundary
conditions

η(0) = η(L) = 0 β(0) = β(L) = 0 Classical EBB


1 19.9926 16.9473 15.4182

2 72.4153 61.7966 49.9649

3 172.8228 148.3390 104.2427

4 338.6917 293.2958 178.2695

5 588.3368 514.9730 272.0310

6 940.6942 832.3242 385.5314

For γ /L = 10, the lowest six frequencies for the two sets of boundary conditions, Eqs. (68) and (72), are
listed in Table 7.

For the EBB with four sets of end conditions, we have plotted in Fig. 1a–d the relative deviation 
̄gc =(

grad − 
clsc

)
/
clsc, in the frequencies of a strain gradient beam with β(0) = β(L) = 0 from those of a

classical beam as a function of the material characteristic length parameter, γ /L . Here, 
grad and 
clsc denote,
respectively, the frequency of a strain gradient and the corresponding classical EBB. These plots evince that
for each one of the first six frequencies this deviation increases with an increase in the value of γ /L . For a
cantilever beam with γ /L = 0.05 (e.g., see Fig. 1b), this difference equals 2 % for the first frequency but nearly
40 % for the 6th frequency. For a clamped–clamped beam (Fig. 1a), this difference increases from 3 % for the
first frequency to 35 % for the 6th frequency. Thus, one way to delineate whether a beam exhibits length scale
effects is to find how much its natural frequencies differ from those of a classical EBB. One can overcome the
difficulty of realizing in a laboratory the ideal clamped and simply supported edge conditions assumed herein
by studying frequencies of a beam free at both ends.

In an attempt to help decide which one of the two higher-order boundary conditions is applicable, we have
plotted in Fig. 2a–d the difference, 
̄ηβ = (


gradη − 
gradβ

)
/
gradβ , between the frequencies of the strain

gradient EB beam for the two higher-order boundary conditions for different values of γ /L . Here, 
gradη

and 
gradβ equal, respectively, the frequency of a strain-gradient-dependent EBB with boundary conditions
η(0) = η(L) = 0 and β(0) = β(L) = 0, respectively. Depending upon the end conditions and the value
of γ /L , these two types of boundary conditions can affect the fundamental frequency by as much as 15 %
and the sixth lowest frequency by 35 %. Thus, test results can help determine which higher-order boundary
conditions are pertinent for a strain-gradient-dependent EBB. As was also reported by Kong et al. [11], natural
frequencies of the strain gradient beam depend upon which boundary conditions out of Eq. (39.4) are used;
this difference equals ∼17 % for 
1 and ∼11 % for 
6. For an EBB, the thickness, h, may vary from L/10
to L/100. Thus, for γ /L = 1/20, γ /h will vary from 1/2 to 5. Assuming that the thickness of a nanobeam
equals 2 nm, then for γ = 1 nm, one will see the difference between the natural frequencies of a classical EBB
and those of a strain-gradient-dependent EBB.

3.8 Comparison of results with those of Kong et al.

Kong et al. [11] studied free vibrations of a gradient-dependent EBB under the following boundary conditions:

v(0) = ϕ(0) = η(0) = 0, M(L) = T (L) = β(L) = 0. (76)
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Fig. 2 Dependence of the relative frequency change for two types of higher-order boundary conditions; a clamped–clamped
beam, b cantilever, c clamped-simply supported, and d simply supported. A number on a curve corresponds to the frequency for
which the plot is shown
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Following the procedure of Sect. 3.4, the characteristic equation for the determination of natural frequen-
cies is

det

⎡
⎣Y44(L) Y45(L) Y46(L)

Y54(L) Y55(L) Y56(L)
Y64(L) Y65(L) Y66(L)

⎤
⎦ = 0. (77)

For L = 400 μm and values of other material and geometric parameters for which results are plotted in
Fig. 4 of Kong et al. [11], we get


1clsc = 3.5160, 
2clsc = 22.0345, 
3clsc = 61.6972, 
4clsc = 120.902, (78.1)

and


1grad = 4.1101, 
2grad = 26.6733, 
3grad = 80.0041, 
4grad = 171.8570. (78.2)

Here, 
1clsc and 
2grad equal, respectively, the first frequency of the classical and the gradient-dependent EBB.
Our results agree with those of Kong et al. after the coefficient 43/225 in Eq. (23) of their paper is corrected
to 8/15, and the units of frequency in Fig. 4 of their paper are changed from Hz to rad/s.

4 Conclusions

We have successfully extended the method of initial values (or the transfer matrix method) to find natural fre-
quencies of a classical Euler–Bernoulli (EB) beam to that for studying vibrations of a strain-gradient-dependent
EB beam under different end conditions, for example, clamped, free, simply supported. For the classical EB
beam, the analytical expression for the matricant (or the carry-over matrix) is found and closed-form expres-
sions for the natural frequencies and the corresponding mode shapes are derived, which agree with those found
by directly solving the fourth-order ordinary differential equation. For the strain gradient EBB, the matricant
is found numerically.

For the strain gradient EB in addition to the end conditions used for the classical EB beam, there are
two types of boundary conditions that need to be imposed at the ends. It is shown that the first six natural
frequencies found by using the two types of boundary conditions differ by as much as 35 % depending upon
the value of the material characteristic length. Furthermore, the 6th frequency of a strain-gradient-dependent
EB beam may differ from that of the classical EB beam by 30 % for the material characteristic length equal to
0.05 L where L equals the beam length. Thus, by carefully measuring the natural frequencies of a beam, one
can delineate whether or not it is made of a strain-gradient-dependent material. This difference in frequencies
is prevalent even when both edges of a beam are free which facilitates conducting experiments.
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