
Acta Mech 224, 811–818 (2013)
DOI 10.1007/s00707-012-0784-z

J. R. Dryden · R. C. Batra

Material tailoring and moduli homogenization for finite
twisting deformations of functionally graded Mooney-Rivlin
hollow cylinders

Received: 28 September 2012 / Published online: 13 December 2012
© Springer-Verlag Wien 2012

Abstract We analytically analyze finite plane strain twisting deformations of a hollow cylinder made of an
isotropic and inhomogeneous Mooney-Rivlin material with material moduli varying in the radial direction. The
cylinder is deformed by applying either tangential tractions on the inner surface and tangential displacements
on the outer surface or vice versa. The radial variation of the moduli is found that will minimize the tangential
displacement of the bounding surface where tangential traction is specified. Furthermore, the modulus of a
homogeneous neo-Hookean cylinder is found that is energetically equivalent to the inhomogeneous cylinder.

1 Introduction

Structures made of functionally graded materials (FGMs) are designed to optimize their performance in one
or more directions depending upon the loads anticipated to act upon them. There are numerous papers that
analyze deformations of such structures made of linear elastic materials. However, very few papers deal with
finding the variation of material properties that optimize one or more deformation parameters such as the
frequency, the buckling load and the deflection; such problems are usually referred to as material tailoring.
Leissa and Vagins [1] assumed that all material moduli of an orthotropic material vary according to the same
exponential relation and found the exponent to attain either uniform hoop stress or uniform in-plane shear stress
through the cylinder thickness. Bert and Niedenfuhr [2] found the thickness variation for a rotating circular
disk to have a uniform hoop stress in the disk. For cylinders and spheres made of isotropic and incompressible
Hookean solids, Batra [3] found that the shear modulus must be proportional to the radius r for the hoop
stress to be constant in them when they are deformed by applying pressure to their inner surfaces. Batra [4]
has generalized these results to cylinders and spheres made of Mooney-Rivlin materials. Tanaka et al. [5]
used the finite element method (FEM) to tailor spatial distribution of the volume fraction of constituents in
a cylinder subjected to axisymmetric thermal boundary conditions so as to attain stresses within a desirable
range. Sun and Hyer [6] have numerically investigated continuously varying the fiber orientation along the
circumference of an elliptic cylinder to optimize the axial buckling load. Batra and Jin [7] used the FEM to
find through-the-thickness variation of the fiber orientation angle to optimize the fundamental frequency of
free vibrations of a rectangular plate. Karandikar and Mistree [8] developed a technique to optimally design
fiber volume fraction to meet the design objectives. Naghshineh [9] tailored material properties in a beam to
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minimize the sound radiated from it due to its vibrations. Qian and Batra [10] found the variation of material
parameters in two directions for a cantilever plate to have the minimum fundamental frequency. Nie and
Batra [11,12] have analyzed material tailoring problems for spheres, cylinders and rotating disks. Batra [13]
determined the axial variation of the shear modulus to control the angle of twist in a circular Hookean cylinder
deformed by applying torques at the end faces. Except for the work described in [4], these investigations
have considered infinitesimal deformations of a structure. Here, we study the material tailoring problem for
finite twisting deformations of a hollow cylinder with material properties varying only in the radial direction
and deformed by applying tangential displacements on one surface and tangential tractions on the other. The
cylinder deformations are similar to those in the Couette flow [14] of a viscous fluid enclosed between two
cylinders and one cylinder rotating with respect to the other one.

2 Problem formulation

We study finite plane strain deformations of a hollow circular cylinder made of an isotropic and functionally
graded Mooney-Rivlin material with values of two material parameters varying continuously in the radial
direction. The cylinder is deformed by applying either shearing tractions on the outer surface and tangential
displacements on the inner surface or vice versa. We use cylindrical coordinates to describe the position (r, θ, z)
of a material point in the current configuration that in the reference configuration occupied the place (R,�, Z).
Deformations of the cylinder are governed by the equilibrium equations
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+ 1

r

∂σrθ

∂θ
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+ σrr − σθθ

r
= 0,

∂σθr

∂r
+ 1

r

∂σθθ

∂θ
+ ∂σθ z

∂z
+ 2σrθ

r
= 0, (1)

∂σzr

∂r
+ 1

r

∂σzθ

∂θ
+ ∂σzz
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r
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Here σ is the Cauchy stress tensor, and σrr , σrθ . . . are the physical components of σ with respect to
cylindrical coordinates (r, θ, z). The pertinent boundary conditions are

σrθ = τin, σrr = 0, σr z = 0 on r = rin,

ur = 0, uθ = uou, uz = 0 on r = rou.
(2)

In Eq. (2), τin is the prescribed tangential traction on the inner surface r = rin and uou is the prescribed
tangential displacement on the outer surface r = rou of the cylinder. The radii of the inner and the outer
surfaces equal Rin and Rou, respectively, in the undeformed reference configuration.

Equations (1) and (2) are supplemented by the following constitutive relation for the Mooney-Rivlin
material [14]:

σ = −p1 + c1(R)B + c−1(R)B−1. (3)

Here p is the hydrostatic pressure not determined from the deformation, c1 and c−1 are material parameters
that are continuous functions of R, and B is the left Cauchy-Green tensor. For the Mooney-Rivlin material,
the strain energy density, W , per unit volume is given by

2W = c1(R)(I − 3)− c−1(R)(I I − 3), (4)

where

I = tr(B), I I = tr(B−1) (5)

are the first and the second invariants of B. In writing Eq. (5), we have tacitly assumed that the deformation is
isochoric, that is, det(B) = 1. We note that σ + p1 = (∂W/∂B)B.
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3 Problem solution

We use the semi-inverse method and following Ericksen [15] assume the following form for the solution:

r = R, θ = �+ ϕ(R), z = Z . (6)

That is, a circle of radius R in the undeformed configuration is simply rotated by an angle ϕ(R) that
continuously varies with R. For the deformation field (6), physical components of the deformation gradient F
and tensors B = (FFT ) and B−1 are

[F] =
⎡
⎣

1 0 0
rϕ′ 1 0
0 0 1

⎤
⎦ , [B] =

⎡
⎣

1 rϕ′ 0
rϕ′ 1 + r2ϕ′2 0
0 0 1

⎤
⎦ , [B−1] =

⎡
⎣ 1 + r2ϕ′2 −rϕ′ 0

−rϕ′ 1 0
0 0 1

⎤
⎦ , (7)

where ϕ′ = dϕ/d R = dϕ/dr .
Substitution of Eq. (7) into Eq. (3) gives σr z = σθ z = 0, and Eq. (1)3 implies that the hydrostatic pressure,

p, is independent of z. Substitution for stresses in Eq. (1)2 gives

1

r

[
r3μϕ′]′ − ∂p

∂θ
= 0, (8)

where μ(r) = c1(r)− c−1(r) is the shear modulus for the cylinder material.
In order for p to be a single-valued function of θ, ∂p/∂θ must identically vanish. Thus,

ϕ′ = α

r3μ
, (9)

where α is a constant, and

ϕ = α

∫
dr

μr3 + β, (10)

where β is a constant.
The equilibrium equation (1)1 upon integration gives

p = −
∫
μrϕ′2 dr + c1 + c−1(1 + r2ϕ′2)+ γ, (11)

where γ is a constant.
With c1 and c−1 known functions of r , Eqs. (10) and (11) can be integrated. The three constants of

integration, α, β and γ , are determined from boundary conditions (2)1, (2)2 and (2)5, whereas the remaining
boundary conditions in (2) are identically satisfied. Boundary condition (2)1 and Eqs. (9), (3) and (7) give

α = R2
inτin, (12)

where Rin is the inner radius of the undeformed hollow cylinder. For boundary condition (2)5 to be satisfied,

β + α

[∫
dr

μr3

] ∣∣∣∣
r=rou

= uou/Rou, (13)

which determines β. Boundary condition (2)2 gives

γ =
[∫

μrϕ′2 dr

] ∣∣∣∣
r=rin

. (14)

Knowing the function ϕ, we can find the stored energy density, W , from Eqs. (4), (5) and (7). Thus,

2W = (c1 − c−1)r
2ϕ′2 = (c1 − c−1)

R4
inτ

2
in

r4μ2 . (15)
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In order for W to be nonnegative everywhere, (c1 − c−1)must be nonnegative for every value of r = R in
the range [Rin, Rou]. Equations (7), (9) and (3) result in

σrθ = μrϕ′ = τin R2
in

r2 . (16)

In order for the shear stress σrθ and the shear strain Brθ to have the same sign,μ and equivalently (c1 −c−1)
must be positive everywhere in [Rin, Rou]. Equation (16) implies that for the deformation (6), the shear stress
σrθ in every inhomogeneous isotropic Mooney-Rivlin material is the same and it depends only upon the
tangential traction applied on the inner surface and the inner radius of the cylinder. That is, Eq. (16) is a
universal relation. A similar result will hold if the shear traction were prescribed on the outer surface of the
cylinder. It follows from the equilibrium condition requiring that the torque on each thin circular cylinder of
radius r be the same. In particular, Eq. (16) holds for a cylinder made of a homogeneous isotropic Mooney-
Rivlin material. We note that even though the shear stress σrθ at a point is independent of the value of μ, the
tangential displacement uθ = rϕ depends upon μ. Thus, for the same boundary conditions applied on the
inner and the outer surfaces of the hollow cylinder, the radial distribution of uθ will be different in cylinders
made of different materials.

For a homogeneous cylinder with μ = μh , the total strain energy, Eh , per unit length of the cylinder can
be readily found from Eq. (15) and is given by

Eh = π(c1h − c−1h)

2μ2
h

τ 2
in R2

in

(
1 − R2

in

R2
ou

)
, (17)

where c1h and c−1h are values of c1 and c−1, respectively, for the homogeneous cylinder.

4 Material tailoring

We study the aforestated problem for boundary conditions uθ = uin at r = rin = Rin and σrθ = τou at
r = rou = Rou. The remaining boundary conditions listed in Eq. (2) are identically satisfied. It follows from
Eqs. (9) and (12) that

ϕ′ = τou R2
ou

μr3 (18)

and

uθ = rϕ = τou R2
our

r∫

rin

dr

μr3 + uin. (19)

We wish to find μ(r) so that u0
θ ≡ uθ (r = rou) is a minimum and

rou∫

rin

μr dr = μa

2
(R2

ou − R2
in), (20)

is a constant. That is, among all radial variations of μ(r) that have the same average value, μa , find the one
that minimizes u0

θ . Thus, the material tailoring problem can be stated as follows: find μ(r) such that

I =
Rou∫

Rin

dr

μr3 + λ2

Rou∫

Rin

(μ− μa)rdr (21)

takes an extreme value. In Eq. (21),λ2 is a constant Lagrange multiplier. Using standard techniques in variational
calculus, we obtain

μ = 1

λr2 , λ = 2lnη

μa(η2 − 1)R2
in

, η = Rou/Rin. (22)
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Substitution for μ from Eq. (22) into Eq. (19) and evaluation of the integral gives

(
u0
θ

)
min = 2τou Rou(ηlnη)2

μa(η2 − 1)
+ uin. (23)

For μ > 0, Eq. (21) gives ∂2 I/∂μ2 > 0 and indeed Eq. (23) gives the minimum value of u0
θ . Thus, for the

circumferential displacement prescribed on the inner surface, the modulus μ must be inversely proportional
to r2 for the circumferential displacement on the outer surface to be the minimum. It follows from Eqs. (7),
(18) and (22)1 that the shear strain, Brθ , is constant for this cylinder, and equals

λτou R2
ou or 2τouη

2lnη/
(
μa(η

2 − 1)
)
.

Recalling that the strain energy stored in the elastic body equals work done by external forces, therefore,
the total strain energy per unit length, E , for the cylinder with μ given by Eq. (22) will be the minimum, and
will equal 2πRouτou(u0

θ )min.

5 Equivalent homogeneous cylinder

We now investigate the problem of finding the shear modulus, μmin
h , for the homogeneous cylinder for which

the circumferential displacement on the outermost surface equals the minimum value given by Eq. (23) for the
inhomogeneous cylinder. For the homogeneous cylinder, Eq. (19) gives

(
u0
θ

)
h = τou Rou

2μh

(
η2 − 1

) + uin. (24)

Setting
(
u0
θ

)
min given by Eq. (23) equal to

(
u0
θ

)
h given by Eq. (24), we get

μmin
h

μa
=

(
sinhψ

ψ

)2

, ψ = lnη. (25)

We now consider an inhomogeneous cylinder with power law variation of the shear modulus. Recalling that
μ for the cylinder with minimum value of u0

θ is inversely proportional to r2, we findμh for the inhomogeneous
cylinder for which

μn = μa

knρ2(1−n)
, ρ = r/Rin, (26)

where n �= 0. The value of kn found from the relation
η∫

1

(
1

knρ2(1−n)
− 1

)
ρdρ = 0 (27)

is given by

kn = η2n − 1

n(η2 − 1)
. (28)

Thus, the average modulus of a cylinder of modulus μn equals μa . Equating u0
θ for homogeneous and

inhomogeneous cylinders, we get

μh

μa
=

(
sinhψ

ψ

)2 (
nψ

sinh nψ

)2

. (29)

The expression (25) for μmin
h is obtained from Eq. (29) by letting n → 0 and recalling that

lim
n→0

nψ

sinh nψ
= 1. (30)

Setting n = 1 gives results for a homogeneous cylinder. We note that expression (29) for μh is an even
function of n. The graph of μh/μa versus n is depicted in Fig. 1 for η = 2, 3 and 4. For a given n, the value
of μh/μa strongly depends upon η = Rou/Rin. For a given η,μh/μa varies continuously with n, and results
for n = 0 can be obtained by taking the limit as n → 0.
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η
η
η

Fig. 1 Graph of μh/μa versus n obtained from Eq. (29) for the three values of η indicated on the graph. Homogeneous solid
corresponds to n = 1 so that μh = μa , and as shown this also occurs when n = −1

6 Energetically equivalent homogeneous neo-Hookean cylinder

The constitutive relation for a neo-Hookean material is obtained from Eq. (3) by setting c−1 = 0; thus
μ = c1, c1h = μh , and μh is given by Eq. (29).

We cannot find c1h and c−1h for the Mooney-Rivlin cylinder since we will need to find values of two
parameters from one equation (29). We realize that the homogenization problem for composites involves
finding values of several material parameters. However, there we consider a variety of deformations but here
we are considering only twisting deformations.

For the radial expansion of a hollow cylinder made of a compressible Hookean solid, Dryden and Batra [16]
found upper and lower bounds on Young’s modulus of an energetically equivalent homogeneous cylinder. Here,
we have found the exact value of the shear modulus for the energetically equivalent homogeneous cylinder.

7 Cylinder made of inhomogeneous and incompressible Hookean material

We note that the assumption of a material being Hookean is valid only when deformations are infinitesimal.
Analogous to Eq. (6) we postulate that

ur = 0, uθ = uθ (R), uz = 0. (31)

Corresponding components of the infinitesimal strain tensor, e, are

err = eθθ = ezz = eθ z = ezr = 0, 2erθ =
(
∂uθ
∂R

− uθ
R

)
. (32)

The constitutive relation for an isotropic, incompressible and inhomogeneous Hookean material is

σ = −p1 + 2μ̄(R)e, (33)

where μ̄ is the shear modulus. Equations (32) and (33) give

σrr = σθθ = σzz = −p, σr z = σθ z = 0, σrθ = μ

(
∂uθ
∂R

− uθ
R

)
. (34)

Following the same reasoning as that used in Sect. 3, we get

p = constant, σrθ = τin
R2

in

R2 = μR
∂

∂R

(uθ
R

)
. (35)



Material tailoring and moduli homogenization 817

Thus,

uθ = τin R2
in R

R∫

Rin

d R

μR3 + uθ (Rin). (36)

Equation (36) is the same as Eq. (19) for the finite deformation problem since τin R2
in = τou R2

ou. Thus,
the displacement fields and the shear stresses for the linear and the nonlinear problems are identical but the
hydrostatic pressure p and hence normal stresses σrr , σθθ and σzz have different values. One can thus analyze
the material tailoring and the energetically equivalent homogeneous cylinder problem in the same way as for
the nonlinear problem discussed earlier.

We recall that for simple shearing deformations of a block of elastic material enclosed between two rigid
flat infinite plates, the solution for the nonlinear problem has non-zero normal stresses on the top and the
bottom plates but these stresses vanish for the linear problem; for example, see [14].

Conclusions

We have analytically studied finite plane strain deformations of an inhomogeneous Mooney-Rivlin hollow
cylinder deformed by applying tangential displacements on one surface and tangential tractions on the other
surface. It is found that for the tangential displacements of points on the surface where tangential tractions
are prescribed to be the minimum, the shear modulus of the material must be proportional to r−2 where r is
the radial coordinate of a point. For the neo-Hookean cylinder, we have found the modulus of a homogeneous
cylinder whose total strain energy of deformation equals that of the inhomogeneous cylinder and the two
cylinders subjected to same boundary conditions. For the Mooney-Rivlin cylinder, a similar result holds for
the shear modulus.
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