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Fig.3 Comparison between present PPD simulations and experimen-
tal measurements and Eq. (1), V5 /V, = 2.1,I = 18.1%; -m-, experi-
mental; —e—, computational; and —A—, Eq. (1).

the potential error magnitudes associated with angle bias. The ef-
fect of turbulence is also shown in comparing Figs. 2a and 2b. As
would be expected, the increased turbulence tends to increase the
PPD when the mean flow angle is close to paralle] to the fringe
planes. However, the PPD is slightly reduced when the mean flow
angle is close to perpendicular to the fringe planes.

Of particular interest are the results shown in Fig. 3, which were
obtained using V;/V, = 2. As a rule of thumb, LV users typically
use this ratio to ensure uniform instrument response for all flow
angles, based on predictions of the Whiffen et al. theory. The data
presented in Fig. 3 show that uniform instrument response is not
achieved at V;/V, = 2. For optical and flow parameters that are
representative of those present in this experimental setup, the sim-
ulation shows that, for practical limits of V;/ V), perfectly uniform
response will not be achieved. For example, using these parameter
values and V¢/V, = 4, the simulation predicts a minimum PPD of
87% at a mean flow angle of 90 deg. Although this PPD is relatively
high, it still does not ensure isotropic instrument response.

Conclusions

A combined experimental/computational study investigating an-
gle bias errors in laser velocimetry measurements has been per-
formed. Experimental and computational results matched well, and
indicate that the previously published theory overestimates the
probability of particle detection (PPD), thus underestimating the
potential error magnitudes associated with angle bias. The PPD
overestimation in the theory arises primarily because the theory
was developed using a two-dimensional, geometric probe volume
cross section. The probability of particle detection is dependent on
a large number of parameters and is too complex to quantitatively
model in two geometrical dimensions. Even so, the theory remains
useful in its simplicity in qualitatively predicting PPD profiles.

The results have also shown that the probability of particle de-
tection is nonisotropic for fringe velocity/particle velocity ratios of
approximately 2. Most LV researchers use this criteria to ensure
uniform polar response of the instrument. Simulations have shown
that, for practical configurations of the experimental setups used in
this study, perfectly isotropic response will not be achieved. Rather,
the instrument response will remain slightly dependent on the mean
flow angle.

For single-component LV systems, or systems not acquiring
three-component coincident measurements, angle bias cannot be
corrected for. For three-component systems acquiring coincident
measurements, it is not likely that a postprocessing correction
scheme can be applied to compensate for angle bias. More impor-
tantly, the user should recognize what flow angles can be measured
isotropically under the conditions present and realize the accuracy
of the results obtained are limited by this instrument characteristic.
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Shape Control of Plates Using
Piezoceramic Elements
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Rochester Hills, Michigan 48307
and
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Introduction

HE use of piezoceramic elements to control the vibrations of a

beam has been extensively studied; see, for example, Baz and
Poh.! However, their use to control the shape and vibrations of a thin
plate has received less attention. We show here that the deflections
of the centerline of a simply supported plate and the tip deflection of
a cantilever plate, both deformed quasistatically, can be controlled
by applying suitable voltages to the PZTs. The voltage to be applied
to the actuators as a function of the surface area covered by them in
the former case and as a function of their distance from the free end
for the latter case is depicted graphically.

Formulation of the Problem

We consider a fiber-reinforced laminated composite plate with
piezoelectric ceramic (PZT) elements bonded symmetrically to its
top and bottom surfaces (Fig. 1), assume that the plate is symmetric
about the midplane, and use the first-order shear deformation theory
to study its infinitesimal elastic deformations. The adhesive between
the PZT and the plate is assumed to be of negligible thickness, and
displacements and surface tractions across the interfaces between
the PZTs and the plate are taken to be continuous. The constitutive
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equations for both the material of the plate and the piezoceramic
can be written as

{0} = [CHe} — [e){E} 0]

{D} = [el{e} + EKE} @

where o is the stress tensor, € the infinitesimal strain tensor, C the
material elasticity matrix, e piezoelectric constants, D the induction
vector, & dielectric permittivity, and E the electric field vector. As
is commonly done in thin plate theory, we set o33 = 0 and €33 = 0
(see Fig. 1 for the choice of coordinate axes). Depending upon the
material symmetries, many elements of the 5 x 5 matrix C, 5 x 3
matrix e, and the 3 x 3 matrix £ equal zeros; see Halpin.? We note
that the induction vector D is related to the electric field vector E
through Eq. (2) and E = —gradV where V is the applied voltage.
We assume that the displacement u of any point of the plate can
be expressed in terms of the displacement u° of the corresponding
point in its midplane by

w; (x1, X2, X3, £) = Ul (x1, X, 1) + (1 — 8i3)x3h; (x1, X, £)

i=12,3 (3

where §;; is the Kronecker delta; ¢, and ¢, equal, respectively, the
angles of rotation of the normal to the midsurface of the plate about
the x, and x; axes, and ¢; is taken to vanish identically. Using
the strain-displacement relations, and integrating Eq. (1) and the
product of both its sides with x3 over the thickness of the plate, we
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Fig. 1 Schematic sketch of the plate with PZTs.

obtain relations among the forces and moments acting at a point and
the midsurface strains ” and rotations ¢.

Instead of working with the deflection equation for a plate, we start
with the balance of linear momentum and the Maxwell equation,
derive their weak forms, which incorporate the natural boundary
conditions, and arrive at (see Ghosh?)

KU=F+F, @)

where U is the matrix of extended displacements defined at points
on the midsurface of the plate, K the stiffness matrix, F the resultant
force corresponding to the applied loads, and F, the force exerted
by the PZT's onto the plate. Here we consider the case of a uniform
voltage applied to the thin- PZTs; therefore, the Maxwell equation
is identically satisfied almost everywhere.

Results and Discussion

We have developed a finite element code employing four-noded
Lagrangian elements that can analyze the preceding problem. All
nonzero elements of the stiffness matrix except those correspond-
ing to shearing are evaluated by using the 2 x 2 Gaussian quadra-
ture rule, and those corresponding to shearing are evaluated by
using the one-point quadrature rule and are multiplied by the
shear correction factor of 5/6. When computing numerical re-
sults, we assigned the following values to various material pa-
rameters. When the plate is made of aluminum, it is taken to be
homogeneous and isotropic with Young’s modulus E = 65 GPa and
Poisson’s ratio v = 0.3. For a T300/976 graphite/epoxy plate, the
material properties with respect to the local principal axes are taken
to be E11 =150 GPa, Ezz = E33 =9 GPa, Vig = Vi3 = 03, G12 =
G31 =171 GPa, and G23 = 2.5 GPa.

For the G1195 piezoceramic PZT, we take E;; = Eyp = E33 =
63 GPa, Vi = V3 = Vi3 = 03, G12 = G23 = G13 =242 GPa,
€31 = 16.6 pm/V, and 511 = 5,“22 = 533 = 15.2 nf/m.

The boundary conditions considered for different support con-
ditions are as follows: clamped edge—u?(xy, x2) = ¢;(x1, x2) =
0, (x1,x)€y,; simply supported edge parallel to x; axis—
ud(x1, X2) = ud(xy, x2) = ¢1(x1, %) = 0, (x1,x%) € Ty; sim-
ply supported edge parallel to x; axis—ul (x1, x2) = u§(x1, x2) =
@2(x1, x2) = 0, (x1, x2) € [y,; and free edge—none. Here Iy, is the
part of the boundary of the midsurface on which essential boundary
conditions are prescribed.

The developed code has been validated by 1) comparing the com-
puted x5 displacement of the centroid of a simply supported rect-
angular aluminum plate with the corresponding analytical value
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Fig. 2 Set up for the “smart” plate.
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Fig.3 Deformed shapes of the centerline of a simply supported plate
for two different orientations of fibers both with and without actuators
applying surface forces.
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Fig. 4 Electric field intensity required to suppress the deflections of
the centerline of a simply supported aluminum plate vs the surface area
covered by the actuators.

and 2) comparing deflection of points on the centerline of a
0.292 x 0.152 m rectangular T300/976 graphite/epoxy 0.83-mm-
thick composite cantilever plate with 0.25-mm-thick G1195 PZTs
affixed symmetrically to its top and bottom surfaces with those re-
ported by Crawley and de Luis.* In each case, the two sets of results
were very close to each other.

We now investigate whether or not the deformed shape of a sim-
ply supported plate can be controlled by applying a voltage to the
PZTs bonded symmetrically to its top and bottom surfaces. We con-
sider 2 0.3 x 0.3 m simply supported graphite/epoxy-1.8-mm-thick
plate with PZT actuators placed on the top and bottom surfaces and
subjected to 10 N/m? uniformly distributed load on the top surface;
the setup is shown in Fig. 2. We note that the deformations of the
plate are symmetrical about the two centroidal axes when no voltage
is applied to the PZTs and also when equal and opposite voltages
are applied to the PZTs that are located symmetrically about the
centroidal axes. Figure 3 depicts the deformed shapes of the cen-
terline of the plate for four different cases; the fiber orientations
and the voltages applied are listed in the figure. It is clear that the
forces and moments exerted by the PZTs are enough to suppress the
deflection of the centerline of the plate. When a plate identical to
the graphite/epoxy plate considered herein was made of aluminum,
a voltage of 135 V/m applied to the PZTs eliminated the deflection
of every point on its centerline.

p actuator
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Fig.5 Deformed shapes of the centerline of a “smart” cantilever plate
both with and without actuators applying surface forces.
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Fig. 6 Electric field intensity required to suppress the tip deflection of
a cantilever plate vs the distance of PZTs from the free end.

Since PZTs are assumed to exert uniformly distributed forces on
the surfaces where they are glued to the plate, the voltage to be ap-
plied to them will depend upon the plate surface area covered by
the PZTs. With PZTs placed symmetrically about the two centroidal
axes, their numbers and sizes were varied so as to cover 19.2-84% of
the plate surface; Figs. 2a—2e depict the PZTs when the surface area
covered by them equals 84, 19.8, 28.8, 38.4, and 53% respectively.
For the square 0.3 x 0.3 m simply supported 1.8-mm-thick alu-
minum plate, Fig. 4 shows that the electric field intensity decreases
noticeably with an increase in the surface area covered by the PZTs.
For the fixed surface area covered by the PZTs, it was found that
the electric field intensity to be applied to the PZTs to suppress the
deflection of points on the centerline of the simply supported plate is
an affine function of the intensity of the uniformly distributed load.
The slope of the line depends upon the material of the plate and of
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the PZTs, the surface area covered by the PZTs, plate dimensions,
and the boundary conditions at the edges of the plate. This linear
relationship between the intensity of the uniformly distributed load
and the requisite voltage is to be expected since the deflection of a
point is directly proportional to the load intensity and magnitude of
surface forces is proportional to the voltage applied to the PZTs.

We now study the deformations of a cantilever plate with the ob-
jective of controlling the deflection of point P located at the center
of the free end of the plate; see Fig. 5. It is clear from the results
depicted in Fig. 5 that by applying proper voltage to the PZTs the
deflection of point P can be made zero. For the cantilever aluminum
plate, the voltage to be applied to the actuators to nullify the deflec-
tion of point P equaled 439.5 V/mm. We note that the deflection
of other points near the fixed end is increased but that of those near
the free end is decreased when the PZTs are activated. Keeping the
sizes and relative locations of the three PZTs fixed, they were moved
horizontally along the x; axis. The variation of the electric field in-
tensity with the location on x; axis of the PZTs required to make
the deflection of point P zero when a point load of 0.1 N is applied
at P is shown in Fig. 6. It is apparent that the voltage to be applied
to the PZTs increases sharply as the PZTs are moved towards the
fixed end of the plate.
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Thermal Stresses in
Eccentrically Stiffened
Composite Plates
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Introduction

IBER reinforced composite materials have found wide applica-

tions in aerospace structures. Because these structures are often
subjected to thermal loadings, their thermal stress analysis is quite
important. The thermal stresses in bare composite plates have been
well studied.! Recently, the thermally induced geometrically non-
linear response of symmetrically laminated composite plates was
investigated by Meyers and Hyer.? The formulation of stiffness,
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thermal expansion, and thermal bending for stiffened composite
panels was presented by Collier.’

The objective of this Note is to present a method for predicting
thermally induced deformations and stresses in eccentrically stiff-
ened composite laminates. The constitutive relations of a laminated
composite stiffener are derived. Thermal effect and transverse shear
deformation are included in the formulation. Numerical results are
obtained for an eccentrically stiffened composite laminate subjected
to a temperature change that is uniform within the plane of the plate
but has a linear gradient through the thickness. The differences of
thermal behaviors between stiffened and bare composite laminates

‘are discussed.

Formulation

By using the first-order shear deformation theory, the laminate
constitutive relations can be written in the form

N A B O £ NT
Mi=|1B D o e b= mT M
0 0 0 A |ly 0

where (NY'=[N; Ny Ny,], {MY=[M, M, M,,],and {Q}'=[Q, 0.]
are vectors of the in-plane forces, moments, and transverse shear
forces, respectively. Here, {N7} and {MT} are vectors of thermal
forces and moments, respectively. The relations between the lami-
nate stiffnesses [A], [B], [D1, [A,] and the ply engineering proper-
ties are given in Ref, 4.

When transverse shear deformation is considered, the constitutive
relations of a thin, flat, bladelike laminated composite stiffener can
be expressed as follows:

N¢ A B B 0 & NT
My _| Bi Dn Dy O ) | MT @
M3, By Dig Dy O Ky My
0’ 0 0 0 A 1 0

where N*, My, M5, and Q° are the axial force, bending moment,
twisting moment, and transverse shear force, respectively. The
stiffener stiffnesses are defined as

K2

hs /2
RS j2
(B;. B) = / (@31, Qi6)bzdz (a)
—hs /2
B2
(Di1, Die. Dis) = f (@31 Q6> Ol)b2* dz (3b)
—h' /2

where 2* and b are the depth and width of the stiffener, respectively.
The thermal axial force and bending and twisting moments are given

by
) o
NT=/ [0 Q-‘1'6]{ "}Adez
~hs /2 Uy
4
MT 2 8 s
{ ;]:/ Q‘:l 16 {ax}Aszdz
M, —n 2 Qs Qs | Loy
where
03, =0u— 0%/0n, O = 016 — 012026/ O
©)]

0% = Q65 — O5c/ 02, Q%5 = Oss — 05/ Qu

Here, AT is the temperature change from the reference temperature.
The expressions for the ply stiffnesses Q;; (¢, j = 1,2,4,5,6) and
coefficients of thermal expansion a, o, in terms of the ply engi-
neering properties are given in Ref. 4.



