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Analytical Solution for Rectangular Thick Laminated Plates
Subjected to Arbitrary Boundary Conditions

Senthil S. Vel* and R. C. Batraf

Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Three-dimensional deformations of a multilayered, linear elastic, anisotropic rectangular plate subjected to arbi-
trary boundary conditions at its edges are analyzed by the generalized Eshelby-Stroh formalism. The rectangular
laminate consists of anisotropic and homogeneous laminae of arbitrary thicknesses. Perfect bonding is assumed
between the adjoining laminae in the sense that both surface tractions and displacements are assumed to be con-
tinuous across their interfaces. The analytical solution is in terms of infinite series, and the effect of truncating the
series on the accuracy of the solution is scrutinized. The method is also applicable to rectangular laminated plates,
with edges of each lamina subjected to different boundary conditions. Results are presented for thick plates with
different sets of edge boundary conditions, e.g., two opposite edges simply supported and the other two subjected
to eight different conditions or all four edges clamped.

I. Introduction

F IBER-REINFORCED laminated plates are extensively used in
aerospace, automotive, and ship-building industries primarily

because of their high strength-to-weight ratio, and their strength
and stiffness can be tailored to meet design requirements. The ac-
curate prediction of the response characteristics of such laminated
structures is a challenging task because of their intrinsic anisotropy,
heterogeneity, and low ratio of the transverse shear modulus to the
in-plane Young's modulus.

Laminated plates are usually analyzed by use of equivalent
single-layer theories based on either the classical laminated plate
theory1'2 (CLPT), which assumes the Kirchhoff-Love hypothesis,
or its refinements, such as the first-order shear deformation theory2'3
(FSDT) and higher-order theories,2'4"6 which include the effect of
transverse shear deformations. Accurate prediction of interlaminar
stresses is very important since they usually cause delamination
failure at the interfaces. A drawback of equivalent single-layer the-
ories is that they allow for discontinuous interlaminar stresses. Lay-
erwise theories7"10 are considerably more accurate than the pre-
ceding theories. We refer the reader to Refs. 2, 11, and 12 for
a historical perspective and for a review of various approximate
theories.

The validity of approximate plate theories can be assessed by
comparing their predictions with the analytical solutions of the
three-dimensional equations of anisotropic elasticity. Pagano,13-14

Pagano and Hatfield,15 Srinivas et al.,16 and Srinivas and Rao17 ob-
tained analytical solutions for orthotropic simply supported lami-
nates. These benchmark solutions have been used to validate new or
improved plate theories and finite-element formulations.7" I l t l8~22

However, simply supported edge conditions are less frequently re-
alized in practice, and they do not exhibit the well-known boundary-
layer effects observed near clamped or free edges.

Here we present analytical solutions for the deformations of
anisotropic rectangular thick plates subjected to arbitrary boundary
conditions. Each lamina may be generally anisotropic with 21 elas-
tic constants and subjected to boundary conditions different from
those on the adjoining laminae. The three-dimensional equations
of elasticity are solved by a generalization of the Eshelby-Stroh
formalism. Thus the governing equations are exactly satisfied, and
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various constants in the general solution are determined from the
boundary conditions at the edges and continuity conditions at the
interfaces. This results in an infinite system of equations in in-
finitely many unknowns. The truncation of this set of equations
inevitably introduces errors that can be minimized by increasing
the number of terms in the series. Results for plate problems with
different sets of edge boundary conditions are presented in tabular
form to facilitate comparison with predictions from various plate
theories.

II. Formulation of the Problem
We use a rectangular Cartesian coordinate system, shown in

Fig. 1, to describe the infinitesimal quasi-static deformations
of an N-layer anisotropic elastic laminate occupying the region
7£ = [0, LI] x [0, L2] x [0, L3] in the unstressed reference config-
uration. The vertical positions of the bottom and the top surfaces as
well as of the N — 1 interfaces between the laminae are denoted by
r d ) _ n j (2) j (") i W) f ( w + l ) _ / -L3 — V,L3 , . . . , L3 , . . . , L3 , LI — L$.

Equations governing the displacements u = jc — X of a material
point X are

aU —

(1)

(2)

(3)

Here x is the present position of the material particle that occu-
pied place X in the reference configuration, o/y are the components
of the Cauchy stress tensor, £*/ are the components of the infinites-
imal strain tensor, C/;*/ are elastic constants, a comma followed by
index j indicates partial differentiation with respect to jc7, and a
repeated index implies summation over the range of the index. We
interchangeably use the direct and the indicia! notation. The strain
energy density W is given by

^ = \Cijkl£ij£kl (4)

The symmetry of the stress tensor, symmetry of the strain tensor,
and the existence of the strain energy function imply the following
symmetry conditions:

Cijkl = (5)

Material elasticities are assumed to yield a positive strain en-
ergy density for every nonrigid deformation of the body. That is,
Cijki£ij£ki > 0 for every nonzero symmetric tensor e*/. The strain
energy U of the laminated plate is given by

U -L Wdv (6)
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Fig. 1 An W-layer laminated rectangular plate.

The displacement or traction components on the side surfaces
jci = 0, LI and x2 = 0, L2 and on the bottom and top surfaces Jt3 =
0, L3 are specified as

on *5 =

on xs = (5-1,2,3) (7)

(Ref. 23, pp. 497, 498), where (a,),- = ais. The functions /(v) and
g(-v) are known and/^A), /^v),/^v) and/£v) are 3 x 3 diagonal matrices.
For most applications, these diagonal matrices have entries of either
zero or one such that

) . /(') _ /*) . /(*) _ /
i *fr — * u ' J n — •* (5-1,2,3) (8)

where / is the 3 x 3 identity matrix. For example, if the surface
xi = 0 is rigidly clamped, then /^ = /, /<!> = 0, and /(1) (jc2 , JC3) = 0.
Boundary conditions at a simply supported edge x\ = 0 may be si-
mulated by /j^ = diag[0, 1,1], I™ =diag[l, 0, 0], and f ( l ) ( x 2 ,
x3) = 0. The method is valid even when 7<5), I%\ J<£\ and /^ are
general matrices with elements functions of coordinates only. For
a laminate on an elastic foundation, the diagonal matrices 7^3), /^3),
7^3), and /^3) may not satisfy Eq. (8). The interfaces between dif-
ferent laminae are assumed to be perfectly bonded together. Thus
displacements and surface tractions between the adjoining laminae
are taken to be continuous, that is,

= on x3 = (9)

Here [w] denotes the jump in the value of u across an interface.

III. Solution of the Governing Differential Equations
with lo-n nWe construct a local coordinate system x[n\ x

cal axes parallel to the global axes and the origin at the point
where the global ;c3 axis intersects the bottom surface of the >ith
lamina. In this local coordinate system, the nth lamina occupies
the region [0, / t ] x [0, /2] x [0, /<n)], where /i = LI , /2 = L2, and
l(

3
n} = L(" + ° - Lj0 . We drop the superscript n for convenience with

the understanding that all material constants and variables belong
to this lamina.

The Eshelby-Stroh formalism23'25 provides a solution for the
generalized plane strain deformations of a linear elastic anisotropic
material. Here we extend it to three-dimensional deformations by
assuming that

- (k2n/l2)X2 + p(jcj//3)]} (10)

where a and p are possible complex constants to be determined,
k\ and k2 are known integers, and / = *J— 1. The chosen displace-
ment field has a sinusoidal variation on the x\-x2 plane with an
arbitrary exponential variation in the ;c3 direction; k\ and k2 deter-
mine the period of the sinusoidal terms in the jci and the x2 directions,
respectively. From Eqs. (1-3) and (10), we obtain

D(p)a = 0 (U)

where

2
*2

,
+ -' 730,2, (12)

Therefore p is a root of det [D(p)] = 0. For the strain energy density
to be positive, the eigenvalues p cannot be real; it can be proved by
following the arguments given by Ting (Ref. 23, pp. 135-136) for
generalized plane strain deformations. Let (pa, aa)(a = 1 , 2, . . . , 6)
be eigensolutions of Eq. (11) such that

Im(pa) > 0, pa + 3 = pa, aa+3=aa (a = 1,2, 3)
(13)

where an overbar superimposed on a quantity denotes its complex
conjugate. For distinct pa we can superpose six solutions of the
form of Eq. (10) to obtain

u=A(c\p[i[(kl7r/ll)xi + (k2n/l2)x2 +

+ conjugate (14)

where A = [a\, a2, a3], c is an arbitrary 3 x 1 vector of unknown
complex coefficients, (V r(p*))=diag[^(pi), ^(^2), ^(Pa)], and
conjugate stands for the complex conjugate of the explicitly stated
term. The case of repeated eigenvalues is discussed in Sec. V. We
obtain the following expressions for the stress tensor by substituting
for u from Eq. (14) into Eq. (3) and the result into Eq. (2):

(k2n/l2)x2

+ conjugate

where

(15)

i , -E(m, 2)#2 » ^(m, 3)#3 J

+ (k2TC/l2)Cya82 + (pp/l3)CYa83]

IV. Series Solution
The complete double Fourier series expansion constructed to sat-

isfy the boundary/interface conditions on the surfaces x^ = 0, /^
is obtained by superposing solutions of the form of Eq. (14). In the
following equations the first superscript n denotes the nth lamina
and the second superscript 3 indicates that the series terms have a
double Fourier series expansion on the plane x^ = constant. The
dependence of the eigenvalues and eigenvectors on k\ and k2 is
indicated by the subscripts:

(n) (n,3)

(ll'3) c(/J'3)
/(ti,o) c()t,,o) "

*,=!

(/J'3)

(16)

The terms involving fc0 € (0,1) play the role of the constant term
in the double Fourier series expansion and
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Y(n) Y(»)\

v(/0 Y(«)\

= exp -

The functions

-1

(17)

vary sinusoidally on the surfaces j^ = 0, I3
n) and exponentially in

the x3
n-* direction. The first inequality in expressions (13) ensures

that all functions decay exponentially toward the interior of the nth
lamina.

Similar expressions can be written for ii(fl>1) and w("'2), which
have a complete double Fourier series expansion on the side surfaces
x[n) =0, /i andjc^ =0, /2, respectively. The displacement and stress
fields for the nth lamina are

VI. Satisfaction of Boundary and Interface Conditions
Boundary conditions (7) on the surfaces xs = 0, Ls and continuity

conditions (9) on the interfaces ;c3 = L,f\ L3
3 ) , . . . , L(

3
N) are satis-

fied by the classical Fourier series method, resulting in a system of
linear algebraic equations for the unknown coefficients C(/[|A* ) and
d(n,s)
tf(*l,*2)-

On the bottom surface x3 — 0, we extend the component
functions in Eqs. (18) defined on [0, l\\ x [0,/?] to the interval
[—/i , /i] x [—/2, /2]. The functions T/[{j3^2) and^j^, which have a
sinusoidal variation on the plane x3

1^ = 0, are extended without mod-
ification because they form the basis functions for this surface,
except for terms involving k$, which are extended as even func-
tions. The functions ^j1^ and ^(I'/L)* which have an exponential
variation in the jc[!) direction and a sinusoidal variation in the x^
direction, are extended as even functions in the JCj(1) direction and
without modification in the xP direction. The functions ri/J'2i ^

Cl 2^ (I) ' ( K l > K 2 )and £(k\,k2) are extended as even functions in the ;c^ direction and
without modification in the x[l) direction. The prescribed function
f(3)(x[l\ jc^) is suitably extended. We multiply the first equation
of boundary conditions (7) that corresponds to s = 3 by

and integrate the result with respect tox
[-/i,/i] x [-/2,/2] to obtain

(1) and Xjl) over the interval

Y(n)

The unknowns c((/^2)
plex, except for c^ an

*i!L) are assumec* to

, which are real.
com"

V. Degeneracy of the Eigenvalues
The general solution given as Eq. (14) is applicable when the

eigenvalues pa are distinct. When one of the eigenvalues is a double
root of det[D(p)] = 0, there may or may not be two corresponding
independent eigenvectors a (Refs. 23 and 26). If there exist two
independent eigenvectors associated with the double root, then the
general solution can still be written as Eq. (14). When p is a double
root with a single independent eigenvector, the first independent
solution is given by Eq. (10) and a second independent solution is

d k2rt

da jc3 \ f (k\n k27t *3_+^)«q(.-(T,1 + _*+,-
where da/dp is obtained by differentiating Eq. (1 1):

~D— + — a =dp dp

(19)

(20)

Dempsey and Sinclair27 have shown the existence of a nontrivial
solution to Eqs. (11) and (20) fora and da/dp. If p\ is the double
root and p^ the single root, the general solution can be written as

« = — ) )c -f- conjugate

(21)

where p2 is set equal to p\. The degenerate case of triple roots can
be similarly analyzed.

for all (*!, *2) € ({0}, {0}) U (Z+ x {0}) U ({0} x Z+) U (Z+ x Z+)
U (Z+ x Z~), where Z+ and Z~ denote the sets of positive and
negative integers, respectively. The same procedure is repeated for
the second equation of boundary conditions (7) on the top surface
of the Nth lamina with 5 = 3 and interface continuity conditions (9)
between the nth and the (n + l)th laminae.

On the side surfaces x{n) =0, l\ the functions are extended over
the interval [-/2, /2] x [-l("\ l(

3
n)] in the x(

2
} - x(

3
n) plane. We then

multiply the second equation of boundary conditions (7) that corre-
sponds to s = 1 by

and xn) overand integrate the result with respect to
[— /2, W x [— 4")>4")]- A similar procedure is used to satisfy bound-
ary condition (7) corresponding to 5 = 2 on the surfaces x^ = 0, /2.

Substitution for u(n) and cr%} from Eqs. (18) into Eq. (22) and
the other equations that enforce the boundary conditions on the
top surface, the lamina interfaces, and the side surfaces leads to
an infinite set of linear algebraic equations for the infinitely many
unknown coefficients c[Jj^2) and dfy*^. A general theory for the
solution of the resulting infinite system of equations does not exist.
However, reasonably accurate results can be obtained by truncating
k\ and £2 in Eq. (16) to K\ and K2 terms, respectively. The series
involving summations over &2 and k3 in the expression for ii^'^ are
truncated to K2 and K3

n) whereas those for ii(">2) are truncated to
K3

n) and £1 terms. In general, we try to maintain approximately the
same period of the largest harmonic on all interfaces and boundaries
by choosing K3

n) =ceil[tf1/J l)//i] and A:2 = ceil(^1/2//i), where
ceil( v) equals the smallest integer greater than or equal to v. Thus the
size of the truncated matrix will depend solely on the choice of K\ .

VII. Results and Discussion
We present results for specific laminated plates. Each lamina is

composed of a unidirectional fiber-reinforced material that is mod-
eled as orthotropic and assigned the following stiffness properties14:

EL/ET = 25,

GTT/ET = 0.2,

GLT/ET = 0.5

VLT = VTT = 0.25 (23)
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where E, G, and v denote Young's modulus, shear modulus, and
Poisson's ratio, respectively, and subscripts L and T indicate di-
rections parallel and perpendicular to the fibers, respectively. For
values given in Eqs. (23), the nonzero components of the elastic
tensor C//*/ for a 0-deg lamina are

, C2222, C3333] - [25.168, 1.071, 1.071]Er

[C1122, C1133, C2233] - [0.336, 0.336, 0.271]Er

[£2323, Cam, C1212] - [0.2, 0.5, 0.5]Er (24)

Such properties are typical of a high modulus graphite-epoxy com-
posite.

The following three lamination schemes are considered:
1) A two-ply laminate with the fibers parallel to the x\ and the

x2 directions in the bottom and the top layers, respectively, i.e.,
[0/90 deg] laminate

2) A three-ply laminate with the fibers parallel to the jci, x2t and
x\ directions in the bottom, middle, and top layers, respectively, i.e.,
[0/90/0 deg] laminate

3) A three-ply laminate with the fibers oriented at 45, —45, and
45 deg with respect to the *i axis on the x\-x2 plane in the bottom,
middle, and top layers respectively, i.e., [45/— 45/45 deg] laminate

The laminae are of equal thicknesses in all of the above cases.
The following two load distributions are considered:

a) The top surface is subjected to a sinusoidal normal load,
whereas the bottom surface is traction free:

g(3\x^x2) = <?0[0, 0, snXTTJd/LO sin(7r*2/L2)]r (25)

i.e.,or33(.xi,jc2, //) = ̂ 0sin(7Tjci/L1)sin(^jc2/L2). In this section we
denote the thickness of the laminate by H(=L3).

b) The top surface is traction free, whereas the bottom surface is
subjected to a sinusoidal normal load

/(3)Cxi, *2) = -4o[0, 0,

(26)

i.e., cr33(*i, *2, 0) = -
The displacements and stresses at specific locations on the x\-x2

plane and the strain energy are normalized as follows:

100 ETl

(Ll L2 A3(,T'T'*3J
10£7

10//2

, 0
L! \ /L! L2 \]
-^-,0,*3 ,^31 I —— , —— ,*3 I2 / V 8 2 )\

1 /L! L2 \
cr33(x3) = — or33( — , — ,*3 ,

4o V 2 2 )
-
U = ETU-j-j

qlL\

where e is the normalized elongation of the normal at the center of the
plate. Note that the transverse normal, transverse shear, and in-plane
stresses have been normalized differently so that the magnitude of
each stress component is of the order of 1.

Table 1 Nomenclature for boundary conditions (BC) prescribed
at x\ = 0 or LI

Corresponding
Notation BCa t Jc i=OorL i Name

Bl
B2
B3
B4

B5
Be
BI
Bs

M i = 0 , M 2 =0 , M 3 = 0

Ml =0, M2 =0, CT13 =0

Ml =0, CTl2=0, M3 =0

M l = 0 , on =0,o-B=0
(Tll=0, M 2 = 0 , M 3 = 0

O"i l =0, M2 = 0, (Ti3 = 0
crn =0, <ri2=0, M 3 = 0

CTn ^0, <Ti2 = 0, <Ti3 = 0

diag[l, 1, 1]
diag[l, 1,0]
diag[ 1,0,1]
diag[l,0,0]
diag[0, 1,1]
diag[0, 1,0]
diag[0, 0, 1]
diag[0, 0, 0]

Clamped surface
——
——

Slippery surface
Simply supported

——
——

Traction-free surface

A. Laminates with Two Opposite Edges Simply Supported
Here we consider laminates that are simply supported on the edges

x2 = 0, L2 and subjected to eight different boundary conditions on
the edges x\ =0 and L{. In all cases/(1) =g(1) = 0, and tf\I%\
J(

u
s\ and/^v) are diagonal matrices with entries 0 or 1 and satisfy

Eq. (8). The nomenclature and definitions for the eight different
boundary conditions are listed in Table 1. For example, when the
surface x\ = 0 is clamped and the surface x\ — L \ is traction free, we
denote the configuration as B\ #8. The present method can also an-
alyze laminated plates when the edges of each lamina are subjected
to boundary conditions different from those on the corresponding
edges of the adjoining laminae. Such boundary conditions on the
surface x\ = 0 or L\ are specified in the form #(/,1,/,2,...,/^), where the
edge x\ = 0 or L\ of the nth lamina is subjected to boundary con-
ditions Bbn. This allows one to model realistically problems with
varying boundary conditions on the edges.28 For example, if the
bottom lamina of a two-ply laminated plate is clamped at jci — 0
and LI and the corresponding edges of the top lamina are traction
free, the configuration is denoted by Z?(1)8)fl( l j8).

When the laminae are orthotropic and the edges x2 = 0, L2 are
simply supported, i.e., u \ = u3 = 0, <r22 = 0, a solution of the form

i , ^3) sin(A7r;c2/L2), u2

(27)

will satisfy boundary conditions at the simply supported edges. Thus
we need only one term, namely, k2 = A, in the x2 coordinate direction
in the double Fourier series expansion, and the size of the truncated
matrix can be greatly reduced.

Because any load distribution can be represented by a Fourier sine
and cosine series and the problem being studied is linear, results for
a general loading can be obtained by the method of superposition.

The effect of truncation of series on the solution is investigated
for a square [0/90 deg] laminate that is simply supported on two
opposite edges and clamped on the other two. Computed values of
various variables at specific points in the laminate as well as the
total strain energy are listed in Table 2. These results show that the
normalized variables have converged to three decimal places with
K\ = 250 terms, while reasonable accuracy may be obtained with
K\ = 25 terms. Values of a\ \ (0) computed with K\ = 150, 200, and
250 slightly differ in the third decimal place but can be regarded as
converged for all practical purposes. The upper and the lower val-
ues of the transverse normal and shear stresses are at corresponding
points on the two sides of the interface between the two laminae.
As is evident, the interface continuity conditions are also satisfied
very well with increasing K\. Positive values of e signify that the
thickness of the plate at its centroid increases for the problem stud-
ied herein. The strain energy exhibits monotonic convergence from
above and has converged to three decimal places for K\ = 50. Al-
though ICQ in Eq. (16) was chosen to be 0.5 for this study, a similar
convergence behavior was observed for other values of k$.

The normalized displacements and stresses for a square [O/
90 deg] laminated plate with the edges x\ = 0, L\ subjected to var-
ious boundary conditions are given in Tables 3 and 4 for two dif-
ferent span-to-thickness ratios. Results in the last column of these
tables are for the case in which the edges x\ = 0 and L t of the bot-
tom lamina are clamped and the corresponding edges of the upper
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Table 2 Convergence study for a square [0/90 deg] laminate that is simply supported on two opposite edges and clamped
__________________________on the other two: load (a), L\IH = 5________________________

ui(H)

25

50

100

150

200

250

-1.048053

-1.046988

-1.046800

-1.046807

-1.046821

-1.046817

1.221246
1.221196
1.218895
1.218900
1.217876
1.217875
1.217594
1.217594
1.217518
1.217518
1.217471
1.217471

-4.638385

-4.625242

-4.632501

-4.629264

-4.631501

-4.629980

5.743101

5.729313

5.725563

5.723659

5.723726

5.723184

0.574142
0.581817
0.579735
0.577112
0.578550
0.579160
0.578930
0.578480
0.578720
0.578940
0.578848
0.578644

0.314157

0.313719

0.313323

0.313253

0.313240

0.313234

0.876612
0.877367
0.875763
0.875531
0.875095
0.875158
0.874994
0.874964
0.874933
0.874950
0.874922
0.874910

.536511

.538481

.554877

.554473

.557369

.557499

.552760

.552803

.551250

.551252

.550322

.550295

5.280240

5.265292

5.268635

5.267180

5.267817

5.267374

0.192923

0.192409

0.192176

0.192114

0.192095

0.192084

Table 3 Displacements and stresses for a square [0/90 deg] laminate subjected to different BC: L\IH = 5, KI = 250 terms

Theory Variable B2B2 B3B3 B5B5 B6B6 BjB-j #(1,8) #(1,8)

Analytical,
load (a)

Analytical,
load (b)

HSDT29

FSDT29

CLPT29

ui(H)
«2(0)
ui(H/2)
an(0)
&22(H)
a33(H/2)
*12(0)
a23(H/2)
03l(ff/2)
e
ui(H)
"2(0)
«3<ff/2)
*u(0)
022 (#)
a33(H/2)
*12(0)
023(ff/2)
03i(ff/2)
e
U3(H/2)
*n (0)
a22(H)
*2i(H/2)
u3(H/2)
on (0)
022 (//)
a23(H/2)
u3(H/2)
01 1(0)
a22(H)

-1.047
1.341
1.217

-4.630
5.723
0.579
0.313
0.875
1.550
5.267

-1.043
1.295
1.203

-4.871
5.441

-0.409
0.305
0.974
1.452

-4.153
1.088

-5.679
5.505
2.095
1.257

-3.911
5.153
1.958
0.429

-4.800
2.914

-0.512
2.632
2.246

-2.499
10.568
0.432
0.487
1.351
0.638
6.057

-0.512
2.578
2.226

-2.751
10.259
-0.555

0.478
1.447
0.547

-3.367
——
——
——
——
——
——
——
——
——
——
——

-1.050
1.360
1.229

-4.667
5.771
0.577
0.247
0.871
1.567
5.280

-1.046
1.312
1.214

-4.905
5.486

-0.410
0.244
0.971
1.467

-4.141
——
——
——
——
——
——
——
——
——
——
——

-0.343
3.247
2.708

-1.994
12.705
0.368
0.065
1.499
0.419
6.438

-0.345
3.182
2.681

-2.254
12.360

-0.618
0.063
1.594
0.330

-2.993
——
——
——
——
——
——
——
——
——
——
——

-1.870
1.899
1.712

-7.671
7.894
0.495
0.527
1.211
1.216
4.733

-1.899
1.870
1.712

-7.894
7.671

-0.495
0.523
1.316
1.119

-4.733
1.667

-8.385
8.385
3.155
1.758

-7.157
7.157
2.729
1.064

-7.157
7.157

-0.847
2.717
2.327

-3.457
10.888
0.416
0.539
1.416
0.638
5.748

-0.892
2.676
2.318

-3.743
10.618

-0.573
0.535
1.517
0.547

-3.733
——
——
——
——
——
——
——
——
——
——
——

-1.924
.961

1.758
-7.913

8.096
0.489
0.424

.225

.195
4.734

- .953
.931
.757

-8.128
7.870

-0.501
0.424
1.330
1.095

-4.734
——
——
——
——
——
——
——
——
——
——
——

-0.565
3.291
2.753

-2.660
12.877
0.359
0.108
1.541
0.416
6.233

-0.619
3.238
2.735

-2.965
12.567

-0.629
0.114
1.640
0.326

-3.261
2.624

-3.171
13.551
4.457
2.777

-2.469
11.907
3.901
1.777

-2.403
11.849

-1.360
1.490
1.343

-4.872
6.263
0.576
0.353
0.949
0.909
5.164

-1.366
1.446
1.331

-5.122
5.990

-0.412
0.345
1.050
0.79

-4.260
——
——
——
——
——
——
——
——
——
——
——

lamina are traction free. The value of 022(H) for L\/H = 5 de-
creases from 12.877 to 6.263 when the boundary conditions on the
edges x\ = 0, L\ of the bottom lamina are changed from traction
free to clamped; the effect on the other variables is also quite no-
ticeable. A comparison of results for configurations B\ B\ with those
for 5(1,8)5(1,8) reveals that altering the boundary conditions on the
edges x\ — 0, L\ of the upper lamina from clamped to traction free
has a noticeable effect on the values of u\(H) and a31(///2). We
compare our results with those of Khdeir and Reddy,29 who ana-
lyzed the problem with the classical lamination theory, FSDT, and
third-order shear deformation theory6 (HSDT). They considered
six different sets of boundary conditions on two opposite edges
whereas the other two edges were simply supported. However, we
compare results for configurations B\B\, 8585, and B%B%, Our re-
sults indicate that the displacements and stresses at a point depend
on whether the normal load is applied on the top or the bottom sur-
face of the laminate, whereas laminated plate theories yield the same
results irrespective of the surface on which the load is applied. The
CLPT and the HSDT underestimate the deflection at the center of the
plate whereas FSDT overestimates it. The results obtained from the
equivalent single-layer theories are close to our analytical values for

large span-to-thickness ratios, except for the transverse shear stress
<723(///2). The HSDT has errors of -10 and 20% in predicting the
displacement u3(H/2) and normal stress an(0), respectively, for
configuration B\ B\, with L\/H = 5. These errors decrease to 5 and
6%, respectively, for a span-to-thickness ratio of L\/H = 10. Our
computed value ofor23(H/2) for a square [0/90 deg] laminate with
LI/H = 4 matches very well with that of Lee and Cao19 for plates
that are simply supported on all edges, but differs from that given
by Khdeir and Reddy.29

Figure 2 depicts the through-thickness distribution of the in-plane
normal stress OH on four sections,*!/Li =0.05,0.1,0.3, and 0.5, for
a square [0/90 deg] laminated plate of L\/H = 5, simply supported
on edges x2 = 0, L2 and clamped on x\ =0, LI, and loaded by a
sinusoidally distributed load on the top surface. Whereas in the
upper lamina with fibers along the x2 axis the distribution of an on
the four sections is qualitatively similar to each other with magnitude
close to zero, that in the lower lamina with fibers along the x\ axis is
quite different. As expected, the lower lamina with higher stiffness
in the *i direction provides more resistance to bending in the Jti-;t3
plane. Similarly, the upper lamina provides significant resistance to
bending in the x2-x3 plane.
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Table 4 Displacements and stresses for a square [0/90 deg] laminate subjected to different BC: L\IH = 10, K\ = 250 terms

Theory Variable B2B2 6484 B5B5 B6B6 #(1,8) #(1,8)

Analytical,
load (a)

Analytical,
load (b)

HSDT29

FSDT29

CLPT29

ui(H)
«2(0)
«3(ff/2)
5-11(0)
522(#)
5&(ff/2)
*12(0)
*23(#/2)
£31 (///2)
e
u \ ( H )
"2(0)
W3(///2)

5-11(0)
*22(#)
o*j(ff/2)
5i2(0)
523(#/2)
5*i(tf/2)
e
&3(H/2)
o-n (0)
022 (#)
a23(///2)
u3(H/2)
5u(0)
<T22(#)
*23(H/2)
u3(H/2)
*u(0)
*22(H)

-0.976
0.933
0.649

-4.653
3.888
0.64
0.221
0.713
1.592
4.684

-0.977
0.925
0.648

-4.681
3.876

-0.36
0.219
0.743
1.562

-4.751
0.617

-4.952
3.803
1.725
0.656

-4.450
3.799
1.523
0.429

-4.800
2.914

-0.576
2.043
1.387

-2.941
8.302
0.49
0.310
1.113
0.794
9.304

-0.579
2.030
1.382

-2.977
8.269

-0.51
0.308
1.142
0.768

-0.152
——
——
——
——
——
——
——
——
——
——
——

-0.977
0.936
0.651

-4.660
3.897
0.64
0.208
0.714
1.598
4,693

-0.977
0.927
0,649

-4.688
3.885

-0.36
0.207
0.744
1.567

-4.742
——
——
——
——
——
——
——
——
——
——
——

-0.293
2.932
1.975

-1.838
11.812
0.37
0.052
1.423
0.361

12.965
-0.297

2.913
1.967

-1.880
11.759

-0.63
0.051
1.450
0.337
3.488

——
——
——
——
——
——
——
——
——
——
——

-1.776
1.782
1.227

-7.304
7.309
0.50
0.497

.219

.154
4.733

- .782
1.776
1.227

-7.309
7.304

-0.50
0.495
1.249
1.126

-4.733
1.216

-7.468
7,468
3.190
1.237

-7.157
7.157
2.729
1.064

-7.157
7.157

-1.079
2.280
1.550

-4.427
9.250
0.45
0.432
1.292
0.764
8.278

-1.090
2.270
1.547

-4.455
9.230

-0.54
0.430
1.322
0.738

-1.217
——
——
——
——
——
——
——
——
——
——
——

-1.806
1.821
1.254

-7.432
7.465
0.49
0.470
1.241
1.130
4.779

-1.812
1.815
1.254

-7.436
7.460

-0.51
0.469
1.271
1.101

-4.688
——
——
——
——
——
——
——
——
——
——
——

-0.541
3.004
2.026

-2.503
12.100
0.36
0.119
1.490
0.374

12.275
-0.557

2.989
2.020

-2.545
12.059
-0.64

0.121
1.519
0.350
2.749
1.992

-2.624
12.295
4.489
2.028

-2.442
11.884
3.882
I . Ill

-2.403
11.849

-1.102
1.056
0.732

-4.853
4.373
0.65
0.256
0.780
0.90
4.642

-1.104
1.048
0.731

-4.881
4.362

-0.35
0.254
0.810
0.87

-4.793
——
——
——
——
——
——
——
——
——
——
——

3/4

1/2

1/4

-15 -10 -5 10 15 20

Fig. 2 Normal stress distribution on four sections of a square [0/90 deg]
laminate that is simply supported on two opposite edges and clamped
on the other two: load (a), x2 = ^2/2, L\IH = 5, K\ = 250 terms.

0.4 0.6

a13(0.05L1,0.5L2,x3y(a|3)i

0.8

Fig. 3 Influence of the boundary conditions on the through-thickness
distribution of the transverse shear stress cr13 for a square [0/90 deg]
laminate: load (a), L\IH - 5, K\ = 250 terms.

The through-thickness distribution of the transverse shear stresses
near the edge jci = 0, plotted in Figs. 3 and 4, shows that the shape of
the distribution depends on the boundary conditions applied at the
edge. The transverse shear stresses are not parabolic, as is usually
assumed, and in fact their slopes are discontinuous at the layer in-
terfaces. The layerwise models of Ren9 and Lee et al.10 that assume
a parabolic variation of the transverse shear stress provide a better
approximation than Reddy's theory6 that is based on the parabolic
variation of the transverse shear strain. Good results should be ob-
tained when the assumed transverse shear-stress distribution is close
to the analytical one obtained here. As noted by Lee and Cao,19 such
a distribution is not known a priori because it depends on the lam-
ination scheme, plate geometry, boundary conditions, and loading.
Moreover, our results indicate that a single continuously differen-
tiable function will not describe well the through-thickness distri-
bution of the transverse shear stress at all points on the x\-x2 plane
of the laminate.

The transverse normal stress vs jci at x2 = L2/2 is plotted in Fig. 5
for a square [0/90 deg] laminate that is subjected to the layerwise
boundary conditions #(i,8)#o,8) • It exhibits severe gradients at points
on the interface that are close to the edges. This may be due to the
presence of a stress singularity on the lines where the interface
meets the edges x\ = 0 and L\. The change in the thickness of a
square [0/90 deg] laminate that is simply supported on two oppo-
site edges and traction free on the other two is shown in Fig. 6.
The variation over only a quarter of the plate is shown because of
the symmetry of the loading and the boundary conditions about
the two centroidal axes. Although the change in thickness is zero
at the simply supported edges, as expected, it is not negligible at the
free edges. The change in thickness is maximum at the center of the
plate.

Table 5 gives, for eight different boundary conditions, the normal-
ized displacements and stresses in a square [0/90/0 deg] laminate
with Li/H = 5, 10. Because the laminate is symmetric about the
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Table 5 Displacements and stresses for a square [0/90/0 deg] laminate subjected to eight different BC: load (a), K\ = 250 terms

Li/H Variable
5 wi(0)

MI(//)
w2(0)
u2(H)
«3(///2)
<rn(0)
^11 (H)
a22(H/3)a

<r22(2///3)a

<r33(///2)
<r33(2#/3)
5-12(0)
a\2(H)
^2.3 (H / 2)
cr3i(f//2)
e

10 Wl(0)
MI(//)
"2(0)
W2(/i/)
W3(///2)
<7n(0)
<TH(//)
cr22(///3)a

a22(2///3)a

<733(///2)

*33(2ff/3)
^12 (0)
ai2(//)
5s3(ff/2)
cr3i(H/2)
e

*1*1
0.319

-0.331
1.053

-1.044
1.180

-4.235
4.504

-3.726
3.573
0.495
0.701
0.256

-0.257
1.470
2.093
4.694
0.227

-0.227
0.465

-0.460
0.446

-3.000
3.032

-1.713
1.674
0.50
0.73
0.124

-0.123
0.722
3.062
4.714

B2B2

0.162
-0.175

3.281
-3.272

3.503
-2.660

2.928
-11.332

11.179
0.495
0.748
0.548

-0.548
3.980
1.028
4.693
0.150

-0.151
2.216

-2.211
2.089

-2.278
2.309

-8.068
8.029
0.50
0.76
0.208

-0.207
2.867
1.957
4.714

BiB3

0.321
-0.333

1.061
-1.051

1.188
-4.253

4.520
-3.753

3.599
0.495
0.702
0.221

-0.223
1.478
2.102
4.694
0.227

-0.227
0.466

-0.461
0.447

-3.002
3.034

-1.715
1.676
0.50
0.73
0.121

-0.121
0.723
3.064
4.714

aValues corresponding to the central layer.
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1

t
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jf 1

^/ss

B4B4

0.090
-0.103

5.007
-4.998

5.297
-1.897

2.164
-17.221

17.067
0.495
0.786
0.048

-0.050
5.905
0.459
4.693
0.062

-0.062
4.731

-4.725
4.449

-1.440
1.472

-17.194
17.155

0.50
0.81
0.026

-0.025
5.955
0.618
4.714

1

0.8

0.6
p
StT

0.4

0.2

0

B5B5

0.614
-0.620

1.353
-1.346

1.525
-6.987

7.180
-4.784

4.639
0.496
0.726
0.404

-0.403
1.911
2.653
4.715
0.522

-0.520
0.782

-0.777
0.753

-5.898
5.906

-2.882
2.845
0.50
0.74
0.268

-0.266
1.228
3.301
4.727

B6B6

0.227
-0.233

3.312
-3.304

3.542
-3.238

3.431
-11.442

11.297
0.496
0.757
0.578

-0.578
4.033
1.330
4.714
0.276

-0.274
2.282

-2.277
2.155

-3.509
3.516

-8.314
8.277
0.50
0.76
0.264

-0.263
2.996
2.148
4.727

B-jBj

0.628
-0.634

1.376
-1.369

1.550
-7.121

7.312
-4.864

4.718
0.496
0.727
0.346

-0.349
1.939
2.677
4.715
0.527

-0.525
0.790

-0.785
0.760

-5.952
5.959

-2.909
2.871
0.50
0.74
0.260

-0.259
1.239
3.310
4.728

B*B*

0.108
-0.114

5.015
-5.007

5.307
-2.043

2.232
-17.247

17.102
0.496
0.790
0.059

-0.061
5.917
0.617
4.715
0.075

-0.072
4.734

-4.729
4.453

-1.562
1.569

-17.205
17.168

0.50
0.81
0.032

-0.031
5.963
0.694
4.728
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Fig. 4 Influence of the boundary conditions on the through-thickness
distribution of the transverse shear stress cr& for a square [0/90 deg]
laminate: load (a), Li/H = 5, KI = 250 terms.

midplane, results are given only for normal loading on the top sur-
face. The in-plane normal stress an on the top surface of thick lam-
inates is considerably larger in magnitude than those on the bottom
surface. This asymmetry is attributed to the external loads being
applied on the top surface whereas the bottom surface is traction
free and is less for the thinner laminate. Different plate theories
do not predict this asymmetry. We retrieve Pagano's results14 when
all four edges of the laminate are simply supported. The transverse
displacement or the deflection of the centroid of the plate and the
magnitude of a\ \ (0) are considerably less when the edges x\ = 0, L \
are clamped, compared with those when the edges are simply sup-
ported. Recall that the other two edges are simply supported in each
case. However, for the symmetric thick laminate, the change in the
thickness of the plate at its centroid is essentially the same for each
one of the eight sets of boundary conditions. The average elongation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x/L

Fig. 5 Variation in the longitudinal direction of the transverse normal
stress at*2 = L2/2 for a square [0/90 deg] laminate subjected to layerwise
variation of the boundary conditions: configuration #(i,8)#(i,8)> load (a),
Li/H = 5,Ki = 250 terms.

e at the center of the antisymmetric [0/90 deg] laminate is much
more sensitive to the boundary conditions in the thin plate than in
the thick plate (see Tables 3 and 4). For example, in Table 4 cor-
responding to load (b) we see that the normal at the center may
elongate or contract depending on the boundary conditions at the
edges of the plate. We can explain this by observing that the stresses
cr\\ and a22 are of the order ofqoL^/H2 whereas the transverse nor-
mal stress a33 is of the order of q§. Thus the in-plane normal stresses
dominate over the transverse normal stress for thin plates. For or-
thotropic materials the transverse normal strain £33 = — v\^cr\]/E\
— v2i022/E2 -f-o^/Es, and for thin laminates Poisson's elonga-
tion/contraction that is due to cr\\ and cr22 will exceed that which is
due to <J33. Since the normal stresses a\ \ and cr22 at the center of the
laminate are sensitive to the boundary conditions, the elongation of
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Table 6

xi/H

0.00
0.05
0.10
0.15
0.20
0.25
0.30
d/3)-
d/3)+
0.35
0.40
0.45
0.50
0.55
0.60
0.65
(2/3)-
(2/3)+
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Through-thickness displacement and stress distributions for a square [0/90/0 deg] laminate that is simply supported
on two opposite edges and clamped on the other two: load (a), L\IH -S,K\- 250 terms

M I
0.319
0.201
0.118
0.057
0.007

-0.039
-0.091
-0.132
-0.132
-0.117
-0.073
-0.030

0.012
0.053
0.094
0.134
0.147
0.147
0.104
0.049
0.000

-0.053
-0.118
-0.206
-0.331

"2 "3

1.053
0.929
0.813
0.704
0.600
0.500
0.403
0.339
0.339
0.302
0.198

.152

.155

.158

.160

.162

.165

.167

.169

.169

.170

.173
0.103 1.176
0.013 1.180

-0.078 1.184
-0.173 1.188
-0.277 .193
-0.315 .194
-0.315 .194
-0.376 .198
-0.471 .203
-0.572 .208
-0.678 .213
-0.791 .218
-0.913 1.223
-1.044 .227

011
-4.235
-2.811
-1.732
-0.894
-0.198

0.448
1.121
1.617
0.057
0.055
0.051
0.047
0.043
0.039
0.036
0.034
0.033

-1.692
-1.169
-0.458

0.225
0.964
1.852
2.995
4.504

<T22

-0.510
-0.440
-0.374
-0.313
-0.254
-0.198
-0.142
-0.106
-3.726
-3.306
-2.145
-1.087
-0.080

0.929
1.988
3.152
3.573
0.193
0.229
0.284
0.342
0.402
0.466
0.534
0.609

<T33

0.001
0.012
0.043
0.088
0.141
0.198
0.254
0.290
0.290
0.308
0.366
0.429
0.495
0.561
0.625
0.683
0.701
0.701
0.738
0.795
0.854
0.909
0.956
0.988
0.999

*i2
0.256
0.211
0.176
0.146
0.120
0.094
0.067
0.047
0.047
0.042
0.028
0.016
0.004

-0.007
-0.020
-0.034
-0.040
-0.040
-0.060
-0.087
-0.113
-0.140
-0.171
-0.208
-0.257

<T23

0,000
0.123
0.227
0.314
0.384
0.440
0.482
0.501
0.501
0.688
1.120
1.377
1.470
1.404
1.174
0.767
0.589
0.589
0.561
0.508
0.439
0.356
0.256
0.138
0.000

5*1
0.000
1.646
2.609
3.078
3.227
3.101
2.643
2.138
2.138
2.132
2.113
2.100
2.093
2.093
2.100
2.111
2.114
2.114
2.668
3.180
3.340
3.208
2.734
1.732
0.000

Fig. 6 Change in thickness of a square [0/90 deg] laminate that is
simply supported on two edges and traction free on the other two: load
(a), Li/H = 5, tfi = 250 terms.

-0.2

Fig. 7 Influence of the boundary conditions on the through-thickness
distribution of the transverse shear stress a^ for a square [0/90/0 deg]
laminate: load (a), Li/H = 5, #1 = 250 terms.

the normal is therefore also influenced by the boundary conditions.
In contrast, the elongation of the normal for a symmetric [0/90/
0 deg] thin laminate is insensitive to the boundary conditions at the
edges (see Table 5). This is because the normal stresses a\\ and
022 in the symmetric laminate are nearly antisymmetric with re-
spect to the midsurface. Thus Poisson's effect at locations on the
top half of the laminate is equal and opposite to that at corre-
sponding points on the bottom half, thereby canceling each other's
contribution to the average elongation. The elongation of the nor-
mal for symmetric laminates is primarily due to 033 at the center
of the laminate, which is essentially insensitive to the boundary
conditions at the edges. Table 6 gives the through-thickness dis-
tribution of the displacements and stresses for the square [0/90/
0 deg] laminate that is simply supported on two opposite edges and
clamped on the other two. As should be clear from the values of
quantities on the two sides of an interface, the continuity of dis-
placements and tractions at the interfaces is satisfied to at least three
decimal (significant) digits. The computed value of 033 is off by
0.06% of #0 on the top and the bottom surfaces of the laminate. This
error can be further reduced by retaining more terms in the series
expansion.

Figures 7 and 8 show the influence of the boundary conditions
on the through-thickness distribution of the normalized transverse
shear stress at a section close to the edge jci = 0. Again, the distribu-
tion is not parabolic. For a laminate simply supported on the edges
JC2 = 0, L.2 and traction free on ;ci =0, L\, the through-thickness dis-
tribution of <Ji3 exhibits stress reversal at points close to the top and
bottom surfaces. When the edges x\ =0, L\ are rigidly clamped,
the curvature of the curve in the central lamina is opposite to that
in the two surrounding laminae. A similar behavior is exhibited by
the through-thickness distribution of a23 when the boundary condi-
tions at edges x\ = 0, LI correspond to B-j in Table 1. The transverse
normal stress distribution depicted in Fig. 9 is also sensitive to the
boundary conditions at the edges. When the edges x\ = 0, L\ are
clamped, the through-thickness distribution of 033 at x\/L\ = 0.05
in the laminate is far from the cubic variation predicted by the
CLPT.

When all four edges are simply supported, Pagano14 has shown
that the boundary and the interface conditions can be satisfied by
B(«) =B(n.3) jn me first equation of Eqs. (18), i.e., the coefficients
corresponding to i*(/lil) and u(/l'2) are zero. This shows the absence
of boundary layers near the edges of a simply supported orthotropic
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Laminate

Table 7 Displacement and stresses for a rectangular three-ply laminate clamped on all edges: load (a),
___________________Li/H = 5, L2/Li = 0.5, KI = 25 terms___________________

u2(H) u3(H/2)
[0/90/0 deg]
[45/-45/4S deg]

-0.10
-0.14

-0.33
-0.22

0.35
0.32

1.49
1.10

1.75
0.64

-0.07
-1.48

2.50
1.62

0.64
0.82

aValues corresponding to the central layer.

5/6

2/3

, 1/2

1/3

1/6

-0.5 -0.25 0 0.25 0.5 0.75 1
G23(0.05Ll,0,x3)/(a23)max

Fig. 8 Influence of the boundary conditions on the through-thickness
distribution of the transverse shear stress 0-23 for a square [0/90/0 deg]
laminate: load (a), L\IH = 5, #1 = 250 terms.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x,/L,

Fig. 10 Variation in the longitudinal direction of the transverse shear
stress for a square [0/90/0 deg] laminate for three different boundary
conditions: load (a), L\IH = 5, K\ - 250 terms.

-0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5
a33(0.075L1,0.5L2,x3)/(q0sin(0.0757c)sin(0.57c))

Fig. 9 Influence of the boundary conditions on the through-thickness
distribution of the transverse normal stress for a square [0/90/0 deg]
laminate: load (a), Li/H = 5, KI = 250 terms.

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Fig. 11 Through-thickness distribution of the transverse shear stress
on four sections of a square [0/90/0 deg] laminate that is simply sup-
ported on two opposite edges and traction free on the other two: load
(a), x2 = L2/2, Li/H = 5, tfi = 250 terms.

plate. A boundary layer may exist for boundary conditions other than
simply supported edges. Figure 10 shows the transverse shear stress
an vs jci for the square [0/90/0 deg] laminate with two opposite
edges simply supported and the other two edges either traction free,
clamped, or simply supported. Whereas 0^3 varies smoothly when
the edges jci = 0, L\ are simply supported and the curvature of the
curve ai3 vs jci is constant near the edges x\ = 0, L\, such is not the
case when these edges are either clamped or traction free. The thick-
ness of the boundary layer may be equated with the distance from the
edge x\ = 0, L\ of the point where the curvature of the curve 0*13 vs
x\ suddenly changes. This definition gives the boundary-layer thick-
ness as approximately O.OlLi and 0.03Li near the clamped and the
free edges, respectively, for LI/// = 5. The transverse shear-stress
distribution close to the free edge for the [0/90/0 deg] laminate that
is simply supported on two edges and free on the other two is shown
in Fig. 11. It is interesting to note the manner in which the shear
stress evolves within the boundary layer adjoining the free edge of
the plate into a distribution exhibited by simply supported plates.

The preceding definition of the boundary-layer thickness implies
that the layer is 0.04// near the top and the bottom surfaces of the
plate.

B. Clamped Plates
For laminated plates with all four edges clamped, we introduce

two additional nondimensional quantities:

no//2 /L! L2= ——— — nr,->l —— . —— ....(28)

Displacements and stresses at specific points in the plate are listed
in Table 7 for Cases (2) and (3). Results for K{ > 25 terms have
not been computed because of the increased computational effort
involved.
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VIII. Conclusions
We have generalized the Eshelby-Stroh formalism to study the

three-dimensional deformations of linear elastic, anisotropic, lami-
nated rectangular plates subjected to arbitrary boundary conditions
at the edges. Equations of elastostatics are satisfied at every point of
the body. However, the interface continuity and the boundary con-
ditions are satisfied in the sense of Fourier series. When sufficient
terms are included in the analytical series solution, the boundary
and the interface continuity conditions are well satisfied at every
point on these surfaces.

Our computed results for simply supported plates agree with those
of Pagano.14 For a rectangular laminated plate simply supported on
two opposite edges, we have also computed results for nine sets
of boundary conditions on the remaining two edges and the plate
loaded either on the top or on the bottom surface. One such prob-
lem studied involves a square [0/90 deg] laminated plate with two
edges of the lower lamina clamped and the corresponding edges of
the upper lamina traction free; the other two edges of both lami-
nae are simply supported. Whereas plate theories give same values
of the in-plane displacements and in-plane normal stress at points
located symmetrically about the midsurface of the plate, we ob-
tain slightly different values of these quantities from the converged
solution. The solution, valid for all aspect ratios of the plate, ex-
hibits boundary layers near the clamped and traction-free edges.
The transverse shear-stress distributions are found to depend on the
boundary conditions as well as on the lamination scheme and are
not parabolic. The elongation of the normal to the midsurface of a
thick plate depends on whether the transverse load is applied to the
top or the bottom surface of the plate and the boundary conditions
at the edges. The results presented herein should help establish the
validity of various approximate theories.

Note Added in Proof
The authors found two relevant papers (Vlasov, B. F, "On One

Case of Bending of Rectangular Thick Plates," VestnikMoskovskogo
Universiteta. Serieila Matematiki, Mekhaniki, Astronomii, Fiziki,
Khimii, Vol. 2, No. 2, 1957, pp. 25-34; Srinivas, S., and Rao, A. K.,
"Flexure of Thick Rectangular Plates," Journal of Applied Mechan-
ics, Vol. 40, No. 1, 1973, pp. 298, 299) for isotropic thick plates
after the submission of the final manuscript. Whereas Vlasov con-
sidered simply supported plates, Srinivas and Rao also studied other
boundary conditions.
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