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Three-Dimensional Asymptotic Analysis of Multiple-Electroded
Piezoelectric Laminates
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The problem ofpiezoelectric laminates with speci� ed surface tractions and surface and internal electric potentials
is studied. By writing the governing equations in the state-space formulation, employing an asymptotic expansion
technique, and expressing electric displacement jumps across internal electrodes in terms of basic unknowns, the
three-dimensional problem is reduced to a hierarchy of two-dimensional equations with the same homogeneous
operators for each order. Different nonhomogeneous terms are only related to the preceding-order solution and
can be readily determined by recurrence relations. Moreover, for pure elasticity, the present � eld equations of
the leading order represent the classical thin elastic plate model. The proposed formulation is illustrated by
considering a rectangular piezoelectric plate made of an orthotropic material, and with its edges simply supported
and grounded. The convergence of the solution is discussed and the repeated averaging technique for partial sums
is used to accelerate the convergence of the series solution. Computed results are found to agree well with available
analytical results, and new results for electromechanically coupled problems are presented.

I. Introduction

A smart structural system is a multifunctional unit involving ac-
tive materials for performing the operations of distributed mod-

eling, sensing, and control of passive load-bearing structures.1 –8 In-
tegrated active materials are comprised of piezoelectric patches and
layers that act as sensors and actuators. Because of their compact
size and light weight, a great number of piezoelectric elements can
be used without signi� cantly changing the structural properties of
the entire system. However, the structure does become more brittle.

Analogous to the two-dimensional approaches for constructing
equivalent single-layer plate and shell theories of elastic laminates,
various piezoelectric plate and shell theories9 –15 have been pro-
posed. These theories assume the same forms of the overall through-
thickness distributions of mechanical displacements as those in the
classical and shear deformation elastic plate and shell theories.How-
ever, these theories are not very accurate even for purely elastic lam-
inates as transverse tractions do not generally satisfy the continuity
conditions at the layer interfaces.16 , 17

To develop consistent two-dimensional theories for elastic lami-
nates, asymptotic approaches18 – 25 have been used to reduce three-
dimensional � eld equations to two-dimensional equations that can
be successively solved in a systematic manner. The leading-order
approximation of an asymptotic theory for thin single-layer piezo-
electric plates26 , 27 has also been proposed.

By extending the work28, 29 for simply supported elastic lami-
nates, exact solutions for simply supported laminated piezoelectric
plates30 – 32 were given. Transfer matrix approaches33 – 38 were devel-
oped to study the electromechanical coupling characteristics of lam-
inated piezoelectric plates. In the conventional transfer matrix de-
scription for a multiple-layer stack, the displacements, out-of-plane
stresses, electric potential and transverse electric displacement are
chosen as the termination parameters because they are continuous
across layer interfaces. Thus the interfacial continuity conditions
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can be easily satis� ed. However, for a structural element with in-
ternal conducting electrodes, the normal electric displacement must
be different on the two sides of an electroded surface. In this case
the transfer matrix description must be modi� ed to accommodate
the discontinuity in the normal electric displacement.33

Here, we present an asymptotic expansion method for the analy-
sis of piezoelectric laminates with surface and internal electrodes.
The transfer matrix formulation is given in a compact form by us-
ing the tensor notation. By expressing transverse electric displace-
ment jumps across internal electrodes in terms of basic unknowns,
we provide a hierarchy of two-dimensional problems whose solu-
tion determines the solution of the given three-dimensional prob-
lem. These two-dimensional problems can be easily solved when
boundary-layer effects are negligible. Results for three example
problems are presented. These establish the validity and accuracy
of the present approach, and also point out some de� ciencies in the
two-dimensional models.

II. State-Space Equations
We consider an undeformed laminated plate of uniform thick-

ness h in a rectangular Cartesian coordinate system {xi }(i = 1, 2, 3),
with the lower plane of the plate coinciding with x3 = 0. The plate is
composed of different homogeneous monoclinic piezoelectric ma-
terials. Hereafter, a comma followed by a subscript i denotes the
partial derivative with respect to xi , and a repeated index implies
summation over the range of the index with Latin indices ranging
from 1 to 3 and Greek indices from 1 to 2.

In the absence of body force and electric charge density, the � eld
equations of elastic equilibrium and Gauss’s law of electrostatics
are39 , 40

s i j, j = 0, Di,i = 0 (1)

where s i j is the stress tensor and Di the electric displacement. The
in� nitesimal strain tensor Skl and electric � eld Ek are related to the
mechanical displacements uk and the electric potential } through
the gradient relations

Skl = 1
2
(uk ,l + ul ,k ), Ek = ¡ } ,k (2)

Equations (1) and (2) are supplemented by the following constitutive
relations for a linear piezoelectric body:

s i j = ci jkl Skl ¡ eki j Ek , Di = eikl Skl + e ik Ek (3)
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Here ci jkl is the fourth-order elasticity tensor measured at a constant
electric � eld, eki j the third-order piezoelectric tensor, and e i k the
second-order dielectric tensor measured at a constant strain. These
material moduli exhibit the following symmetries:

ci jkl = c j ikl = ckli j , eki j = ek ji , e ik = e ki (4)

The constitutive relations for monoclinic piezoelectric materials
whose material properties are symmetric with respect to re� ections
in the midplane can be written as

s a b = ca b x q Sx q + c a b 33 S33 ¡ e3 a b E3

s a 3 = 2ca 3x 3Sx 3 ¡ ex a 3 E x

s 33 = c33 x q Sx q + c3333 S33 ¡ e333 E3

D a = 2ea x 3 Sx 3 + e a x E x

D3 = e3x q Sx q + e333 S33 + e 33 E3 (5)

The numbers of nonzero independent elastic, piezoelectric, and
dielectric moduli are, respectively, 13, 8, and 4 for a monoclinic
material. The material moduli are taken to be piecewise constant
functions of x3 for the laminated plate. To develop an ef� cient and
analytical methodology for accurate and reliable investigation of
three-dimensional deformations of smart plates, the preceding equa-
tions are written in a state space as

@z [F
G] = e [0 A

B 0][F
G] (6)

where we have scaled the thickness coordinate x3 = e z by the small
parameter e = h /a with a being a typical in-plane dimension. Thus
e @/ @x3 = @/@z ´ @z , and z varies from 0 to a as x3 goes from 0 to
h. Furthermore,

F =
é
êêêë

u1

u2

s 33

D3

ùúúúû
, G =

é
êêêë

s 13

s 23

u3

}

ùúúúû
(7)

The 4 £ 4 operator matrices A and B contain the in-plane differential
operator @a ´ @/ @x a and depend on z only through the material
moduli:

A = [ I ¡ Jb @b

¡ JT
b @b K b q @b @q

], B = [¡ L b q @b @q ¡ M b @b

¡ MT
b @b N ]

(8)

where both A and B have been partitioned into four 2 £ 2 operator
submatrices. The elements of matrices I and N are de� ned by

I = (I x a ) = (c ¡ 1
x 3 a 3) =

1

c1313c2323 ¡ c2
1323

[ c2323 ¡ c1323

¡ c1323 c1313
]

or (c a 3x 3) = [c1313 c1323

c1323 c2323
]

N = (N a x ) =
1

c3333 e 33 + e2
333

[ e 33 e333

e333 ¡ c3333
]

or N ¡ 1 = [c3333 e333

e333 ¡ e 33
] (9)

J b and M b are matrices with each of their elements being a vector
de� ned by

[J x 1
b J x 2

b ] = [d x b I x a eb a 3]

[M a 1
b M a 2

b ] = [c a b 33 e3a b ]N (10)

and K b q and L b q are matrices with each of their elements being a
tensor and

K 11
b q = K 12

b q = K 21
b q = 0, K 22

b q = J x 2
b e q x 3 + e b q

L a x
b q = ca b x q ¡ M a 1

b c33x q ¡ M a 2
b e3 x q (11)

Here d a b is the Kronecker delta and we have used superscripts, to
which the conventional summation also applies, to denote the row
and column indices of a matrix element. The subscripts of the corre-
sponding element, which is a vector or a tensor, imply the usual com-
ponents of a tensor. These submatrices are only related to the mate-
rial moduli depending on x3 . The in-plane stresses and in-plane elec-
tric displacements, which may be discontinuous in x3, are given by

s a b = [L a 1
b q @q L a 2

b q @q M a 1
b M a 2

b ]F

D q = [J 12
q J 22

q 0 ¡ K 22
b q @b ]G (12)

In the absence of internal electrodes, F and G must be continuous
across each interface layer.

III. Asymptotic Approach
The general problem of piezoelectricity is to determine the global

and local electroelastic � elds under applied mechanical and electric
loading. In this paper the mechanical loading is speci� ed by the
tangential tractions q §

a and the normal pressures q §
3 imposed on

the top and bottom plate surfaces, whereas the electric loading is
speci� ed by applied potentials. Speci� cally, the two bounding sur-
faces and r electroded interfaces of the plate are coated with very
thin conducting electrodes. These electrodes may carry an alternat-
ing forcing potential. For simplicity, the thickness of each electrode
is neglected, and it is modeled as a mathematical surface with a
speci� ed electric potential. The distance between the i th internal
electrode surface and the bottom-most surface of the plate is (i)a. In
particular, we set (0)a = 0 and (r + 1)a = a for the position of the bot-
tom most and top most surfaces. The electroded surface at z = (i )a
is subjected to the electric potential ( i)V (i = 0, . . . , r + 1). This
physical model includes the important cases of a laminated plate
with sensors and actuators bonded to its topmost and bottommost
surfaces and of a laminated plate with embedded sensors and ac-
tuators.

For general mechanical loading conditions (excluding the par-
ticular case where the tractions on the top and bottom surfaces are
equal), the transverse shear stresses are of the order O( e 2), and
the transverse normal stress is of the order O( e 3), as in the case
of pure elasticity.18 These surface forcing functions are then scaled
as

s a 3(x q , 0) = e 2q ¡
a (x q ), s a 3(x q , a) = e 2q +

a (x q ) (13)

s 33(x q , 0) = ¡ e 3q ¡
3 (x q ), s 33(x q , a) = ¡ e 3q +

3 (x q ) (14)

The electric potential is constructed to be of the order O( e 2), i.e.,

} [x q , (i)a] = e 2 (i )V (x q ) (i = 0, . . . , r + 1) (15)

To � nd solutions of successive approximations, we express the
state-space functions F and G in the form of a regular expansion in
terms of the small parameter e as

[F

G] =
1

n̂ = 0

e 2n[e f (n)

g(n) ] (16)

Then the surface traction conditions (13) and (14) and the electric
potential conditions (15) for surface and internal electrodes may be
expressed by the components of the expansion terms of F and G.
For the leading order

g(0)
a (0) = s (0)

a 3 (0) = 0, g(0)
a (a) = s (0)

a 3 (a) = 0 (17)

f (0)
3 (0) = s (0)

33 (0) = 0, f (0)
3 (a) = s (0)

33 (a) = 0 (18)

g(0)
4 [(i)a] = } (0)[(i )a] = 0 (i = 0, . . . , r + 1) (19)
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and for the remaining orders

g(n + 1)
a (0) = s (n + 1)

a 3 (0) = q ¡
a d n0 (20a)

(n ¸ 0)

g(n + 1)
a (a) = s (n + 1)

a 3 (a) = q +
a d n0 (20b)

f (n + 1)
3 (0) = s (n + 1)

33 (0) = ¡ q ¡
3 d n0 (21a)

(n ¸ 0)

f (n + 1)
3 (a) = s

(n + 1)
33 (a) = ¡ q +

3 d n0 (21b)

g(n + 1)
4 [(i)a] = } (n + 1)[(i)a] = ( i)V d n0

(i = 0, . . . , r + 1) (n ¸ 0) (22)

Substitution of Eq. (16) into Eq. (6) leads to the following simple
recurrence relations:

@zg(0) = 0 (23a)

@z f (n) = Ag(n) (n ¸ 0) (23b)

@zg(n + 1) = Bf (n) (n ¸ 0) (23c)

A solution can be obtained by successively integrating these differ-
ential equations with respect to z and using Eqs. (17–22), i.e.,

g(0) =
é
êêêë

0

0

U (0)
3

0

ùúúúû
(24)

f (n) =

é
êêêêë

U (n)
1

U (n)
2

¡ q ¡
3 d n1

D(n)
0

ùúúúúû
+ QAg(n) +

é
êêêêêêë

0

0

0
r

ĵ = 1

( j) D D(n)
3 H[z ¡ ( j)a]

ùúúúúúúû
(n ¸ 0) (25)

g(n + 1) =
é
êêêë

q ¡
1 d n0

q ¡
2 d n0

U (n + 1)
3

(0)V d n0

ùúúúû
+ QBf (n) (n ¸ 0) (26)

where we denote the basic unknowns, the components of expansions
of three mechanical displacements and the electric displacement at
the lower surface z = 0 of the plate, as

U (n)
x ´ u(n)

x (x q , 0), U (n)
3 ´ u (n)

3 (x q , 0), D(n)
0 ´ D(n)

3 (x q , 0+ )

(27)

and the electric displacement jump across the j th internal electrode
as

( j) D D(n)
3 ´ D(n)

3 [x q , ( j )a+ ] ¡ D(n)
3 [x q , ( j )a ¡ ] ( j = 1, . . . , r)

(28)
with H [z ¡ ( j )a] being the Heaviside step function and

Q(. . .) ´ * z

0

(. . .) dz (29)

Because of the presence of internal electrodes, the transverse elec-
tric displacement is not continuous across each of the internally
electroded surfaces, and the continuity condition for the transverse
electric displacement at z = (i )a must be modi� ed. However, here
we specify the electric potential } [(i )a]. We include the electric
displacement jumps [Eq. (28)] in the expression (25) after the inte-
gration of Eq. (23b) with respect to z.

Most plate theories implicitly designate the midplane of a plate
to be the reference plane, and hence the basic unknowns are those
at the midplane. It is clear, however, that at least four components
of the unknown functions F and G will be known a priori when
we choose either of the bounding plate surfaces to be the reference
plane. Accordingly, the problem will be reduced to determining
the remaining components of the unknown functions. For the spe-
ci� c problem the basic unknowns are chosen as the mechanical and
electrical displacements on the bottom-most surface of the plate,
i.e., Eq. (27). These unknowns are determined such that conditions
(13–15) for the tractions and the electric potential on the top-most
surface z = a and for the electric potential at the internal electrodes
are satis� ed.

Substituting the expression (26) for g(n) into Eq. (25) and simpli-
fying the result, we obtain

f (n) = X(n) + H(n) +

é
êêêêêêë

0

0

0
r

ĵ = 1

( j) D D(n)
3 H[z ¡ ( j)a]

ùúúúúúúû
(30)

where

X(n) =

é
êêêêë

U (n)
1 ¡ z@1U

(n)
3

U (n)
2 ¡ z@2U

(n)
3

0

D(n)
0

ùúúúúû
(31a)

H(n) = d n1

ìïïï
í
ïïïî

QA
é
êêêë

q ¡
1

q ¡
2

0
(0) V

ùúúúû
¡
é
êêêë

0

0

q ¡
3

0

ùúúúû

üïïï
ý
ïïïþ

+ QAQBf (n ¡ 1) (31b)

With expressions (30) and (31b), we obtain the following recurrence
relation for the auxiliary function H(n) :

H(n + 1) = d n0

ìïïï
í
ïïïî

QA
é
êêêë

q ¡
1

q ¡
2

0
(0) V

ùúúúû
¡
é
êêêë

0

0

q ¡
3

0

ùúúúû

üïïï
ý
ïïïþ

+ QAQB

ìïïïïïï
í
ïïïïïïî

X(n) + H(n) +

é
êêêêêêë

0

0

0
r

ĵ = 1

( j) D D(n)
3 H[z ¡ ( j)a]

ùúúúúúúû

üïïïïïï
ý
ïïïïïïþ

(32)

with the leading term H(0) = 0. Note that H(n) contributes to the
higher-order effective load terms in our asymptotic equations to be
given later.

With the notation

(i) Q(. . .) ´ *
(i) a

0
(. . .) dz (i = 1, . . . , r + 1) (33)

and in particular

Q̄(. . .) ´ * a

0

(. . .) dz or Q̄ ´ (r + 1) Q (34)

and using Eq. (26), conditions (22) for the electric potentials speci-
� ed on the internal electrodes and the upper surface of the plate can
be written as

(i) Q B4L f (n)
L = [(i) V ¡ (0)V ]d n0 (i = 1, . . . , r + 1) (35)
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where an uppercase subscript L takes values from 1 to 4 and the
usual summation convention applies to L. Furthermore, by using
Eq. (30) and the relation

Q(. . .)H[z ¡ ( j)a] = H[z ¡ ( j)a][Q ¡ ( j) Q](. . .) [( j)a ¸ 0]
(36)

Eq. (35) for i = 2, . . . , r + 1 may be written in an alternative form
as

(i + 1) Q B4L[X (n)
L + H (n)

L ] +
i

ĵ = 1

Ci j
( j ) D D(n)

3 = [( i + 1)V ¡ (0) V ]d n0

(i = 1, . . . , r) (37)

where Ci j is a lower-triangular matrix de� ned by

Ci j = {[(i + 1) Q ¡ ( j) Q]B44 (i ¸ j )

0 (i < j )
(38)

Note that B44 = N 22 is only related to the material moduli depend-
ing on x3, and thus (Ci j ) is a constant matrix. Equation (37) may
be viewed as a set of r linear algebraic equations for the electric
displacement jumps ( j) D D(n)

3 , which, using the property that the in-
verse of a lower-triangular matrix is also a lower-triangular matrix,
give the expression

( j) D D(n)
3 =

j

k̂ = 1

C ¡ 1
jk {[(k + 1) V ¡ (0)V ]d n0 ¡ (k + 1) Q B4L[X (n)

L + H (n)
L ]}

( j = 1, . . . , r) (39)

The upper surface traction conditions (20b) and (21b) may be
alternatively expressed through Eqs. (25) and (26) as

Q̄ B a L f (n)
L = (q +

a ¡ q ¡
a

) d n0 (40)

Q̄ A3L g(n + 1)
L = ¡ (q +

3 ¡ q ¡
3 ) d n0 (41)

Further using Eqs. (26) and (40) and noting A3a = ¡ @a and A33 =
A34 = 0, Eq. (41) can be written as

Q̄zB a L@a f (n)
L = [ ¡ (q +

3 ¡ q ¡
3 ) + a@a q +

a ]d n0 (42)

By using Eq. (36) and the expression obtained by substituting
Eq. (39) into Eq. (30), we can write Eqs. (40), (42), and (35) for
i = 1 in the form of the matrix equation

R̃X̃
(n)[ ´ RX(n)] = d n0Y ¡ RH(n) (43)

where

X̃
(n)

= [U (n)
1 U (n)

2 U (n)
3 D(n)

0 ]T
(44)

R̃ a x = R a x =

¡ {Q̄L a x
b q +

r

ĵ = 1

j

k̂ = 1

C ¡ 1
j k [Q̄ ¡ ( j) Q]M a 2

b
(k + 1) QM x 2

q }@b @q

R̃ a 3 = {Q̄zL a x
b q +

r

ĵ = 1

j

k̂ = 1

C ¡ 1
j k [Q̄ ¡ ( j ) Q]M a 2

b
(k + 1) QzM x 2

q }@b @x @q

R a 3 = ¡ {Q̄M a 1
b

¡
r

ĵ = 1

j

k̂ = 1

C ¡ 1
jk [Q̄ ¡ ( j ) Q]M a 2

b
(k + 1) QN 21}@b

R̃ a 4 = R a 4 =

¡ {Q̄M a 2
b ¡

r

ĵ = 1

j

k̂ = 1

C ¡ 1
jk [Q̄ ¡ ( j) Q]M a 2

b
(k + 1) QN 22}@b

R̃3 x = R3x =

¡ {Q̄zL a x
b q +

r

ĵ = 1

j

k̂ = 1

C ¡ 1
jk [Q̄ ¡ ( j) Q]zM a 2

b
(k + 1) Q M x 2

q }@a @b @q

R̃33 = {Q̄z2L a x
b q

+
r

ĵ = 1

j

k̂ = 1

C ¡ 1
j k [Q̄ ¡ ( j) Q]zM a 2

b
(k + 1) QzM x 2

q }@a @b @x @q

R33 = ¡ {Q̄zM a 1
b ¡

r

ĵ = 1

j

k̂ = 1

C ¡ 1
j k [Q̄ ¡ ( j) Q]zM a 2

b
(k + 1) Q N 21}@a @b

R̃34 = R34 = ¡ {Q̄zM a 2
b

¡
r

ĵ = 1

j

k̂ = 1

C ¡ 1
j k [Q̄ ¡ ( j) Q]zM a 2

b
(k + 1) Q N 22}@a @b

R̃4 x = R4x = ¡ (1) QM x 2
b @b , R̃43 = (1) QzM x 2

b @b @x

R43 = (1) Q N 21 , R̃44 = R44 = (1) Q N 22 (45)

Y a = q +
a ¡ q ¡

a +
r

ĵ = 1

j

k̂ = 1

C ¡ 1
jk [Q̄ ¡ ( j) Q]M a 2

b @b [(k + 1) V ¡ (0)V ]

Y3 = ¡ (q +
3 ¡ q ¡

3 ) + a@a q +
a

+
r

ĵ = 1

j

k̂ = 1

C ¡ 1
j k [Q̄ ¡ ( j) Q]zM a 2

b @a @b [(k + 1)V ¡ (0) V ]

Y4 = (1) V ¡ (0)V (46)

Equation (43) is the key � eld equation obtained through our � eld
asymptotic approach, from which the unknowns (44) of each order
can be solved with speci� ed edge conditions, material parameters,
and loads. Equation (43) shows that Y is only related to the � eld
equation at the leading-order (n = 0), whereas H(n) only contributes
to the higher-order � eld equations because H(0) = 0, as mentioned
earlier. However, Y is known a priori from Eq. (46); therefore, the
leading-order unknowns can be determined from the leading-order
� eld equation, i.e., from the so-called classical equation generalized
to piezoelectric plates under prescribed surface and internal electric
potentials as well as mechanical loads. Then H(1) can be obtained
from Eq. (32) by use of Eqs. (31a) and (39), and hence the unknowns
for n = 1 can be solved from the associated � eld equation of the
corresponding order. Such a procedure may be continued to compute
higher-order solutions, which may be considered as corrections to
the so-called classical solution.

The differential operator R̃ given by Eq. (45) for the � eld equa-
tions (43) of all orders may be recognized, when degenerated from
piezoelectricity to pure elasticity, as being identical with that of the
classical plate theory41 for the bending of a thin monoclinic plate or
laminate. Moreover, the matrix operators R̃ and R in Eq. (43) have
the same form for the � eld equations of all orders. Apart from Y,
which is nontrivial only for the leading order, the effective loads
on the right-hand sides of Eq. (43) only involve derivatives of the
auxiliary function H(n) with respect to x a and its integration with
respect to z. The auxiliary function of higher order may be obtained
from its preceding-order solution from Eqs. (32) and (39).

Note that expressions (39) give jumps in the electric displacement
terms of other relevant physical quantities of the same order. Thus
the order of � eld equations and the number of unknowns are not
increased. When no internal electrodes are present, Eq. (39) and all
terms involving summations in Eqs. (45) and (46) are discarded. It is
possible to apply this technique to problems of composite laminates
with weakened interfaces and delamination.

IV. Numerical Results and Discussion
To illustrate the aforestated asymptotic method, we consider a

rectangular piezoelectric plate with its edges simply supported and
grounded at x1 = 0, a and x2 = 0, b, i.e.,

u2 = u3 = s 11 = } = 0 at x1 = 0, a

u1 = u3 = s 22 = } = 0 at x2 = 0, b (47)
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The mechanical and electric loadings are speci� ed as

q §
1 = q̂ §

1 cos l1x1 sin l2x2

q §
2 = q̂ §

2 sin l1x1 cos l2x2

q §
3 = q̂ §

3 sin l1x1 sin l2x2

(i )V = (i) V̂ sin l1x1 sin l2x2 (i = 0, . . . , r + 1) (48)

l1 = m1 p /a, l2 = m2 p /b (49)

where a quantity with a superimposed hat denotes the amplitude
of the corresponding physical quantity. Various quantities may not
assume their maximum values at the same location.

The pointwise edge conditions (47) can be satis� ed by assuming

X̃
(n)

=

é
êêêêë

U (n)
1

U (n)
2

U (n)
3

D(n)
0

ùúúúúû
=

é
êêêêë

Û (n)
1 cos l1x1 sin l2x2

Û (n)
2 sin l1x1 cos l2x2

Û (n)
3 sin l1x1 sin l2x2

D̂(n)
0 sin l1x1 sin l2x2

ùúúúúû
(50)

A solution of each order may be obtained in the way described earlier
and numerical results computed to any desired degree of accuracy
for the speci� c problem.

The materials used in the paper are � ber-reinforced composite30

(FRC), lead zirconate titanate42 (PZT-4), and polyvinylidene
� uoride43 (PVDF). The material moduli of FRC, PZT-4, and PVDF
are shown inTable 1, where e 0 is the permittivity of vacuum. Because
a linear theory is used, results for complex loadings can be obtained
by a superposition of respective results in relation to simple load-
ings. Two loading conditions are examined in the following three
numerical examples. One corresponds to applied normal tractions

Table 1 Material moduli

Moduli FRC PZT-4 PVDF

c1111 , GPa 134.86 139 238.24
c2222 , GPa 14.352 139 23.6
c3333 , GPa 14.352 115 10.64
c1122 , GPa 5.1563 77.8 3.98
c1133 , GPa 5.1563 74.3 2.19
c2233 , GPa 7.1329 74.3 1.92
c2323 , GPa 3.606 25.6 2.15
c3131 , GPa 5.654 25.6 4.4
c1212 , GPa 5.654 30.6 6.43
e311, C/m2 0 ¡ 5.2 ¡ 0.13
e322, C/m2 0 ¡ 5.2 ¡ 0.145
e333, C/m2 0 15.1 ¡ 0.276
e223, C/m2 0 12.7 ¡ 0.009
e113, C/m2 0 12.7 ¡ 0.135
e 11 / e 0

a 3.5 1475 12.5
e 22 / e 0

a 3.0 1475 11.98
e 33 / e 0

a 3.0 1300 11.98

a e 0 = 8.854185 pF/m.

Table 2 Comparison of the present solutions of different orders with exact results for a hybrid
laminate (a/b = 1, a/h = 4)

Applied mechanical load Applied electric potential

Order ¯s 33(x3 = h /2) D̄3(x3 = 0) ū1(x3 = 0) ¯s 13(x3 = h /2)

0 0 ¡ 4.7548e ¡ 20 ¡ 8.3668e ¡ 14 0
1 0.50000 ¡ 1.3428e ¡ 11 ¡ 4.7860e ¡ 12 0.005044
2 0.50542 ¡ 1.4512e ¡ 11 ¡ 1.2417e ¡ 12 ¡ 0.167291
10 0.49812 ¡ 1.4231e ¡ 11 ¡ 2.5393e ¡ 12 ¡ 0.108143
20 0.49827 ¡ 1.4242e ¡ 11 ¡ 2.8202e ¡ 12 ¡ 0.097068
30 0.49829 ¡ 1.4243e ¡ 11 ¡ 2.8565e ¡ 12 ¡ 0.095635
39 0.49829 ¡ 1.4244e ¡ 11 ¡ 2.8628e ¡ 12 ¡ 0.095388
40 0.49829 ¡ 1.4244e ¡ 11 ¡ 2.8612e ¡ 12 ¡ 0.095449
6 (3 term-RA) 0.49819 ¡ 1.4242e ¡ 11 ¡ 2.8623e ¡ 12 ¡ 0.095299
10 (5 term-RA) 0.49830 ¡ 1.4246e ¡ 11 ¡ 2.8617e ¡ 12 ¡ 0.095419
Exact30 0.49831 ¡ 1.4246e ¡ 11 ¡ 2.8625e ¡ 12 ¡ 0.095464

with vanishing electric potentials and another to applied electric po-
tentials with vanishing normal tractions. For both cases m1 = m2 = 1
is used, and shear tractions on the top-most and bottom-most sur-
faces are set equal to zero, i.e., q §

a = 0. The mechanical and electric
quantities are nondimensionalized by

ūi = u i / Pa, ¯s i j = s i j / Pc ¤

¯} = e ¤ } / Pac ¤ , D̄i = Di / Pe ¤ (51)

with c ¤ = 1 N/m2 , e ¤ = 1 C/m2 , and either P = q̂3 / c ¤ for applied me-
chanical load ¡ q3 or P = V̂ (e ¤ / ac ¤ ) for applied electric potential V .

A. Hybrid Laminate
In the � rst example results obtained from the aforestated asymp-

totic approach are compared with those obtained from the exact
solution.30 A two-ply (0 deg/90 deg) piecewise homogeneous FRC
laminate with the 0-deg lamina on the top is perfectly bonded be-
tween two homogeneous PZT-4 piezoelectric layers. Thicknesses
of the PZT-4 lamina and the FRC lamina equal 0.1h and 0.4h, re-
spectively. The hybrid laminate (a / b = 1, a / h = 4) without internal
electrodes is subjected to normal traction q +

3 and electric potential
(1)V on the upper surface. Some selected results are given in Table 2,
together with the exact values.30 The order of the present solution
is increased from 0 to 40. In addition, the repeated averaging tech-
nique for n partial sums (denoted as n term RA in Table 2) is used to
accelerate the convergence of the asymptotic results. The technique
can be shown to be a special case of Euler’s transformation; more
details may be found, for example, in the book.44

The present asymptotic solution for the applied mechanical load-
ing converges more rapidly than that for the applied electric loading.
The second-order approximation for the applied mechanical load-
ing is quite good with an error of less than 2%. However, this is
not the case for the applied electric loading. The error in the 10th-
order aproximation for the applied potential is more than 10% when
these results are compared with 10th-order results obtained by us-
ing � ve-term repeated averaging. Furthermore, even for the 40th-
order solution, the value of ¯s 13 changes in the third signi� cant digit.
However, the 6th-order solution obtained by using three-term re-
peated averaging is better than 10th- and 30th-order approximation
for applied mechanical and electric loadings, respectively. Numer-
ical convergence is reached at least to four signi� cant digits for the
10th-order results with � ve-term repeated averaging, which are in
excellent agreement with the exact solution.30 In principle, results
can be computed to any desired degree of accuracy for a speci� c
problem by the present method; thus, the technique gives a pseu-
doexact solution in this sense. The slight difference between our and
Heyliger’s30 results is possibly caused by different truncation errors
in the two studies. In the results given in Figs. 1–6 and Table 3,
the repeated averaging technique is used to achieve the desired ac-
curacy.

B. Two-Layer Laminate of Dissimilar Piezoelectric Materials
A two-layer laminate of dissimilar piezoelectric materials PZT-

4/PVDF with PZT-4 on the top is considered in this example to show



322 CHENG AND BATRA

Table 3 Dimensionless midplane central de� ection
and central electric displacement jumps across

internal electrodes for an actuated laminate (a/b = 1)

a / h 108 £ ū3(0.5h) 106 £ D D̄3(0.5h § 0.4h)

4 0.2349 ¡ 0.6128
10 1.4166 ¡ 1.5338
20 5.6341 ¡ 3.0682
50 35.1561 ¡ 7.6709

Fig. 1 Through-the-thickness distribution of the amplitude of the di-
mensionless electric potential for a PZT-4/PVDF laminate under me-
chanical load q++

3 (a/b = 1).

Fig. 2 Through-the-thickness distribution of the amplitude of the di-
mensionless electric potential for a PZT-4/PVDF laminate under electric
load (1)V (a/b = 1).

Fig. 3 Through-the-thickness distribution of the amplitude ratio of the
in-plane to out-of-plane electric � eld components for a PZT-4/PVDF
laminate under electric load (1)V (a/b = 1).

Fig. 4 Through-the-thickness distribution of the amplitude of the di-
mensionless out-of-plane mechanical displacement for a PZT-4/PVDF
laminate under electric load (0)V (a/h = 10).

possible de� ciencies in the existing two-dimensional piezoelectric
plate models. Each lamina is homogeneous and of equal thickness.
The aspect ratio is taken as a /b = 1 in Figs. 1–3 and a /b = 0, 1
in Fig. 4. The span-to-thickness ratio is taken as a / h = 10, 20 in
Figs. 1–3, and a / h = 10 in Fig. 4. The only nonzero surface loading
is q +

3 applied on the upper surface for results presented in Fig. 1,
(1)V applied on the upper surface for results given in Figs. 2 and 3,
and (0) V applied on the lower surface for results exhibited in Fig. 4.
No internal electrodes are present.

The dimensionless amplitude of the through-thickness electric
potential for the two-layer PZT-4/PVDF laminate is presented in
Fig. 1 for the applied mechanical load and in Fig. 2 for the applied
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Fig. 5 Through-the-thickness distribution of the amplitude of the di-
mensionless transverse shear stress for a smart plate element (a/b = 1).

Fig. 6 Through-the-thickness distribution of the amplitude of the di-
mensionless transverse normal stress for a smart plate element (a/b = 1).

electric potential. As expected, the electric potential distributions in
Figs. 1 and 2 are nonlinear through the thickness for both moder-
ately thick (a / h = 10) and thin (a / h = 20) laminates. Therefore,
the usual assumption, made in existing piezoelectric laminate the-
ories, that the electric potential is represented by a continuously
differentiable function through-the-plate thickness is not appropri-
ate. However, it is more reasonable to model the electric potential
by assuming a piecewise quadratic distribution for the applied me-
chanical load case (see Fig. 1) and a piecewise linear distribution for
the applied potential case (see Fig. 2). In the three-layer cross-ply
simply supported square plate with the stacking sequence [0/ 90/0]
made of PVDF, Heyliger31 found that the through-thickness dis-
tribution of the electric potential is nearly parabolic when normal
tractions are applied on the top and/or bottom surfaces of the plate.
However, it is almost linear when an electric potential is applied
across these surfaces. In each case the curve can be represented by

a continuously differentiable function. Thus the through-thickness
variation of the electric potential in a laminated piezoelectric plate
depends upon the loads on its top and bottom surfaces, the stacking
sequence, and the relative anisotropy of the adjoining laminae.

An exact analytical solution for a single-layer thin plate45 has
revealed that it is reasonable to neglect in-plane components of the
electric � eld in some of two-dimensional thin piezoelectric plate
theories if the transverse electric displacements on the upper and
lower surfaces of a plate are equal. This is justi� ed because the ratio
of the in-plane to out-of-plane components of the electric � eld is of
the order of the plate thickness parameter, which is a small quantity.
However, for plates where the transverse electric displacements on
the top and bottom surfaces are unequal, the thin piezoelectric plate
models are not appropriate as they have neglected the in-plane elec-
tric � eld components, which, compared with the transverse electric
� eld, are of the order of the reciprocal of the plate thickness param-
eter. This becomes clear from the numerical results given in Fig. 3,
where the through-thickness distribution of the amplitude ratio of
in-plane to out-of-plane electric � eld components Ê a / Ê3, which is
discontinous at the PZT-4/PVDF interface, is shown. We notice that
although the in-plane electric � eld components are negligibly small
in the PVDF layer they are more signi� cant than the transverse elec-
tric � eld component in the PZT-4 layer. Consequently, the assump-
tion of negligible in-plane electric � eld components is not valid.

Figure 4 shows the through-thickness distribution of the ampli-
tude of the out-of-plane mechanical displacement. The distribution
is approximately piecewise linear through the plate thickness. Thus
the approximation of constant through-the-thickness distribution of
the out-of-plane displacement made in existing two-dimensional
piezoelectric plate theories is not satisfactory at least for a two-layer
laminate of dissimilar piezoelectric materials.

C. Laminate with Af� xed Actuators
The last example considers an elastic laminate with actuators

bonded symmetrically to its top and bottom surfaces. This smart
structural element is chosen to have the same con� guration as the
four-ply (PZT-4/ 0-deg FRC/90-deg FRC/PZT-4) hybrid laminate
studied in the � rst example, and the distributions of the transverse
shear stress and the normal stress through-the-plate thickness are ex-
amined for a / h = 4 and 10. Because the electric voltage is applied
to the surfaces of an actuator, two internal conducting electrodes
on the inner surfaces of the PZT-4 actuators are incorporated. Ac-
cordingly, four electrodes of vanishing thicknesses are present. The
amplitudes of the electric potentials on these electrodes are speci� ed
as V̂ , 0, 0, and V̂ at x3 = 0, h /10, 9h /10, and h, respectively.

The dimensionless midplane central de� ection and the jump in
the central electric displacement across the internal electrodes for
a / h = 4, 10, 20, and 50 are listed in Table 3. The midplane central
de� ection increases very rapidly as the thickness of the plate is de-
creased. The magnitude of the jump in the central electric displace-
ment is essentially proportional to a / h for the four cases studied.
The through-thickness distribution of the nondimensional transverse
shear stress, depicted in Fig. 5, is virtually the same for a / h = 4 and
10, is continuous across the interfaces, and its maximum value oc-
curs at the interface between the substrate and the top actuator. For
the problem studied herein delamination will � rst occur at this inter-
face. For two plates of equal thickness, the dimensional transverse
shear stress will be inversely proportional to an in-plane dimension.
However, the through-thickness distribution of the normal stress,
exhibited in Fig. 6, is strongly in� uenced by the aspect ratio a / h of
the plate. The boundary conditions at the top and bottom surfaces
required that ˆs 33 vanish there, and the continuity of ˆs 33 across the
interfaces is well satis� ed. For a thick plate with a / h = 4, the mag-
nitude of the normal stress is maximum at x3 / h ’ 0.225 and 0.775.

V. Conclusions
We have presented an ef� cient and reliable asymptotic scheme

that reduces a three-dimensional coupled electromechanical
problem of a laminated piezoelectric plate to a hierarchy of
two-dimensional plate equations that can be solved systematically
without progressively increasing dif� culty. The incorporation of
internal electrodes into the analysis is one of the novel aspects and
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enlarges the applicability of the present formulation to a wide range
of practical problems. Numerical results show excellent agreement
with available exact solutions and bring out some of the de� ciencies
in existing two-dimensional piezoelectric plate models. The method
satis� ed the continuity of surface tractions at the interfaces and can
account for the jump in the normal electric displacement across the
internal electrodes.

The computation of higher-order terms in the expansion requires
the knowledge of the relevant boundary conditions,26 which could be
obtained by studying the boundary-layer effects along the contour
of the plate. Admittedly, this is a dif� cult problem. However, by
specifying the boundary conditions of each order on the reference
plane of a plate, the solution in the interior of the plate is expected
to be suf� ciently satisfactory for most engineering problems.

Acknowledgments
This work was partially supported by Army Research Of� ce

Grant DAAG55-98-1-0030 and National Science Foundation Grant
CMS9713453 to Virginia Polytechnic Institute and State University.

References
1Crawley, E. F., “Intelligent Structures for Aerospace: A Technology

Overview and Assessment,” AIAA Journal, Vol. 32, No. 8, 1994, pp. 1689–

1699.
2Crawley, E. F., and de Luis, J., “Use of Piezoelectric Actuators as Ele-

ments of Intelligent Structures,” AIAA Journal, Vol. 25, No. 10, 1987, pp.
1373 –1385.

3Koconis, D. B., Kollár, L. P., and Springer, G. S., “Shape Control of Com-
posite Plates and Shells with Embedded Actuators. I. Voltages Speci� ed,”
Journal of Composite Materials, Vol. 28, No. 5, 1994, pp. 415–458.

4Koconis, D. B., Kollár, L. P., and Springer, G. S., “Shape Control of
Composite Plates and Shells with Embedded Actuators. II. Desired Shape
Speci� ed,” Journal of Composite Materials, Vol. 28, No. 5, 1994, pp. 459–

482.
5Zhou, Y. S., and Tiersten, H. F., “Elastic Analysis of Laminated Com-

posite Plates in Cylindrical Bending due to Piezoelectric Actuators,” Smart
Materials and Structures, Vol. 3, No. 3, 1994, pp. 255–265.

6Batra, R. C., Liang, X. Q., and Yang, J. S., “Shape Control of Vibrating
Simply Supported Rectangular Plates,” AIAA Journal, Vol. 34, No. 1, 1996,
pp. 116–122.

7Batra, R. C., Liang, X. Q., and Yang, J. S., “The Vibration of a Sim-
ply Supported Rectangular Elastic Plate due to Piezoelectric Actuators,”
International Journal of Solids and Structures, Vol. 33, No. 11, 1996, pp.
1597 –1618.

8Batra, R. C., and Liang, X. Q., “The Vibration of a Rectangular Lam-
inated Elastic Plate with Embedded Piezoelectric Sensors and Actuators,”
Computers and Structures, Vol. 63, No. 2, 1997, pp. 203–216.

9Lee, C. K., “Theory of Laminated Piezoelectric Plates for the Design
of Distributed Sensors/Acuators. Part I: Governing Equations and Recipro-
cal Relationships,” Journal of the Acoustical Society of America, Vol. 87,
No. 3, 1990, pp. 1144–1158.

10Wang, B. T., and Rogers, C. A., “Laminated Theory for Spatially Dis-
tributed Induced Strain Actuators,” Journal of Composite Materials, Vol. 25,
No. 4, 1991, pp. 433–453.

11Tauchert, T. R., “Piezothermoelastic Behavior of a Laminated Plate,”
Journal of Thermal Stresses, Vol. 15, No. 1, 1992, pp. 25–37.

12Yong, Y. K., Stewart, J. T., and Ballato, A., “A Laminated Plate Theory
for High Frequency, PiezoelectricThin-Film Resonators,” Journal of Applied
Physics, Vol. 74, No. 5, 1993, pp. 3028–3046.

13Tzou, H. S., Piezoelectric Shells: Distributed Sensing and Control of
Continua, Kluwer Academic, Norwell, MA, 1993.

14Mitchell, J. A., and Reddy, J. N., “A Re� ned Hybrid Plate Theory for
Composite Laminates with Piezoelectric Laminae,” International Journal
of Solids and Structures, Vol. 32, No. 16, 1995, pp. 2345–2367.

15Huang, J. H., and Wu, T. L., “Analysis of Hybrid Multilayered Piezo-
electric Plates,” International Journal of Engineering Science, Vol. 34, No. 2,
1996, pp. 171–181.

16Noor, A. K., and Burton, W. S., “Assessment of Shear Deformation
Theories for Multilayered Composite Plates,” Applied Mechanics Reviews,
Vol. 42, No. 1, 1989, pp. 1–13.

17Reddy, J. N., and Robbins, D. H., Jr., “Theories and Computational
Models for Composite Laminates,” Applied Mechanics Reviews, Vol. 47,
No. 6, 1994, pp. 147–169.

18Wang, Y. M., and Tarn, J. Q., “A Three-Dimensiona l Analysis of
Anisotropic Inhomogeneous and Laminated Plates,” International Journal
of Solids and Structures, Vol. 31, No. 4, 1994, pp. 497–515.

19Tarn, J. Q., “An Asymptotic Theory for Dynamic Response of
Anisotropic Inhomogeneou s and Laminated Cylindrical Shells,” Journal of

the Mechanics and Physics of Solids, Vol. 42, No. 10, 1994, pp. 1633–1650.
20Tarn, J. Q., “Elastic Buckling of Multilayered Anisotropic Plates,” Jour-

nal of theMechanicsand Physics of Solids, Vol. 44, No. 3, 1996, pp. 389–411.
21Tarn, J. Q., “An Asymptotic Variational Formulation for Dynamic Anal-

ysis of Multilayered Anisotropic Plates,” Computer Methods in Applied Me-
chanics and Engineering, Vol. 130, Nos. 3–4, 1996, pp. 337–353.

22Tarn, J. Q., “An Asymptotic Theory for Nonlinear Analysis of Multi-
layered Anisotropic Plates,” Journal of the Mechanics and Physics of Solids,
Vol. 45, No. 7, 1997, pp. 1105–1120.

23Tarn, J. Q., and Wang, Y. M., “An Asymptotic Theory for Dynamic Re-
sponse of Anisotropic Inhomogeneou s and Laminated Plates,” International
Journal of Solids and Structures, Vol. 31, No. 2, 1994, pp. 231–246.

24Tarn, J. Q., and Wang, Y. M., “Asymptotic Thermoelastic Analysis
of Anisotropic Inhomogeneou s and Laminated Plates,” Journal of Thermal
Stresses, Vol. 18, No. 1, 1995, pp. 35–58.

25Tarn, J. Q., and Wang, Y. B., “A Re� ned Asymptotic Theory and Com-
putational Model for Multilayered Composite Plates,” Computer Methods
in Applied Mechanics and Engineering , Vol. 145, Nos. 1–2, 1997, pp. 167–

184.
26Maugin, G. A., and Attou, D., “An Asymptotic Theory of Thin Piezo-

electric Plates,” Quarterly Journal of Mechanics and Applied Mathematics,
Vol. 43, No. 3, 1990, pp. 347–362.

27Bisegna, P., and Maceri, F., “A Consistent Theory of Thin Piezoelectric
Plates,” Journal of Intelligent Material Systems and Structures, Vol. 7, No.
4, 1996, pp. 372–389.

28Pagano, N. J., “Exact Solutions for Composite Laminates in Cylindrical
Bending,” Journal of Composite Materials, Vol. 3, No. 3, 1969, pp. 398–411.

29Pagano, N. J., “Exact Solutions for Rectangular Bi-Directional Com-
posites and Sandwich Plates,” Journal of Composite Materials, Vol. 4, No.
1, 1970, pp. 20–34.

30Heyliger, P., “Static Behavior of Laminated Elastic/Piezoelectric
Plates,” AIAA Journal, Vol. 32, No. 12, 1994, pp. 2481–2484.

31Heyliger, P., “Exact Solutions for Simply Supported Laminated Piezo-
electric Plates,” Journal of Applied Mechanics, Vol. 64, No. 2, 1997, pp.
299–306.

32Heyliger, P., and Brooks, S., “Exact Solutions for Laminated Piezoelec-
tric Plates in Cylindrical Bending,” Journal of Applied Mechanics, Vol. 63,
No. 4, 1996, pp. 903–910.

33Nowotny, H., Benes, E., and Schmid, M., “Layered Piezoelectric Res-
onators with an Arbitrary Number of Electrodes (General One-Dimensiona l
Treatment),” Journal of the Acoustical Society of America, Vol. 90, No. 3,
1991, pp. 1238–1245.

34Sosa, H. A., “On the Modeling of Piezoelectric Laminated Structures,”
Mechanics Research Communications, Vol. 19, No. 6, 1992, pp. 541–546.

35Stewart, J. T., and Yong, Y. K., “Exact Analysis of the Propagation
of Acoustic Waves in Multilayered Anisotropic Piezoelectric Plates,” IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.
41, No. 3, 1994, pp. 375–390.

36Xu, K. M., Noor, A. K., and Tang, Y. Y., “Three-Dimensiona l Solutions
for Coupled Thermoelectroelastic Response of Multilayered Plates,” Com-
puter Methods in Applied Mechanics and Engineering, Vol. 126, Nos. 3–4,
1995, pp. 355–371.

37Xu, K. M., Noor, A. K., and Tang, Y. Y., “Three-Dimensiona l Solutions
for Free Vibrations of Initially-Stressed Thermoelectroelastic Multilayered
Plates,” Computer Methods in Applied Mechanics and Engineering, Vol.
141, Nos. 1–2, 1997, pp. 125–139.

38Lee, J. S., and Jiang, L. Z., “Exact Electroelastic Analysis of Piezoelec-
tric Laminae via State Space Approach,” International Journal of Solids and
Structures, Vol. 33, No. 7, 1996, pp. 977–990.

39Tiersten, H. F., Linear Piezoelectric Plate Vibrations, Plenum, New
York, 1969.

40Maugin, G. A., Continuum Mechanics ofElectromagnetic Solids, North-
Holland, Amsterdam, 1988.

41Reddy, J. N., Mechanics of Laminated Composite Plates: Theory and
Analysis, CRC Press, Boca Raton, FL, 1997.

42Berlincourt, D. A., Curran, D. R., and Jaffe, H., “Piezoelectric and
Piezomagnetic Materials and Their Function in Transducers,” Physical
Acoustics, Vol. 1, edited by W. P. Mason, Academic, New York, 1964, pp.
169–270.

43Tashiro, K., Tadokoro, H., and Kobayashi , M., “Structure and Piezo-
electricity of Poly (Vinylidene Fluoride),” Ferroelectrics, Vol. 32, Nos. 1–4,
1981, pp. 167–175.

44Dahlquist, G., and Björck, ÊA., Numerical Methods, Prentice–Hall, Up-
per Saddle River, NJ, 1974.

45Bisegna, P., and Maceri, F., “An Exact Three-Dimensional Solution
for Simply Supported Rectangular Piezoelectric Plates,” Journal of Applied
Mechanics, Vol. 63, No. 3, 1996, pp. 628–638.

A. M. Waas
Associate Editor

http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-5096^281994^2942:10L.1633[aid=530,csa=0022-5096^26vol=42^26iss=10^26firstpage=1633]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-9983^281994^2928:5L.459[aid=516]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-9983^281994^2928:5L.415[aid=515]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-9983^281994^2928:5L.459[aid=516]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0964-1726^281994^293:3L.255[aid=517,csa=0964-1726^26vol=3^26iss=3^26firstpage=255]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-1452^281996^2934:1L.116[aid=518,csa=0001-1452^26vol=34^26iss=1^26firstpage=116]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0020-7683^281996^2933:11L.1597[aid=519]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0045-7949^281997^2963:2L.203[aid=520]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-8979^281993^2974:5L.3028[aid=524]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0020-7683^281995^2932:16L.2345[aid=525]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0020-7225^281996^2934:2L.171[aid=526]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0020-7683^281994^2931:4L.497[aid=529,csa=0020-7683^26vol=31^26iss=4^26firstpage=497]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-5096^281994^2942:10L.1633[aid=530,csa=0022-5096^26vol=42^26iss=10^26firstpage=1633]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-5096^281996^2944:3L.389[aid=531,csa=0022-5096^26vol=44^26iss=3^26firstpage=389]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-5096^281997^2945:7L.1105[aid=532]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0149-5739^281995^2918:1L.35[aid=534,csa=0149-5739^26vol=18^26iss=1^26firstpage=35]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1045-389X^281996^297:4L.372[aid=536,csa=1045-389X^26vol=7^26iss=4^26firstpage=372]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-1452^281994^2932:12L.2481[aid=539,csa=0001-1452^26vol=32^26iss=12^26firstpage=2481]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-8936^281997^2964:2L.299[aid=540]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-8936^281996^2963:4L.903[aid=541]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-4966^281991^2990:3L.1238[aid=542,csa=0001-4966^26vol=90^26iss=3^26firstpage=1238]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0885-3010^281994^2941:3L.375[aid=544]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0020-7683^281996^2933:7L.977[aid=545]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0964-1726^281994^293:3L.255[aid=517,csa=0964-1726^26vol=3^26iss=3^26firstpage=255]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-1452^281996^2934:1L.116[aid=518,csa=0001-1452^26vol=34^26iss=1^26firstpage=116]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0020-7683^281996^2933:11L.1597[aid=519]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-8979^281993^2974:5L.3028[aid=524]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0020-7683^281995^2932:16L.2345[aid=525]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0020-7225^281996^2934:2L.171[aid=526]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0020-7683^281994^2931:4L.497[aid=529,csa=0020-7683^26vol=31^26iss=4^26firstpage=497]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-5096^281996^2944:3L.389[aid=531,csa=0022-5096^26vol=44^26iss=3^26firstpage=389]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-5096^281997^2945:7L.1105[aid=532]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0149-5739^281995^2918:1L.35[aid=534,csa=0149-5739^26vol=18^26iss=1^26firstpage=35]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1045-389X^281996^297:4L.372[aid=536,csa=1045-389X^26vol=7^26iss=4^26firstpage=372]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-8936^281997^2964:2L.299[aid=540]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-8936^281996^2963:4L.903[aid=541]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-4966^281991^2990:3L.1238[aid=542,csa=0001-4966^26vol=90^26iss=3^26firstpage=1238]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0885-3010^281994^2941:3L.375[aid=544]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0020-7683^281996^2933:7L.977[aid=545]
http://lucia.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0885-3010^281994^2941:3L.375[aid=544]

