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Cylindrical Bending of Laminated Plates with Distributed
and Segmented Piezoelectric Actuators/Sensors

Senthil S. Vel¤ and R. C. Batra†

Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

The generalized plane quasistatic deformations of linear piezoelectric laminated plates are analyzed by the
Eshelby–Stroh formalism. The laminate consists of homogeneous elastic or piezoelectric laminae of arbitrary
thickness and width. The three-dimensional differential equations of equilibrium for a piezoelectric body are
exactly satis� ed at every point in the body. The analytical solution is in terms of an in� nite series; the continuity
conditions at the interfaces between adjoining laminae and boundary conditions at the edges are satis� ed in the
sense of Fourier series. The formulation admits different boundary conditions at the edges and is applicable to
thick and thin laminated plates. Results are presented for laminated elastic plates with a distributed piezoelectric
actuator on the upper surface and a sensor on the lower surface and subjected to different sets of boundary
conditions at the edges. Results are also provided for a piezoelectric bimorph and an elastic plate with segmented
piezoelectric actuators bonded to its upper and lower surfaces.

I. Introduction

I N recent years piezoelectric materials have been integrated with
structural systems to form a class of smart structures. The piezo-

electric materials are capable of altering the structure’s response
through sensing, actuation, and control. By integrating surface-
bonded and embedded actuators into structural systems, desired lo-
calized strains may be induced by applying the appropriate voltage
to the actuators.

Initial investigations of piezoelectric materials as actuators in-
volved the control of vibrations of beams.1 – 3 To successfully in-
corporate piezoelectric actuators into structures, the mechanical
interaction between the actuators and the base structure must be fully
understood. Mechanical models have been developed by Crawley
and de Luis,3 Crawley and Anderson,4 Im and Atluri,2 and others for
studying the interaction of piezoelectric patches surface-mounted to
beams. Lee,5 Wang and Rogers,6 and Mitchell and Reddy7 have de-
veloped plate theories for composite laminates with piezoelectric
actuators. Tzou and Zhong8 have developed a � rst-order shear de-
formation theory for piezoelectric shells. Numerous � nite element
studies have also been conducted (e.g., see Refs. 9–13).

Pagano14 , 15 obtained analytical solutions for simply supported
linear elastic laminated plates. His method has been extended by nu-
merous researchers to study the deformations of simply supported
linear elastic laminated plates with embedded or surface-mounted
distributed piezoelectric actuators (e.g., see Ray et al.,16 – 18 Heyliger
and Brooks,19 Brooks and Heyliger,20 Zhou and Tiersten,21 and Yang
et al.22). These solution techniques are valid only when the edges are
simply supported, electrically grounded, and all layers are of equal
width. Thus they are incapable of analyzing laminates with seg-
mented actuators and/or when edges of the plate are either clamped
or traction free. Brooks and Heyliger20 and Batra et al.23 simulate
a segmented piezoelectric actuator by applying an electric potential
only over a part of a distributed piezoelectric actuator.

Vel and Batra24 have used the Eshelby–Stroh formalism to an-
alyze the generalized plane strain deformations of laminated elas-
tic plates subjected to arbitrary boundary conditions. Here we ex-
tend it to obtain analytical solutions for displacements, stresses, and
electric � elds for laminated plates with piezoelectric actuators and
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sensors. The piezoelectric layers are treated as an integral part of
the structure. A novel feature of the present method is its ability
to analyze laminated plates with segmented actuators and sensors.
As illustrated by the results for clamped-clamped and cantilever
laminates, our formulation admits different boundary conditions.
Three-dimensional equilibrium equations of linear piezoelectricity
simpli� ed to the case of generalized plane-strain deformations are
solved by the Eshelby–Stroh formalism. Thus the governing equa-
tions are exactly satis� ed, and various constants in the general solu-
tion are determined from the boundary and the continuity conditions
at the interfaces. This results in an in� nite system of equations in
in� nitely many unknowns . The truncation of this set of equations
inevitably introduces some errors that can be minimized by increas-
ing the number of terms in the series. The procedure is illustrated by
computing results for the cylindrical bending of laminated elastic
plates with a distributed piezoelectric actuator on the upper surface
and a sensor on the lower surface and subjected to different sets of
boundary conditions. Results are also provided for a piezoelectric
bimorph and an elastic plate with segmented piezoelectric actuators
bonded to its upper and lower surfaces. These results could be used
to assess the accuracy of different plate theories and/or validating
� nite element codes.

II. Formulation of the Problem
We use a rectangular Cartesian coordinate system, shown in

Fig. 1, to describe the in� nitesimal quasistatic deformations of
a piezoelectric laminate occupying the region [L (1) , L (N1 + 1)] £
( ¡ 1 , 1 ) £ [H (1) , H (N3 + 1) ] in the unstressed reference con-
� guration. Planes x3 = H (1) , . . . , H (n3) , . . . , H (N3 + 1) describe the
bottom bounding surface, the horizontal interfaces between
adjoining laminae, and the top bounding surface. Planes
x1 = L (1) , . . . , L (n1 ) , . . . , L (N1 + 1) are respectively the left bounding
surface, the vertical interfaces between adjoining laminae, and the
right bounding surface. If the region [L (n1 ) , L (n1 + 1)] £ ( ¡ 1 , 1 ) £
[H (n3 ) , H (n3 + 1) ] is occupied by material, we refer to it as the
(n1 , n3)th lamina.

The equilibrium equations in the absence of body forces and free
charges are

r i j, j = 0, Di,i = 0 (i, j = 1, 2, 3) (1)

where r i j is the Cauchy stress tensor and Di the electric displace-
ment. A comma followed by index j indicates partial differentiation
with respect to the present position x j of a material particle, and a
repeated index implies summation over the range of the index.

The constitutive equations of a linear piezoelectric medium are25

r i j = Ci j kl uk ,l ¡ eki j Ek , Di = eikl uk ,l + ²i k Ek (2)
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Fig. 1 Piezoelectric laminated plate.

where uk is the mechanical displacement, Ek the electric � eld, Ci j kl

the elasticity tensor, eki j the piezoelectric moduli, and ²ik the elec-
tric permittivity. The electric � eld is related to the electric potential
u by Ei = ¡ u ,i . We will interchangeably use the direct and indi-
cial notation. The material constants are assumed to exhibit the
following symmetries Ci jkl = C j ikl = Ckli j and eki j = ek ji . Material
elasticities are assumed to yield a positive strain energy density for
every nonrigid deformation of the body, that is,

Ci j klu i, j uk ,l > 0 if u i, j + u j,i 6= 0 (3)

Moreover ²ik is positive de� nite in the sense that ²i j Ei E j > 0 for
arbitrary real nonzero Ei .

The boundary or material interface conditions on the surface
x3 = H (n3) of the (n1, n3)th lamina may be speci� ed as follows:

1) If the surface is an interface between two laminae, then dis-
placements, surface tractions, electric potential, and the normal
component of the electric displacement between them are taken
to be continuous, that is,

[[u]] = 0, [[¾3]] = 0, [[u ]] = 0

[[D3]] = 0 on x3 = H (n3) (4)

Here [[ ]] denotes the jump in the value of across an interface
and

(¾k )i = r ik (5)

Thus the adjoining laminae are presumed to be perfectly bonded
together.

2) If the surface is an electroded interface, then the potential on
this surface is a known function f (x1) while the normal compo-
nent of the electric displacement need not be continuous across this
interface, i.e.,

[[u]] = 0, [[¾3]] = 0, u = f (x1) on x3 = H (n3) (6)

We assume that the electrode is of negligible thickness and ignore
its mechanical in� uence on the structure.

3) If the surface is not in contact with any other lamina, then
boundary conditions are speci� ed as

J
³

u
u

´
+ Ĵ

³
¾3

D3

´
= f (x1) on x3 = H (n3) (7)

The function f (x1) is prescribed, and J, Ĵ are 4 £ 4 diagonal ma-
trices with their elements functions of at most x1 . For most ap-
plications these diagonal matrices have entries either zero or one
such that J + Ĵ = I, where I is the 4 £ 4 identity matrix. For exam-
ple, if the surface is electroded and the traction is prescribed, then
J = diag[0, 0, 0, 1], and Ĵ = diag[1, 1, 1, 0].

The boundary/interface conditions may be similarly speci� ed
on the other three bounding surfaces x3 = H (n3 + 1) , x1 = L (n1) , and
x1 = L (n1 + 1) . Note that our problem formulation allows for the
length of a lamina to be less than the span L of the plate. Said differ-
ently, the region H (n3) · x3 · H (n3 + 1) , 0 · x1 · L could be divided
into several sections by vertical planes with each section made of a
different material.

We postulate that the displacement u and the electrical potential
u are functions of x1 and x3 only, and thus the deformations of the
laminate correspond to generalized plane state of deformation. This
assumption is reasonable because the applied loads (mechanical
and electrical) and material properties are independent of x2 , and
the body is of in� nite extent in the x2 direction.

III. Solution of the Problem
We use the Eshelby–Stroh26 , 27 formalism as described by Ting28

to obtain a general solution of Eqs. (1) and (2). Boundary con-
ditions (7) or interface conditions (4) or (6) will be used to � nd
unknown constants in the general solution. We construct a lo-
cal coordinate system x (n1 ,n3 )

1 , x (n1 ,n3 )
2 , x (n1 ,n3)

3 with origin at the
point [L (n1) , 0, H (n3 )] in the global coordinate system and the lo-
cal axes parallel to the global axes. The length and thickness
of the (n1, n3)th lamina are denoted by l (n1 ,n3) = L (n1 + 1) ¡ L (n1 ) ,
h (n1 ,n3 ) = H (n3 + 1) ¡ H (n3) . In this section we drop the superscripts
(n1 , n3) for convenience, understanding that all material constants
and unknowns belong to this lamina.

A. General Solution
Assume that

³
u
u

´
= a f (z) (8)

where z = x1 + p x3 , f is an arbitrary analytic function, and a, p
are possible complex constants to be determined. Substitution of
Eq. (8) into Eq. (2) and the result into Eq. (1) gives

D( p)a = 0 (9)

where

D( p) = Q + p(R + RT ) + p2T

Q =

"
QE e11

eT
11 ¡ ²11

#
, R =

"
RE e31

eT
13 ¡ ²13

#
, T =

"
TE e33

eT
33 ¡ ²33

#

Q E
ik = Ci1k1, RE

ik = Ci1k3, T E
i k = Ci3k3, (ei j )k = ei jk

(10)

Problem (9) can be stated as the following algebraic eigenvalue
problem:

N
³
a

b

´
= p

³
a

b

´
(11)

where

N =

³ ¡ T ¡ 1RT T ¡ 1

RT ¡ 1RT ¡ Q ¡ RT ¡ 1

´

b = (RT + pT)a = ¡ (1/ p)(Q + pR)a (12)

Because Ci jkl and ²ik are positive de� nite, p cannot be real.28 There
are eight eigenvalues consisting of four pairs of complex conjugates.
Let ( p a , a a ), ( a = 1, 2, . . . , 8) be eigensolutions of Eq. (11) such
that

Im( p a ) > 0, p a + 4 = p̄ a , aa + 4 = ā a ( a = 1, 2, 3, 4)

(13)

where p̄ a is the complex conjugate of pa .
Assuming that the eigenvalues p a are distinct, a general solution

of Eqs. (1) and (2) obtained by superposing eight solutions of the
form (8) is

³
u
u

´
=

4X

a = 1

[aa f a (z a ) + āa f a + 4( z̄ a )] (14)

where f a ( a = 1, 2, . . . , 8) are arbitrary analytic functions of their
arguments and z a = x1 + p a x3 .
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Substitution of Eq. (14) into Eq. (2) yields
³

¾1

D1

´
=

4X

a = 1

[ ¡ p a b a f 0
a (z a ) ¡ p̄ a b̄a f 0

a + 4( z̄ a )]

³
¾3

D3

´
=

4X

a = 1

[b a f 0
a (z a ) + b̄ a f 0

a + 4(z̄ a )] (15)

B. General Solution for Degenerate Piezoelectric Materials
The general solution just given is applicable for materials that

posses distinct eigenvalues p a ( a = 1, 2, 3, 4). When one of the
eigenvalues, say p1 , is repeated twice, there may or may not be two
corresponding independent eigenvectors. If there exist two inde-
pendent eigenvectors a1 and a2 associated with p1, then the general
solution may be written as Eqs. (14) and (15) with p2 set equal to
p1 .

If there exists only one independent eigenvector a1 associated
with the double root p1, then a second independent solution is

³
u
u

´
=

d
dp1

[a1 f2(z1)] =
da1

dp1
f2(z1) + a1

d f2(z1)
dp1

(16)

where da1 /dp1 is obtained by differentiating Eq. (9):

D
da1

dp1
+

dD
dp1

a1 = 0 (17)

The existence of a solution of Eq. (9) and (17) for a1 and da1 /dp1

has been discussed by Yang et al.29 and Dempsey and Sinclair.30

Yang et al.29 have shown that a nontrivial solution exists for a1 and
da1 / dp1 . Therefore, the general solution is

³
u
u

´
=

4X

a = 1

[a a f a (z a ) + ā a f a + 4(z̄ a )] + a1
d f2(z1)

dp1
+ ā1

d f6(z̄1)

d p̄1

(18)

where p2 , z2, and a2 are de� ned to be equal to p1, z1 , and da1 / dp1,
respectively. The corresponding general solution for the stress tensor
and electric displacement is obtained by substituting Eq. (18) into
Eq. (2). Degenerate materials with eigenvalues repeated three or
four times can be similarly analyzed.

C. Series Solution
Even though Eq. (14) satis� es the equilibrium equations (1) for all

choices of the analytic functions f a , a choice based on the geometry
of the problem and boundary conditions will simplify the work
involved in solving a particular boundary-value problem. We select
for the (n1 , n3)th lamina

f a (z a ) =
1X

m = 0

©
v (1)

m a exp( g m a z a ) + w (1)
m a exp[g m a (l ¡ z a )]

ª

+
1X

k = 0

©
v (3)

k a exp( k k a z a ) + w (3)
k a exp[k k a ( p a h ¡ z a )]

ª

f a + 4(z̄ a ) = f a (z a ) ( a = 1, 2, 3, 4) (19)

where z a = x1 + pa x3 , 0 · x1 · l, 0 · x3 · h,

g m a =

8
>><

>>:

¡
m0 p i

p a h
if m = 0

¡ m p i

pa h
if m ¸ 1

, k k a =

8
>><

>>:

k0 p i

l
if k = 0

k p i

l
if k ¸ 1

(20)

i =
p

¡ 1 and m0, k0 2 (0, 1). The functions involving m0 and k0

play the role of the constant term in a Fourier series expansion.
The function exp( g m a z a ) in Eq. (19) varies sinusoidally on the

surface x1 = 0 of the (n1, n3)th lamina and decays exponentially in
the x1 direction. With increasing k, higher harmonics are introduced
on the surface x1 = 0 accompanied by steeper exponential decay in
the x1 direction. Similarly, functions exp[g m a (l ¡ z a )], exp( k k a z a )

and exp[k k a ( pa h ¡ z a )] vary sinusoidally on surfaces x1 = l, x3 = 0,
and x3 = h, respectively. The inequality in Eq. (13)1 ensures that all
functions decay exponentially toward the interior of the lamina. The
choice (19)2 for f a + 4(z̄ a ) ensures that the mechanical displacement,
stress tensor, electric potential, and electric displacement are real
valued.

The unknowns v (s)
k a , w (s)

k a , (s = 1, 3) are assumed to be complex
for k 6= 0 and real when k = 0. The superscript s indicates that the
exponential function associated with the unknown has a sinusoidal
variation on the surface xs = constant. For nondegenerate materi-
als substitution for f a from Eq. (19) into Eq. (14) results in the
following expression for the mechanical displacement and electric
potential:

³
u
u

´
= A

±±
1X

m = 0

©
h exp( g m ¤ z ¤ ) i v(1)

m + h exp[g m ¤ (l ¡ z ¤ )] i w(1)
m

ª

+
1X

k = 0

©
h exp( k k ¤ z ¤ ) i v(3)

k + h exp[k k ¤ ( p ¤ h ¡ z ¤ )] i w(3)
k

ª
!!

+ conjugate (21)

where

A = [a1, a2, a3, a4], h g(z ¤ ) i = diag[g(z1), g(z2), g(z3), g(z4)]
£
v(s )

m

¤
a = v (s)

m a ,
£
w(s)

m

¤
a = w (s )

m a , a = 1, . . . , 4

and conjugate stands for the complex conjugate of the explicitly
stated terms. The following expressions for stress components and
electric displacement for nondegenerate materials are obtained by
substituting Eq. (19) into Eq. (15):

³
¾1

D1

´
= B

±±
1X

m = 0

©
¡ h p¤ g m ¤ exp( g m ¤ z ¤ ) i v(1)

m

+ h p ¤ g m ¤ exp[g m ¤ (l ¡ z ¤ )] i w(1)
m

ª

+
1X

k = 0

©
¡ h p ¤ k k ¤ exp( k k ¤ z ¤ ) i v(3)

k

+ h p ¤ k k ¤ exp[k k ¤ ( p ¤ h ¡ z ¤ )] i w(3)
k

ª
!!

+ conjugate (22)

³
¾3

D3

´
= B

±±
1X

m = 0

©
h g m ¤ exp( g m ¤ z ¤ ) i v(1)

m

¡ h g m ¤ exp[g m ¤ (l ¡ z ¤ )] i w(1)
m

ª

+
1X

k = 0

©
h k k ¤ exp( k k ¤ z ¤ ) i v(3)

k ¡ h k k ¤ exp[k k ¤ ( p ¤ h ¡ z ¤ )] i w(3)
k

ª
!!

+ conjugate (23)

where B = [b1 , b2 , b3 , b4].
For degenerate materials the expressions (19) for analytic func-

tions f a remain the same, but the expressions for the mechanical
displacement and electric potential are obtained by substituting for
f a from Eq. (19) into Eq. (18) instead of Eq. (14).

IV. Satisfaction of Boundary and Interface Conditions
Each lamina has its own set of unknowns v(s)

k , w(s)
k (s = 1, 3).

These unknowns are determined by imposing the interface con-
tinuity conditions and boundary conditions on all surfaces of the
laminate by the classical Fourier series method. For example, let
boundary conditions (7)be speci� ed on the surface x (1,1)

3 = 0 of lam-
ina (1, 1). We multiply Eq. (7) by exp[ j p i x (1,1)

1 / l (1, 1)] and integrate
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with respect to x (1, 1)
1 from ¡ l (1,1) to l (1,1) to obtain

Z l(1,1)

¡ l (1,1)

(
J(1,1)

³
u
u

(́1, 1)

+ Ĵ
(1, 1)

³
¾3

D3

(́1,1)

¡ f (1,1)
£
x (1,1)

1

¤
)

£ exp

"
j
p i x (1,1)

1

l (1,1)

#
dx (1,1)

1 = 0 (24)

on x (1, 1)
3 = 0 for j = 0, 1, 2, . . . . In Eq. (24) the functions multi-

plying the coef� cients v(3)
k , w(3)

k (k 6= 0) of the (1, 1) lamina have a
sinusoidal variation in the x1 direction and are extended over the in-
terval [ ¡ l (1,1) , 0] without modi� cation because they form the basis
functions on this surface. The functions multiplying v(1)

k , w(1)
k have

an exponential variation in the x1 direction; these are extended as
even functions over the interval [ ¡ l (1,1) , 0]. The functions multi-
plying v(3)

0 , w(3)
0 are also extended as even functions because they

play the role of the constant term in the Fourier series expansion.
The known function f (1,1)[x (1, 1)

1 ] is extended in a suitable manner.
If the surface x (1,1)

3 = 0 is an interface between two adjoining lam-
inae, then the conditions (4) or (6) need to be enforced instead of
Eq. (7). Thus, upon imposing the boundary/interface conditions on
all four bounding surfaces of every lamina in the laminated plate,
we obtain an in� nite system of linear algebraic equations for the
in� nitely many unknown coef� cients. A general theory for the solu-
tion of the resulting in� nite set of algebraic equations does not exist.
However, reasonably accurate results may be obtained by truncating
the series with summation indices m and k in Eq. (19) to M (n1 ,n3)

and K (n1 ,n3) terms respectively for the (n1, n3) lamina. In general,
we try to maintain approximately the same period of the largest
harmonic on all the bounding surfaces of the lamina by choos-
ing K (n1 ,n3 ) = Ceil[Kl (n1 ,n3 ) / L] and M (n1 ,n3 ) = Ceil[K h(n1 ,n3) / L],
where Ceil(y) equals the smallest integer greater than or equal to y.
Thus the total number of unknowns will depend solely on the choice
of K .

From the structure of solution (21–23), the component functions
decrease exponentially from the boundary/interfaces into the in-
terior of the (n1, n3)th lamina. By truncating the series, we have
effectively ignored coef� cients with suf� ces greater than a particu-
lar value and approximated the coef� cients that have small suf� ces.
Because of the rapid decay of component functions associated with
large suf� ces, the truncation of the series will not greatly in� uence
the solution at the interior points. A larger value of K will give a more
accurate solution at points close to the boundaries and interfaces.
The coef� cients v(1)

m and w(1)
m in Eqs. (22) and (23) are multiplied by

g m ¤ while v(3)
k and w(3)

k are multiplied by k k ¤ . However, the coef� -
cients of these terms in the expressions (21) for displacements are
unity. Because g m ¤ and k k ¤ increase as the suf� ces m and k increase,
the terms with large suf� ces are more signi� cant for the stresses than
for the displacements. Thus the stresses will converge more slowly
than the displacements.

Once the unknown coef� cients have been evaluated by solving the
truncated system of linear equations, the displacements and stresses
in each lamina are obtained from Eqs. (21–23). The stress compo-
nent r 22 and the electric displacement component D2 missing in
Eqs. (22) and (23) are determined from Eq. (2).

V. Results and Discussion
The program developed for numerical computations was vali-

dated by comparing our results with those of Dube et al.31 and
Heyliger and Brooks19 for simply supported piezoelectric plates;
the two sets of results matched very well.

For all laminated plates considered in this section, each lamina
is either made of graphite-epoxy or PZT-5A with nonzero material
properties, taken from Xu and Noor,32 listed inTable 1. In the present
analysis we treat the graphite-epoxy layer as a piezoelectric material
with the piezoelectric moduli set equal to zero. Thus we also solve
for the electric � eld in the graphite-epoxy layer, which is uncoupled
from the elastic � eld.

A. Elastic Plate with Distributed PZT Actuators and Sensors
We consider a three-ply graphite-epoxy substrate with PZT-5A

layers attached to its top and bottom surfaces. All � ve laminae of the

Table 1 Nonvanishing material properties of the
graphite-epoxy and PZT-5A layers

Graphite-epoxy PZT-5A
Material property 0-deg layer layer

C1111 , GPa 183.443 99.201
C2222 , GPa 11.662 99.201
C3333 , GPa 11.662 86.856
C1122 , GPa 4.363 54.016
C1133 , GPa 4.363 50.778
C2233 , GPa 3.918 50.778
C2323 , GPa 2.870 21.100
C3131 , GPa 7.170 21.100
C1212 , GPa 7.170 22.593
e311, Cm ¡ 2 (d311 , 10 ¡ 12 m/V) 0 ¡ 7.209 ( ¡ 171)
e322, Cm ¡ 2 (d322 , 10 ¡ 12 m/V) 0 ¡ 7.209 ( ¡ 171)
e333, Cm ¡ 2 (d333 , 10 ¡ 12 m/V) 0 15.118 (374)
e223, Cm ¡ 2 (d223 , 10 ¡ 12 m/V) 0 12.322 (292)
e113, Cm ¡ 2 (d113 , 10 ¡ 12 m/V) 0 12.322 (292)
²11, 10 ¡ 8 F/m 1.53 1.53
²22, 10 ¡ 8 F/m 1.53 1.53
²33, 10 ¡ 8 F/m 1.53 1.50

hybrid laminate are of equal width and extend from x1 = 0 to L . The
following two lamination schemes for the substrate are considered:

1) A cross-ply scheme where the � bers are oriented parallel to
the x1 , x2 , and x1 directions in the bottom, middle, and top layers,
respectively, i.e., a [PZT/0/90/0/PZT] laminate.

2) An angle-ply scheme where the � bers are oriented at 45, ¡ 45,
and 45 deg with respect to the x1 axis on the x1 –x2 plane in
the bottom, middle, and top layers, respectively, i.e., a [PZT/45/-
45/45/PZT] laminate.

The graphite-epoxy laminae are of thickness H /4 while the PZT-
5A laminae are of thickness H /8. The locations of the bottom sur-
face, the four interfaces, and the top surface are

£
H (1) , H (2) , H (3) , H (4) , H (5) , H (6)

¤
= [0, 1, 3, 5, 7, 8]H / 8 (25)

The interfaces between the PZT laminae and their neighboring
graphite-epoxy laminae are electroded and held at zero electric po-
tential, i.e., interface conditions (6) are applied at x3 = H (2) and
H (5) with f (x1) = 0. The graphite-epoxy laminae are assumed to
be perfectly bonded to each other, and interface conditions (4) are
enforced on the surfaces x3 = H (3) and H (4) . The bottom surface
x3 = 0 is traction free and is in contact with air, thus permitting
us to prescribe J(1,1) = 0, Ĵ(1,1) = I, and f (x1) = 0. The top surface
x3 = H is electroded, and the following electromechanical loads are
considered.

1) Mechanical load:

¾3(x1, H ) = q0[0, 0, sin( p x1 / L)]T , u (x1 , H ) = 0 (26)

2) Electrical load:

u (x1, H ) = u 0 sin( p x1 / L), ¾3(x1, H ) = 0 (27)

Results for combined mechanical and electrical loads on the sur-
face x3 = H can be obtained by superposition of the solutions cor-
responding to the load 1 and 2. Results for any mechanical or elec-
trical load can be computed by expanding the load into a Fourier
series and superposing the results for each Fourier component. In
the case of an electric load, the top PZT lamina may be consid-
ered to be an actuator. For both loading cases a potential may be
induced on the surface x3 = 0 of the PZT lamina bonded to the bot-
tom surface of the substrate. This PZT layer may be considered
as a sensor. The edges x1 = 0, L are held at zero electric potential
and subjected to various mechanical boundary conditions. These
edges may be either clamped (C ) with u1 = u2 = u3 = 0 or free of
traction (F) with r 11 = r 12 = r 13 = 0 or simply supported (S) with
r 11 = r 12 = 0, u3 = 0. The boundary conditions used at a simply
supported edge are identical to those used by Pagano.15 If the sur-
face x1 = 0 is clamped and the surface x1 = L is traction free, i.e., a
cantilever laminate, we denote the con� guration as C F . Similarly
CC and SS denote laminates that are clamped or simply supported
respectively on both edges.
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Table 2 Convergence study for the angle-ply cantilever hybrid laminate subjected to mechanical load (L/H = 5)

ũ1 ũ3 ˜r 11 ˜r 13 ˜r 23 ˜r 33 ˜r 33 ˜u D̃3
K (L /4, H) (L /2, 5H § /8) (L /2, H) (L /4, 7H § /8) (3L /4, 5H § /8) (L /2, 3H § /8) (L /2, H /2) (L /2, 0) (L /2, H)

100 ¡ 6.2601 7.7277 ¡ 2.4675 0.4028 0.7286 0.2989 0.5094 0.1708 0.2151
7.7277 0.4120 0.7199 0.3900

200 ¡ 6.2848 7.7482 ¡ 2.6404 0.4260 0.7332 0.3244 0.5094 0.1727 0.2082
7.7482 0.4219 0.7364 0.3601

300 ¡ 6.2891 7.7515 ¡ 2.6871 0.4152 0.7378 0.3315 0.5094 0.1732 0.2068
7.7515 0.4178 0.7360 0.3528

400 ¡ 6.2908 7.7527 ¡ 2.7096 0.4220 0.7369 0.3347 0.5094 0.1734 0.2060
7.7527 0.4203 0.7381 0.3495

500 ¡ 6.2917 7.7533 ¡ 2.7217 0.4171 0.7386 0.3366 0.5094 0.1736 0.2058
7.7533 0.4185 0.7377 0.3477

Table 3 Convergence study for the angle-ply cantilever hybrid laminate subjected to electrical load (L/H = 5)

û1 û3 ˆr 11 ˆr 13 ˆr 23 ˆr 33 ˆr 33 ˆu D̂3
K (L /4, H ) (L /2, 5H § /8) (L /2, H ) (L /4, 7H § /8) (3L /4, 5H § /8) (L /2, 3H § /8) (L /2, H /2) (L /2, 0) (L /2, H)

100 1.7678 ¡ 1.7968 ¡ 1.4694 ¡ 3.9404 ¡ 2.5429 2.8036 3.3889 ¡ 0.0277 ¡ 1.0867
¡ 1.7968 ¡ 3.9283 ¡ 2.5354 2.3079

200 1.7851 ¡ 1.8129 ¡ 1.4564 ¡ 3.9731 ¡ 2.5486 2.6584 3.3889 ¡ 0.0278 ¡ 1.0864
¡ 1.8129 ¡ 3.9764 ¡ 2.5520 2.4610

300 1.7888 ¡ 1.8161 ¡ 1.4528 ¡ 3.9575 ¡ 2.5505 2.6180 3.3888 ¡ 0.0279 ¡ 1.0863
¡ 1.8161 ¡ 3.9575 ¡ 2.5485 2.4971

400 1.7901 ¡ 1.8173 ¡ 1.4511 ¡ 3.9685 ¡ 2.5509 2.5986 3.3888 ¡ 0.0279 ¡ 1.0862
¡ 1.8173 ¡ 3.9682 ¡ 2.5523 2.5146

500 1.7909 ¡ 1.8180 ¡ 1.4502 ¡ 3.9599 ¡ 2.5513 2.5878 3.3888 ¡ 0.0279 ¡ 1.0862
¡ 1.8180 ¡ 3.9598 ¡ 2.5502 2.5235

The effect of the truncation of the series is investigated for a can-
tilever laminate subjected to electromechanical loads. Computed
results for various quantities at speci� c points in the laminate are
listed in Table 2 for the mechanical load. The following nondimen-
sionalization has been used:

(ũ1, ũ3) = 100

³
L

H
u1, u3

´
ET H 3

L4q0
, ˜r 11 = 10

r 11 H 2

L2q0

( ˜r 13 , ˜r 23, ˜r 33) =

³
r 13 H

q0 L
, 10

r 23 H

q0 L
,

r 33

q0

´

˜u = 100
u dT ET H

L2q0
, D̃3 =

D3 H 2

dT L2q0

(28)

where ET = 10.3 GPa and dT = 374 £ 10 ¡ 12 m/V. The displace-
ments ũ1, ũ3 , transverse shear stresses ˜r 13 , ˜r 23 across the interfaces,
the electric potential ˜u , and the electric displacement D̃3 converge
quickly, but the axial stress ˜r 11 and the transverse normal stress
˜r 33 across the interface x3 = 3H /8 converge slowly. However, the
transverse normal stress at the midpoint of the laminate shows rapid
convergence.

Table 3 presents a convergence study for a cantilever laminate
subjected to electrical load where the nondimensional variables are
de� ned as

(û1, û3) = 10

³
u1 H

L
, u3

´
H 2

L2dT u 0
, ˆr 11 =

r 11 H

10ET dT u 0

( ˆr 13 , ˆr 23, ˆr 33) =

³
r 13 , 10 r 23,

L

H
r 33

´
L

ET dT u 0

ˆu =
u

u 0
, D̂3 =

D3 H

100ET d2
T u 0

(29)

Table 3 shows that ˆr 33 on the interface x3 = 3H / 8 converges slowly,
whereas the other components of the stress tensor, the mechanical
displacements, the electric potential, and the electric displacement
converge rapidly.

The distribution of the transverse shear stress ˜r 13 at four sections
x1 / L = 0.1, 0.25, 0.75, and 0.9 along the span of a cross-ply can-
tilever laminate is shown in Fig. 2a for the case of mechanical load.

a) Mechanical load

b) Electrical load

Fig. 2 Transverse shear-stress distribution on four sections for a can-
tilever cross-ply hybrid laminate (L/H = 5).
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Table 4 Mechanical displacement, stresses, electrical potential, and electric displacement for
six con� gurations (L/H = 5, K = 500 terms)

SS SS CC CC CF CF
Variable cross ply angle ply cross ply angle ply cross ply angle ply

ũ1(L /4, H ) ¡ 1.580 ¡ 2.369 ¡ 0.708 ¡ 0.864 ¡ 4.119 ¡ 6.292
ũ3(L /2, H /2) 2.276 3.010 1.249 1.436 5.667 7.741
˜r 11(L /2, H ) 5.171 7.600 2.811 3.470 ¡ 0.701 ¡ 2.722
˜r 13(L /8, H /2) 0.427 0.408 0.321 0.377 0.707 0.804
˜r 23(7L /8, 3H /4) 0.000 ¡ 0.693 0.000 ¡ 0.593 0.000 0.246
˜r 33(L /2, H /2) 0.506 0.510 0.507 0.509 0.507 0.509
˜u (L /2, 0) ¡ 0.233 ¡ 0.352 ¡ 0.106 ¡ 0.136 0.074 0.174
D̃3(L /2, H) ¡ 0.215 ¡ 0.343 ¡ 0.091 ¡ 0.125 0.096 0.206
û1(L /4, H ) ¡ 3.549 ¡ 6.238 ¡ 1.342 ¡ 2.148 0.821 1.791
û3(L /2, H /2) 2.398 3.746 0.705 0.887 ¡ 0.824 ¡ 1.809
ˆr 11(L /2, H ) ¡ 2.253 ¡ 1.436 ¡ 2.855 ¡ 2.547 ¡ 2.257 ¡ 1.450
ˆr 13(L /4, 15H /16) ¡ 3.218 ¡ 2.128 ¡ 3.056 ¡ 1.854 ¡ 3.046 ¡ 1.836
ˆr 23(7L /8, 3H /4) 0.000 ¡ 1.746 0.000 ¡ 0.840 0.000 ¡ 1.604
ˆr 33(L /2, H /2) 3.167 3.477 3.109 3.215 3.176 3.389
ˆu (L /2, 0) ¡ 0.019 ¡ 0.028 ¡ 0.007 ¡ 0.008 ¡ 0.019 ¡ 0.028
D̂3(L /2, H) ¡ 1.040 ¡ 1.087 ¡ 1.007 ¡ 1.025 ¡ 1.040 ¡ 1.086

The shear-stress distribution at a section close to the clamped edge
attains a maximum near the middle of the 0-deg lamina. However,
at sections close to the free edge ˜r 13 is maximum at a point on
the interface between two laminae. The corresponding transverse
shear-stress distributions for the electrical loading are shown in
Fig. 2b. In this case the transverse shear stress is largest on the
interface x3 = 7H /8 between the PZT actuator and the neighbor-
ing graphite-epoxy lamina. Furthermore, the transverse shear stress
exhibits an af� ne behavior through the thickness of the PZT actu-
ator. The results plotted in Figs. 2a and 2b clearly show that the
computed transverse shear-stress distributions satisfy the interface
continuity conditions very well and also vanish on the top and bot-
tom long faces of the hybrid laminate. The nondimensional r 23

distributions on four sections along the span of an angle-ply lami-
nate are shown in Figs. 3a and 3b for the mechanical and electrical
loads, respectively. The through-thickness distribution of r 23 ex-
hibits a very different pro� le as compared to that of r 13 in Fig. 2.
When subjected to the electric load, r 23 is largest at the interface
x3 = 5H /8 between the 90-deg lamina and a neighboring 0-deg lam-
ina. This behavior is unlike that of r 13, which attains its maximum
value at the bottom surface of the PZT actuator. Numerical results
for the mechanical displacement, components of the stress tensor,
electric potential, and electric displacement at speci� c points in the
laminate are given in Table 4 for L / H = 5. These can be used to
compare predictions from various plate theories and � nite element
solutions.

Figure 4 exhibits the variation of the electric potential on the
surface x3 = 0 of the PZT sensor when the mechanical load is applied
on the upper surface of the laminate. When the edges are simply
supported, a sinusoidal mechanical load on the top surface results
in a sinusoidal electric potential at the bottom surface. However,
such is not the case for a cantilever laminate. The electric potential
exhibits boundary layers near the clamped edges, akin to those in a
purely mechanical problem.24

B. Piezoelectric Bimorph
Consider a cantilever piezoelectric bimorph33, 34 structure consist-

ing of two piezoelectric layers made of the same material bonded
together as shown in Fig. 5. The two layers are mechanically bonded
with an intervening electrode, as well as electrodes on the top and
bottom surfaces. Application of a voltage to the outer surfaces in-
duces an electric � eld of opposite sign in the neighboring layers.
This causes one layer to expand and the other to contract, thus forc-
ing the piezoelectric bimorph to bend. Tzou34 has studied the use
of a piezoelectric bimorph as � ngers of a robot gripper. The gripper
consists of two bimorphs placed slightly apart. The application of
voltages of opposite sign to the bimorph � ngers causes it to grip
an object that is released when the applied voltage is switched off.
Such robot grippers are ideally suited for gripping delicate objects,
such as electronic chips, in high-precision operations. Piezoelec-
tric bimorphs can also be used for microactuation. Tzou34 used the

a) Mechanical load

b) Electrical load

Fig. 3 Transverse shear-stress distribution on four sections for a can-
tilever angle-ply hybrid laminate (L/H = 5).

� nite element method to study the problem but did not report the
interlaminar stresses.

The mechanics of deformation of a piezoelectric bimorph is
similar to that of a bimetallic strip subjected to uniform heat-
ing. In the beam theory analysis of Timoshenko,35 and later Boley
and Weiner,36 only the longitudinal stress is taken as nonzero and
constant along the length of the strip. Timoshenko35 noted that the
interfacial shear and normal stresses are negligible in the interior
of the strip but signi� cant near the ends. Later investigators have
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Fig. 4 Potential induced in the sensor at x3 = 0 for a cross-ply hybrid
laminate under mechanical load and corresponding to three boundary
conditions (L/H = 5).

Fig. 5 Cantilever piezoelectric bimorph in parallel connection.

attempted to predict the interfacial stresses by employing improved
analytical approximations and � nite element analysis.37, 38 Here we
study the edge effects in piezoelectric bimorphs. Speci� cally, we
are interested in the interfacial stresses because they are usually
responsible for the failure of the bimorph.

The top and bottom surfaces are free of traction and subjected to
an electric potential u 0. The interface x3 = H /2 is electroded and
maintained at zero electric potential, i.e., interface conditions (6) are
enforced with f (x1) = 0. The assumption is made that the normal
component of the electric displacement D1 vanishes at the edges
x1 = 0, L . Recalling that K = 500 provided convergent results for
the problem studied in Sec. V.A, here we have chosen K = 600 to
ensure suf� cient accuracy of the results.

The beam theory approach of Boley and Weiner36 or the Kirch-
hoff plate theory analysis outlined by Pionke and Wempner38 can be
easily modi� ed for piezoelectric bimorphs by identifying the ther-
mal strains with the piezoelectric strains. The transverse de� ection
ū3 thus obtained for a piezoelectric bimorph is

ū3(x1) = 3d311 u 0(x1 / H )2 (30)

The normalized transverse tip de� ection given by the beam theory
for L = 5H is ū3(L) /d311 u 0 = 75 and that for L / H = 10 equals 300.
Our three-dimensional analysis for the same con� guration gives
u3(L , H /2) /d311 u 0 = 93.9 and 380.3 for the two values of L / H .
The discrepancy in the transverse de� ections between the two the-
ories may be attributed to neglecting, in the beam theory, edge ef-
fects, transverse shear deformations, and the in� uence of d333 and
d113. The beam theory is not expected to give good result for a span-
to-thickness ratio of 5. It also predicts that the longitudinal stress
varies in a piecewise af� ne manner through the thickness of the bi-
morph. Figure 6a depicts the through-thickness variation of the lon-
gitudinal stress at four locations along the span; E1 = 61 GPa and
d311 = ¡ 171 £ 10 ¡ 12 m/V are the Young’s moduli and the piezo-
electric coef� cient of PZT-5A.32 Whereas it is indeed piecewise
af� ne at the midspan x1 = L /2, there is considerable deviation in
the pro� le at sections close to the clamped and free edges. In the
beam theory the traction-free boundary condition at the edge x1 = L
is satis� ed in the sense that the resultant force vanishes. Here, the
longitudinal stress vanishes at all points on the surface x1 = L . The
distribution of the longitudinal stress on four horizontal planes is
shown in Fig. 6b. It remains constant along the length of the strip
except at points close to the clamped and free edges. As we approach

a) Through-thickness variation

b) Axial variation

Fig. 6 Longitudinal stress in a cantilever piezoelectric bimorph
(L/H = 5).

the free edge along the lines x3 = constant, the longitudinal stress
drops to zero, except on the interface. At the interface we see severe
oscillations in the longitudinal stress near the edges. The distribu-
tion of the transverse shear stress on four horizontal surfaces of a
bimorph is shown in Fig. 7 for span-to-thickness ratios L / H = 5 and
10. The results are plotted only for the bottom lamina because the
through-thickness variation of r 13 is symmetric about the interface.
As predicted by Timoshenko35 for a bimetallic thermostatic strip,
the transverse shear stress is negligible in the interior of the piezo-
electric bimorph but signi� cant near the ends. Most of the transverse
shear stress is transferred in a region of one laminate thickness from
the edges. The through-thickness distribution of the transverse nor-
mal stress is antisymmetric with respect to the interface. Thus, the
transverse normal stress r 33 on the interface is identically zero. The
axial distribution of the transverse normal stress on four planes is
shown in Fig. 8. Like the transverse shear stress, it is also nonzero
at points near the free edge. The magnitude of the transverse normal
and shear stresses at points close to the edges is signi� cantly more
than that of the longitudinal stress there.

Figures 6b and 7 also show that the longitudinal stress and the
transverse shear stress do not vanish at the point where the interface
meets the free edge. This may be because of the presence of a singu-
larity in the stress � eld at that point, which can be con� rmed only by
performing an asymptotic analysis. However, our truncated series
solution seems to indicate the existence of a singularity and qualita-
tively captures the large stresses at that point. The stress singularity
in a cantilever piezoelectric bimorph is similar to the free-edge sin-
gularity observed in laminated plates.39 Here we have not performed
a singularity analysis. Usually stress singularities occur at the point
where two different materials meet a free edge. An edge singularity
also exists in a bimorph even though both layers are made of the
same material (PZT-5A).
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a) L/H = 5

b) L/H = 10

Fig. 7 Transverse shear-stress distribution on four planes of a can-
tilever piezoelectric bimorph.

Fig. 8 Transverse normal stress on four planes of a cantilever piezo-
electric bimorph.

C. Cantilever Plate with Surface-Bonded PZT Actuator Patches
The � nal example concerns a homogeneous 0-deg graphite-epoxy

cantilever substrate with segmented PZT-5A actuators bonded to its
upper and lower surfaces as shown in Fig. 9. This particular example
has been considered by Crawley and de Luis3 and Crawley and
Anderson4 who proposed two analytical models. The � rst model
assumes a uniform extensional strain in the actuators and is called
the uniform strain model. The second model includes extensional
strain and bending in the actuators and is called the Euler–Bernoulli
model.

The faces of the PZT actuators are electroded, and the interfaces at
x3 = 0.1H, 0.9H are electrically grounded. If the surfaces x3 = 0, H

are subjected to an identical electric potential u 0, the substrate will
deform in bending. If electric potentials u 0 and ¡ u 0 are applied
to the surfaces x3 = H and x3 = 0, respectively, the substrate will
deform in extension.

The surfaces x3 = 0.1H, 0.9H are subjected to two different
kinds of boundary conditions along the span. The tractions are pre-
scribed to be zero in the intervals 0 · x1 · L /4 and 3L /4 · x1 · L ,
whereas interface continuity conditions (6) are enforced in the inter-
val L /4 · x1 · 3L /4. To accommodate this change in the boundary
conditions, we divide the substrate into three regions by introducing
virtual vertical interfaces at x1 = L / 4 and 3L /4. The continuity of
mechanical displacements, tractions, electric potential, and normal
component of electric displacement are enforced along these verti-
cal interfaces. Because of the introduction of the vertical interfaces,
there are � ve laminae with the same type of boundary condition
on the entire length of each of its bounding surfaces. The vertical
edges of the PZT are traction free and in contact with air, allowing
us to prescribe ¾1 = 0 and D1 = 0 on these surfaces. Recalling that
K = 500 provided converged results for the � rst problem studied
here, we take K = 800 terms for this example.

The distributions of the transverse displacements on three hor-
izontal planes of the substrate are shown in Fig. 10a. The curves

Fig. 9 Cantilever elastic substrate with segmented PZT actuators.

a) Axial variation

b) Through-thickness variation

Fig. 10 Transverse displacement in induced bending (L/H = 10).
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corresponding to the midplane and the interface x3 = 0.9H overlap
except at points close to the edges of the PZT actuator. The deviation
of the transverse de� ection of a point from that at the corresponding
point on the midplane is shown in Fig. 10b. The transverse normal
strain equals the derivative of these curves with respect to x3 . In
the Euler–Bernoulli theory the transverse normal strain is zero. Our
results indicate that the transverse strains are signi� cant at points
close to the interfaces. The average elongation e of the normals to
the midplane is de� ned as

e =

»
[u3(x1, 0.9H ) ¡ u3(x1, 0.1H )]/0.8H if j x1 ¡ L /2 j ¸ L / 4
[u3(x1, H ) ¡ u3(x1 , 0)]/ H if j x1 ¡ L /2 j · L / 4

The average elongation is negligible at all locations along the span
although the transverse normal strain is signi� cant at points in the
interval j x1 ¡ L / 2 j · L /4 because the transverse normal strain at
a point in the upper half of the structure is negative of that at the
corresponding point in the lower half, thus cancelling each other.

Transverse shear-stress distribution along the span on four planes
is shown in Fig. 11a. The shear stress on the midplane of the substrate
satis� es the continuity conditions across the arti� cial vertical inter-
faces that we introduced. The shear stress on the midsurface of the
PZT drops to zero at the free edge as expected. The shear stress is
very large at the corner points of the interface between the PZT and
the substrate. The transverse normal stress plotted in Fig. 11b also
exhibits large values at these points. These corners, when viewed
asymptotically, are special points where a PZT wedge comes in
contact with a graphite-epoxy surface. Because of the mismatch

a) Transverse shear stress

b) Transverse normal stress

Fig. 11 Axial variation of stresses on four planes in induced bending
(L/H = 10).

in the material properties, a stress singularity may exist at these
corners.28 The high shearing and transverse normal stresses can lead
to debonding of the actuator from the substrate. Such large stresses
were also observed at the edges of the PZT by Zhou and Tiersten21

and Batra et al.23 Robbins and Reddy11 analyzed a rectangular alu-
minium plate with a surface bonded actuator patch using a variable
kinematic � nite element model and obtained very large shearing
and transverse normal stresses at the edges of the actuator. Xu and
Noor32 also studied a rectangular laminated plate with an actuator

patch by employing a predictor-corrector � nite element method but
did not report the nature of the stresses at the edges of the patch.

The through-thickness variation of the transverse shear and lon-
gitudinal stresses for induced bending are shown in Figs. 12a and
12b, respectively, at four locations along the span of the laminate.
The transverse shear stress attains large values near the interfaces
and at the midplane in the interval L / 4 · x1 · 3L /4. It is negligi-
ble near the clamped and free edges. The longitudinal stress is also
negligible at points close to the edges. As predicted by the Euler–

Bernoulli model,4 at the midspan it exhibits a piecewise af� ne varia-
tion through the thickness. There is considerable deviation from this
pro� le at points close to the edges of the PZT actuators. The normal
stress curves at locations x1 = 0.3L and 0.7L overlap although the
boundary conditions on the edges at x1 = 0 and L are different.

a) Transverse shear stress

b) Longitudinal stress

Fig. 12 Distribution of stress on four sections in induced bending
(L/H = 10).
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a) Transverse shear stress

b) Longitudinal stress

Fig. 13 Distribution of stress on four sections in induced extension
(L/H = 10).

We note that the uniform strain model and the Euler–Bernoulli
model predict u1,1(L /2, 0.9H )H /d311 u 0 = ¡ 2.02 and ¡ 2.15, re-
spectively, and the present three-dimensional solution gives ¡ 3.22.
Thus the axial strains given by the beam theory and the three-
dimensional theory are quite different.

The through-thickness variation of the transverse shear and lon-
gitudinal stresses are shown in Figs. 13a and 13b for induced ex-
tension. The transverse shear stress attains a maximum value at
points close to the interfaces and is negligible at points near the
midplane. At the midspan x1 = L /2 the longitudinal stress varies
in a piecewise constant manner through the thickness. As observed
in induced bending, the longitudinal stress curves corresponding to
x1 / L = 0.3 and 0.7 overlap for induced extension. There is con-
siderable deviation from the piecewise constant through-thickness
variation predicted by the Euler–Bernoulli model4 near the edges of
the PZT (cf. Fig. 13b).

We also studied a con� guration with embedded PZT patches.
For brevity these results are not shown here. For this case too, the
transverse shear stresses are very large at points near the edges of the
PZT. The distributions of the longitudinal stresses were qualitatively
similar to that of surface-mounted PZT actuator patches.

We note that the results presented here will be quite good for a
plate with the x2 dimension much larger than the span of the plate.
For rectangular plates the technique needs to be modi� ed, e.g., see
Vel and Batra.40 , 41

VI. Conclusions
We have used the Eshelby–Stroh formalism to study the gener-

alized plane deformations of a linear piezoelectric laminated plate.
The three-dimensional equilibrium equations are exactly satis� ed

at every point of the body. However, the boundary and interface
continuity conditions are satis� ed in the sense of Fourier series.
By keeping a large number of terms in the series solution, dis-
placements and stresses can be computed to any desired degree of
accuracy. We have studied the deformations of cross-ply and angle-
ply graphite-epoxy laminated plates with distributed PZT-5A layers
bonded to its upper and lower surfaces and the composite laminate
loaded either by an electric potential or by surface traction applied
to the top-most surface with the bottom-most surface traction free.
The effect of either clamping the edges, simply supporting them,
or having them traction free has also been delineated. For a sinu-
soidal mechanical load applied to the top surface of the laminate, the
variation of the electric potential in the PZT bonded to the bottom
surface is sinusoidal only when the edges of the laminate are simply
supported. The electric potential exhibits a boundary-layer effect
near the clamped edges. In the case of a piezoelectric bimorph, the
transverse stresses are transferred from one lamina to the other in
a region of one laminate thickness from the edges. The stresses ap-
pear to be singular at the point where the interface meets the free
edge. We also analyzed deformations and stresses in a graphite-
epoxy cantilever beam with thin PZT patches bonded to its upper
and lower surfaces at the center of the beam. The transverse shear
and normal stresses are very large at the edges of the PZT-substrate
interfaces. The transverse normal strains are also substantial in the
PZT and the substrate. As illustrated by the results, the method is
versatile and capable of analyzing piezoelectric plates subjected to
arbitrary boundary conditions on the edges.
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