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Exact Solution for Rectangular Sandwich Plates
with Embedded Piezoelectric Shear Actuators
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An exact solution is obtained for the three-dimensional deformations of simply supported laminated rectangular
thick plates with embedded shear mode piezoelectric actuators, subjected to mechanical and electrical loading
on the upper and lower surfaces. Each layer of the laminate is made of either an orthotropic elastic material or
a piezoelectric material whose poling direction lies in the plane of the plate, with perfect bonding between the
adjoining layers. The exact displacements and stresses for a homogeneous piezoelectric plate for various length-
to-thickness ratios are compared with those obtained by the � rst-order shear deformation theory. Results are also
presented for a sandwich plate consisting of a shear mode piezoelectric core sandwiched between two elastic layers.
A comparison of the stresses with those in the corresponding surface-mounted extension actuation con� guration
shows that for the same transverse de� ection of the plate centroid, the maximum longitudinal stress within the
actuator is signi� cantly smaller for the shear actuation mechanism. The exact results presented here can be used
to assess the accuracy of different plate theories and/or for validating � nite element codes.

I. Introduction

I N recent years, piezoelectric materials have been integrated with
structural systems to form a class of smart structures. The piezo-

electric materials are capable of altering the structure’s response
through sensing and actuation. By the integration of surface-bonded
and embedded actuators into structural systems, desired localized
strains may be induced in the structure by the application of an
appropriate voltage to the actuators.

A piezoelectric actuator in an adaptive structure is a thin rect-
angular element that is generally poled in the thickness direction
and is usually bonded to the surfaces of the host structure. The
application of an electric � eld in the thickness direction causes
the actuator’s lateral dimensions to increase or decrease. The lat-
eral deformations of the actuator force the host structure to de-
form. Such surface-bonded actuators, which induce longitudinal
strains by extension or contraction, are known as extension actu-
ators. To incorporate actuators into a structure successfully the me-
chanical interaction between the actuators and the host structure
must be fully understood. Mechanical models for extension actu-
ators have been developed by Crawley and de Luis,1 Crawley and
Anderson,2 and others for piezoelectric patches bonded to a beam.
Lee,3 Huang and Wu,4 Mitchell and Reddy,5 and others have de-
veloped plate theories for rectangular hybrid laminates. Numerous
� nite element analyses have also been conducted, for example, see
Robbins and Reddy6 and Batra and Liang.7 Ray et al.8 and Heyliger
and Brooks9 have obtained exact three-dimensional solutions for
the cylindrical bending of simply supported piezoelectric laminates.
Exact solutions for simply supported rectangular piezoelectric lam-
inates were given by Heyliger,10;11 Bisegna and Maceri,12 and Lee
and Jiang.13 A similar technique was employed by Yang et al.14

and Batra et al.15 to analyze the vibrations of a simply supported
plate with piezoceramic actuators either bonded to its upper and
lower surfaces or embedded within the laminate. Vel and Batra16;17

have derived three-dimensional analytical solutions for thick piezo-
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electric plates subjected to arbitrary boundary conditions at the
edges.

Extension piezoelectric actuators are usually placed at the ex-
treme thickness positions of a platelike structure to achieve the
most effective actuation. This subjects the actuators to high lon-
gitudinal stresses that may be detrimental to the brittle piezoce-
ramic material. Furthermore, surface-bonded actuators are likely to
be damaged by contact with surrounding objects. To alleviate these
problems, Sun and Zhang18 proposed an adaptive sandwich struc-
ture consisting of an axially poled piezoelectric core sandwiched
between two elastic facing sheets. The application of an electric
� eld in the thickness direction would induce transverse shear defor-
mation of the core, thus generating the desired transverse de� ection
of the sandwich structure. Piezoelectric actuators poled in such a
way as to produce transverse shear deformation under the action of
an electric � eld in the thickness direction are called shear actuators.
Piezoelectric shear actuators of various dimensions are commer-
cially available.19 Zhang and Sun20;21 developed a beam theory for
sandwich structures containing shear actuators by modeling the fac-
ing sheets as classical Euler–Bernoulli beams and the central core
as a Timoshenko beam, which allows transverse shear deforma-
tion. They state that it is very dif� cult to � nd a general solution
for the fully coupled electromechanical equations of a sandwich
beam. Benjeddou et al.22 developed a uni� ed � nite element model
for extension and shear actuation mechanisms with more detailed
formulation of the electric problem. Vidoli and Batra23 have de-
veloped a plate theory for an anisotropic piezoelectric plate that
accounts for changes in the thickness of the plate caused by the
double forces without moments applied to the top and bottom sur-
faces of the plate, as well as both shear and extension actuation
effects. They exhibited the relative importance of these effects by
studying the deformations of a beam with the poling axis, not nec-
essarily along the thickness direction. The electric � eld was applied
in the thickness direction. Vel and Batra24 used the Eshelby–Stroh
formalism to obtain analytical solutions for a piezoelectric bimorph.
The axis of transverse isotropy in each layer of the bimorph was as-
sumed not necessarily to be perpendicular to the midsurface of the
layer.

The exact solutions for piezoelectric extension actuators given
by Heyliger,10;11 Bisegna and Maceri,12 and Lee and Jiang13 are not
applicable to piezoelectric shear actuators because they assume that
the only nonzero components of the piezoelectric tensor ei jk in the
contracted notation [see Eq. (2)] are e31; e32; e33; e24 , and e15 . For
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Fig. 1 N-layer laminated piezoelectric plate.

a piezoelectric shear actuator poled in the x1 direction (Fig. 1), the
nonzero components of the piezoelectric tensor in the contracted
notation are e11; e12; e13; e26, and e35 . Recently, Vel and Batra25

gave an exact solution for the cylindrical bending of a simply sup-
ported sandwich plate with a piezoelectric shear actuator, wherein
the plate was assumed to be in� nitely long in the x2 direction. Here,
we extend the method to simply supported rectangular plates of � -
nite dimensions with embedded piezoelectric shear actuators. The
three-dimensional governing equations of linear piezoelectricity are
exactly satis� ed at every point in the laminate. The boundary con-
ditions at the simply supported edges, the traction boundary con-
ditions on the top and bottom surfaces, and the electromechanical
continuity conditions at the interfaces between dissimilar layers are
also exactly satis� ed. The electrical boundary conditions at two op-
posite grounded edges and at the other two electrically insulated
edges are also exactly satis� ed. The displacements and stresses for
a homogeneous piezoelectric plate are compared with those ob-
tained from the � rst-order shear deformation theory (FSDT). Sand-
wich plates with a shear mode piezoelectric core sandwiched be-
tween two elastic layers are also studied. When the results are
compared with those for the corresponding structure with surface-
mounted extension actuators, it is seen that the maximum longitu-
dinal stress within the shear actuator is signi� cantly lower than that
in the extension actuator for the same transverse de� ection of the
plate.

Results presented herein should be useful for validating and, if
necessary, re� ning simpler models of the system.

II. Formulation of the Problem
We use a rectangular Cartesian coordinate system, shown in

Fig. 1, to describe the in� nitesimal quasi-static deformations of
an N -layer piezoelectric laminated rectangular plate occupying
the region [0; L1] £ [0; L2] £ [H .1/; H .N C 1/] in the unstressed ref-
erence con� guration. The vertical positions of the bottom and
top surfaces as well as of the N ¡ 1 interfaces between the ad-
joining laminas are denoted by H .1/ D ¡H=2, H .2/; : : : ; H .n/;
: : : ; H .N /; H .N C 1/ D H=2: Each lamina is assumed to be made of a
homogeneous material.

The equilibrium equations for the nth lamina made of a piezo-
electric material, in the absence of body forces and free charges,
are

¾
.n/

i j; j D 0; D.n/

j; j D 0 .i; j D 1; 2; 3/ (1)

where ¾i j are the components of the Cauchy stress tensor and D j

the electric displacement. A comma followed by index j indicates
partial differentiation with respect to the present position x j of a
material particle, a repeated index implies summation over the range
of the index, and the superscript .n/ signi� es quantities for the nth
lamina.

The elastic layers are orthotropic with planes of symmetry co-
incident with the coordinate planes. The piezoelectric material is
modeled as transversely isotropic, with the x1 axis as the axis
of transverse isotropy, which is also the poling direction. The
constitutive equations, in contracted notation, for the nth lamina
are

¾11

¾22

¾33

¾32

¾31

¾12

.n/

D

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

.n/
"11

"22

"33

2"23

2"31

2"12

.n/

¡

e11 0 0

e12 0 0

e13 0 0

0 0 0

0 0 e35

0 e26 0

.n/

E1

E2

E3

.n/

D1

D2

D3

.n/

D
e11 e12 e13 0 0 0

0 0 0 0 0 e26

0 0 0 0 e35 0

.n/

"11

"22

"33

2"23

2"31

2"12

.n/

C
²11 0 0

0 ²22 0

0 0 ²33

.n/ E1

E2

E3

.n/

(2)

where "i j are the components of the in� nitesimal strain tensor, E j

the electric � eld, Ci j the elasticity constants, ei j the piezoelectric
moduli, and ²i j the electric permittivity. Material elasticities and
permitivities are assumed to yield a positive stored energy density
for every nonrigid deformation and/or nonzero electric � eld.26 For
an elastic layer, the piezoelectric moduli vanish identically. The
number of independent elastic moduli Ci j equals nine for an or-
thotropic material and � ve for a transversely isotropic material. The
in� nitesimal strain tensor and the electric � eld are related to the
mechanical displacements u j and the electric potential Á by

"
.n/

i j D 1
2 u.n/

i; j C u.n/

j;i ; E .n/

j D ¡Á
.n/

; j (3)

The edges x1 D 0 and L1 are assumed to be mechanically simply
supported and electrically insulated, and the edges x2 D 0 and L2

are assumed to be mechanically simply supported and electrically
grounded. That is,

¾
.n/

11 D 0; u.n/

2 D u.n/

3 D 0; D.n/

1 D 0 at x1 D 0; L1

¾
.n/

22 D 0; u.n/

1 D u.n/

3 D 0; Á.n/ D 0 at x2 D 0; L2

(4)

The mechanical boundary conditions of a simply supported plate
for the stresses and displacements in Eq. (4) are identical to those
assumed by Heyliger11 for the exact solution of rectangular plates
with extension actuators. Exact three-dimensional solutions for lam-
inated plates can be obtained only for certain combinations of
boundary conditions on the edges. Heyliger11 considered electri-
cally grounded (Á.n/ D 0) edges at x1 D 0; L1 to obtain exact so-
lutions for laminates with piezoelectric extension actuators. In the
case of piezoelectric shear actuators, we are able to obtain exact so-
lutions only when the edges x1 D 0 and L1 are electrically insulated
(D.n/

1 D 0).
The boundary conditions prescribed on the top and bottom sur-

faces of the laminate can be either a mechanical displacement com-
ponent u j or the corresponding traction component ¾3 j and either
the electric potential Á or the normal component of the electric dis-
placement D3: However, typically nonzero normal tractions, zero
tangential tractions, and electric potential are prescribed on the top
and bottom surfaces of a plate. Because the applied pressure and
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electric potential can be expanded in terms of a Fourier series, it is
suf� cient to consider electrical and/or mechanical loads of the form

Á.x1; x2; H=2/ D Á0 cos px1 sin qx2

¾33.x1; x2; H=2/ D q0 sin px1 sin qx2 (5)

where Á0 and q0 are known constants, p D k¼=L1; q D m¼=L2; and
k and m are nonnegative integers.

The interface conditions on the material surfaces x3 D H .2/;
: : : ; H .N / may be speci� ed as follows:

1) If the surface x3 D H .n C 1/ is an interface between two lam-
inas, the mechanical displacements, surface tractions, the electric
potential, and the normal component of the electric displacement
between them are continuous. That is

u.n/

j D u.n C 1/

j ; ¾
.n/

3 j D ¾
.n C 1/

3 j ; Á.n/ D Á.n C 1/

D.n/

3 D D.n C 1/

3 on x3 D H .n C 1/ (6)

Thus, the adjoining laminas are presumed to be mechanically and
electrically perfectly bonded together.

2) If the interface x3 D H .n C 1/ is electroded, then the electric
potential on this surface is assumed to be a known function of the
form Á

.n C 1/

0 cos px1 sin qx2: The normal component of the electric
displacement need not be continuous across this interface. Thus,

u.n/

j D u.n C 1/

j ; ¾
.n/

3 j D ¾
.n C 1/

3 j

Á.n/ D Á.n C 1/ D Á
.n C 1/

0 cos px1 sinqx2 on x3 D H .n C 1/ (7)

III. Exact Solution
We construct a local coordinate system x .n/

1 ; x .n/

2 ; x .n/

3 with the
local axes parallel to the global axes and the origin at the point where
the global x3 axis intersects the bottom surface of the nth lamina
(see Fig. 1). In this local coordinate system, the nth lamina occupies
the region [0; L1] £ [0; L2] £ [0; h.n/]; where h.n/ D H .n C 1/ ¡ H .n/:
We drop the superscript n for convenience, with the understanding
that all material constants and unknowns are for the nth lamina. An
exact solution is obtained by extending the state-space formulation
of Fan and Ye27 to piezoelectric shear actuators.

Because the stored energy density is positive, the mate-
rial constants C33; C44; C55 , and ²33 are positive quantities and
C55²33 C e2

35 > 0: Solving for u1;3 and Á;3 from the constitutive equa-
tions for ¾31 and D3 in Eq. (2), we obtain

u1;3 D
²33

C55²33 C e2
35

¾31 C
e35

C55²33 C e2
35

D3 ¡ u3;1

Á;3 D
e35

C55²33 C e2
35

¾31 ¡
C55

C55²33 C e2
35

D3 (8)

From the constitutive equations for ¾32 and ¾33 in Eq. (2), we have

u2;3 D
1

C44
¾32 ¡ u3;2

u3;3 D
1

C33
¾33 ¡

C13

C33
u1;1 ¡

C23

C33
u2;2 ¡

e13

C33
Á;1 (9)

Q D

p2 C11 ¡
C2

13

C33
C q2C66 pq C12 C C66 ¡

C13C23

C33
¡p

C13

C33
p2 e11 ¡

C13e13

C33
C q2e26

pq C12 C C66 ¡
C13C23

C33
p2C66 C q2 C22 ¡

C 2
23

C33
¡q

C23

C33
pq e12 C e26 ¡

C23e13

C33

p
C13

C33
q

C23

C33

1
C33

p
e13

C33

p2 e11 ¡
C13e13

C33
C q2e26 pq e12 C e26 ¡

C23e13

C33
¡p

e13

C33
¡p2 ²11 C

e2
13

C33
¡ q2²22

The following equations are obtained by eliminating the in-plane
stresses¾11; ¾22 , and ¾12 and the in-plane electric displacements D1

and D2 from the equilibrium equations (1) by using the constitutive
relations (2), (8), and (9):

¾31;3 D ¡ C11 ¡
C2

13

C33
u1;11 ¡ C66u1;22 ¡ C12 C C66 ¡

C13C23

C33

£ u2;21 ¡
C13

C33
¾33;1 ¡ e11 ¡

C13e13

C33
Á;11 ¡ e26Á;22

¾32;3 D ¡ C66 C C12 ¡
C13C23

C33
u1;12 ¡ C66u2;11 ¡ C22 ¡

C 2
23

C33

£ u2;22 ¡
C23

C33
¾33;2 ¡ e12 C e26 ¡

C23e13

C33
Á;12

¾33;3 D ¡¾31;1 ¡ ¾32;2

D3;3 D ¡ e11 ¡
C13e13

C33
u1;11 ¡ e12 C e26 ¡

C23e13

C33
u2;12

¡ e26u1;22 ¡
e13

C33
¾33;1 C ²11 C

e2
13

C33
Á;11 C ²22Á;22 (10)

Equations (8–10) are the state-space equations for the eight state-
space variables u1; u2; u3; Á; ¾31; ¾32; ¾33 , and D3 for piezoelectric
materials that are poled in the x1 direction. The state-space equations
for elastic materials given by Fan and Ye27 can be recovered by
setting the piezoelectric coef� cients ei j to zero in the � rst of Eqs. (8),
Eqs. (9), and the � rst three of Eqs. (10).

A solution to the state-space variables for the nth lamina is sought
in the form

[u1; Á; ¾31; D3] D [ Nu1; NÁ; N¾31; ND3] cos px1 sin qx2

[u2; ¾32] D [ Nu2; N¾32] sin px1 cos qx2

[u3; ¾33] D [ Nu3; N¾33] sin px1 sin qx2 (11)

Equations (11) identically satisfy the homogeneous boundary condi-
tions (4) on the edges x1 D 0 and L1 and x2 D 0 and L2: Expressions
for u1; u2 , etc., for extension actuators look similar to those given
in Eq. (11), except that the trigonometric functions of x1 and x2 are
different. Substitution for u1; u2; u3; Á; ¾31; ¾32; ¾33 , and D3 from
Eq. (11) into Eqs. (8–10) leads to the following matrix equation:

dS.x3/

dx3
D AS.x3/ (12)

where

S D [ Nu1 Nu2 N¾33 NÁ N¾31 N¾32 Nu3 ND3]T ; A D
0 P

Q 0

P D

²33

C55²33 C e2
35

0 ¡p
e35

C55²33 C e2
35

0
1

C44
¡q 0

p q 0 0

e35

C55²33 C e2
35

0 0 ¡
C55

C55²33 C e2
35
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Integration of the vector differential equation (12) gives

S.x3/ D exp[x3A]Z (13)

where Z is an 8 £ 1 vector of unknown coef� cients. To evaluate the
matrix exponential in Eq. (13) explicitly, we expand it into a matrix
polynomial as

exp[x3A] D
8

j D 1

® j .x3/A j ¡ 1 (14)

where no powers of A higher than seven are needed due to the
Cayley–Hamilton theorem. In terms of the matrices P and Q, the
matrix exponential is

exp[x3A] D

®1.x3/1 C ®3.x3/PQ C ®5.x3/PQPQ

C®7.x3/PQPQPQ

®2.x3/P C ®4.x3/PQP

C®6.x3/PQPQP C ®8.x3/PQPQPQP

®2.x3/Q C ®4.x3/QPQ

C®6.x3/QPQPQ C ®8.x3/QPQPQPQ

®1.x3/1 C ®3.x3/QP C ®5.x3/QPQP

C®7.x3/QPQPQP

The coef� cients ® j .x3/ are determined in terms of the eigenvalues
¸ of matrix A by the observation that they satisfy the characteristic
equation

exp[x3¸] D
8

j D 1

® j .x3/¸ j ¡ 1 (15)

If the eigenvalues are distinct, using Eq. (15) eight times, once for
each eigenvalue ¸ j ; j D 1; : : : ; 8, generates an algebraic system of
equations in the eight unknowns ® j .x3/ whose solution is

®1.x3/

®2.x3/
:::

®8.x3/

D

1 ¸1 ¸2
1 ¢ ¢ ¢ ¸7

1

1 ¸2 ¸2
2 ¢ ¢ ¢ ¸7

2
:::

:::
:::

:::

1 ¸8 ¸2
8 ¢ ¢ ¢ ¸7

8

¡1

e¸1x3

e¸2x3

:::

e¸8x3

(16)

Alternatively, the matrix exponential in Eq. (13) can be evaluated
by using the Jordan decomposition of matrix A. Any square matrix
A can be decomposed as

A D TJT¡1 (17)

where J is the Jordan canonical form of A and T is a similarity
matrix. The matrix J is usually a diagonal matrix of eigenvalues of
A, but, in general, it could also have ones directly above the diagonal
if the eigenvalues are repeated. The matrix exponential can then be
evaluated as

exp[x3A] D T exp[x3J]T¡1 (18)

where the matrix exponential exp[x3J] may be written down by
inspection of the Jordan matrix J.

On evaluating the matrix exponential, we obtain analytical ex-
pressions for the state-space variables u1; u2; u3; Á; ¾31; ¾32; ¾33,
and D3 of each lamina in terms of eight scalar coef� cients Z j .
The coef� cients are determined by satisfying the boundary condi-
tions on the top and bottom surfaces of the laminate as well as the
interface conditions (6) or (7) between adjoining dissimilar plies.
This results in four conditions on both the top and bottom surfaces
and eight conditions at each of the N ¡ 1 interfaces. The result-
ing system of 8N linear algebraic equations for the 8N unknowns
Z .n/

j .n D 1; 2; : : : ; N / is readily solved. After the constants are de-
termined, the mechanical displacements, stresses, electric potential,
and electric displacement can be computed at any location within
the laminate.

IV. FSDT Solution
In this section we develop an analytical solution for the deforma-

tions of a transversely isotropic homogeneous rectangular piezo-
electric plate by using the FSDT plate theory. Assume that the plate
is of thickness H , that it is poled in the x1 direction, that its edges
are simply supported, that the edges x1 D 0 and L1 are electrically
insulated and the edges x2 D 0 and L2 are electrically grounded,
and that the top and bottom surfaces are subjected to the following
electric and/or mechanical loads:

Á.x1; x2; §H=2/ D §Á0 cos.¼ x1=L1/ sin.¼ x2=L2/

¾3 j .x1; x2; H=2/ D q0±3 j sin.¼ x1=L1/ sin.¼ x2=L2/ (19)

where Á0 and q0 are known constants and ±3 j is the Kronecker delta.
We take the midsurface of the plate as the reference surface and as-
sume the following � elds, based on the FSDT, for the displacements
and the electric potential:

ui .x1; x2; x3/ D u0
i .x1; x2/ C x3.1 ¡ ±3i/’i .x1; x2/ (no sum on i )

Á.x1; x2; x3/ D 2Á0.x3=H/ cos.¼ x1=L1/ sin.¼ x2=L2/ (20)

Here u0
i .x1; x2/ are the displacements of a point on the midsurface,

and ’1.x1; x2/ and ¡’2.x1; x2/ are the rotations of the normal to the
midsurface about the x2 and x1 axes, respectively. The nonzero in-
� nitesimal strains and the components of the electric � eld associated
with Eq. (20) are

"11 D u0
1;1 C x3’1;1; "22 D u0

2;2 C x3’2;2; 2"23 D u0
3;2 C ’2

2"13 D u0
3;1 C ’1; 2"12 D u0

1;2 C u0
2;1 C x3.’1;2 C ’2;1/

E1 D 2Á0.¼ x3=H L1/ sin.¼ x1=L1/ sin.¼ x2=L2/

E2 D ¡2Á0.¼ x3=H L2/ cos.¼ x1=L1/ cos.¼ x2=L2/

E3 D ¡2.Á0=H / cos.¼ x1=L1/ sin.¼ x2=L2/ (21)

The reduced stress–strain relationship (22) is obtained by setting
¾33 D 0 in Eq. (2). From this assumption, "33 is computed in terms
of "11; "22 , and E1 and then substituted into the expressions for
¾11; ¾22; ¾23; ¾13 , and ¾12 in Eq. (2). A limitation of the FSDT is that
both ¾33 and "33 are assumed to vanish; this has been corrected in
the plate theory proposed by Vidoli and Batra.23 In the FSDT the
through-thickness variation of ¾33 is computed by the integration of
the equilibrium equations in the thickness direction.

¾11

¾22

¾23

¾13

¾12

D

Q11 Q12 0 0 0 ¡P11 0 0

Q12 Q22 0 0 0 ¡P12 0 0

0 0 Q44 0 0 0 0 0

0 0 0 Q55 0 0 0 ¡P35

0 0 0 0 Q66 0 ¡P26 0

"11

"22

2"23

2"13

2"12

E1

E2

E3

(22)
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where

Q11 D C11 ¡ C2
13=C33 ; Q12 D C12 ¡ .C13C23=C33/

Q22 D C22 ¡ C2
23=C33 ; Q44 D C44; Q55 D C55

Q66 D C66; P11 D e11 ¡ C13e13=C33

P12 D e12 ¡ C23e13=C33; P35 D e35; P26 D e26 (23)

The variational principle for a simply supported piezoelectric plate
(for example, see Tiersten26) gives the governing equations

N11;1 C N12;2 D 0; M11;1 C M12;2 ¡ Q1 D 0

N22;2 C N12;1 D 0; M22;2 C M12;1 ¡ Q2 D 0

Q1;1 C Q2;2 C q0 sin.¼ x1=L1/ sin.¼ x2=L2/ D 0 (24)

and boundary conditions

N11 D 0; M11 D 0; u0
2 D 0; ’2 D 0; u0

3 D 0

D1 D 0 at x1 D 0 and L1

N22 D 0; M22 D 0; u0
1 D 0; ’1 D 0; u0

3 D 0

Á D 0 at x2 D 0 and L2 (25)

The stress resultants are de� ned as

[Ni j ; Mi j ] D
H=2

¡H=2

¾i j [1; x3] dx3; Q i D K
H=2

¡H=2

¾i3 dx3

(26)
where K is the shear correction factor. We note that the electrical
boundary conditions in the 6th and 12th of Eqs. (25) are not given by
the variational principle because the electric potential distribution is
assumed a priori. The charge equation, second of Eqs. (1), has not
been considered in the derivation of the equilibrium equations (24)
because there is no contribution from the electric internal virtual
work term Di ±E i in the variational statement.

A solution to the differential equations (24) is obtained by choos-
ing the displacements and rotations as

u0
1.x1; x2/; ’1.x1; x2/ D [R1; R2] cos.¼ x1=L1/ sin.¼ x2=L2/

u0
2.x1; x2/; ’2.x1; x2/ D [R3; R4] sin.¼ x1=L1/ cos.¼ x2=L2/

u0
3.x1; x2/ D R5 sin.¼ x1=L1/ sin.¼ x2=L2/ (27)

These and the electric potential given by the second of Eqs. (20),
satisfy edge conditions (25) identically. Substitution for u0

i ; ’1 , and
’2 from Eq. (27) into Eq. (21) and the resulting expressions for "i j

and Ei into Eq. (22) gives stresses in terms of Á0 and the unknowns
Rk ; k D 1; : : : ; 5. These expressions for the stresses are then sub-
stituted into Eq. (26) and for the stress resultants into Eq. (24) to
obtain � ve simultaneous linear equations for the � ve unknowns Rk ,
which can be readily solved. The solution for Rk when the plate is
subjected only to an electric load is given in the Appendix.

V. Results and Discussion
We present results � rst for a homogeneous piezoelectric plate

and then for sandwich structures with each lamina made of either
graphite–epoxy or PZT-5A, whose nonzero material properties are
listed in Table 1. The graphite–epoxy is assumed to be orthotropic,
and the PZT-5A is transversely isotropic with x1 axis as the axis of
transverse isotropy, which is also the poling direction. The material
properties of the axially poled PZT-5A were obtained by a tensor
transformation of the material properties given by Tang et al.28 of
PZT-5A poled in the x3 direction.

Table 1 Nonvanishing material properties of the
graphite–epoxy and PZT-5A shear actuators

Property Graphite–epoxy Shear PZT-5A

C11 .GPa/ 183.443 86.856
C22 .GPa/ 11.662 99.201
C33 .GPa/ 11.662 99.201
C12 .GPa/ 4.363 50.778
C13 .GPa/ 4.363 50.778
C23 .GPa/ 3.918 54.016
C44 .GPa/ 2.870 22.593
C55 .GPa/ 7.170 21.100
C66 .GPa/ 7.170 21.100
e11 .Cm¡2/ 0 15.118
e12 .Cm¡2/ 0 ¡7.209
e13 .Cm¡2/ 0 ¡7.209
e26 .Cm¡2/ 0 12.322
e35 .Cm¡2/ 0 12.322
²11 .10¡10 F/m/ 153.0 150.0
²22 .10¡10 F/m/ 153.0 153.0
²33 .10¡10 F/m/ 153.0 153.0

A. Homogeneous Piezoelectric Plate
Consider a homogeneous square plate made of the piezoceramic

PZT-5A and subjected to the sinusoidal electric and/or mechanical
loads (19) on the top and bottom surfaces. The mechanical dis-
placements, stresses, electric displacements, and electric potential
are nondimensionalized as

Oui D u i C0=e0Á0; O¾i j D ¾i j L1=e0Á0

ODi D Di L1C0 e2
0Á0; OÁ D Á=Á0

for the applied electric load and

Qui D u i C0=L1q0; Q¾i j D ¾i j=q0

QDi D Di C0=e0q0; QÁ D Áe0=L1q0

for the applied mechanical load. Here, C0 D 21:1 GPa and
e0 D 12:322 Cm¡2 are representative values of the elastic and piezo-
electric moduli, respectively, for the PZT-5A. The shear correction
coef� cient K is set equal to 5

6
, although this value was proposed by

Reissner for a homogenous elastic plate. In the FSDT solution, the
transverse shear stresses ¾13 and ¾23 and the transverse normal stress
¾33 are obtained by the integration of the equilibrium equations in
the thickness direction. The FSDT solution for the electric load is
compared with the exact solution in Fig. 2 for length-to-thickness
ratios S, ranging from 2 to 40. The FSDT and the exact solution for
the axial displacement u1 , the longitudinal stress ¾11 , and the trans-
verse shear stress ¾13 are in good agreement even for thick plates
with S < 10; whereas the transverse de� ection u3 predicted by the
FSDT is accurate only for thin plates with S > 15: In contrast, if the
plate is subjected to the mechanical load, the axial displacement u1

and the stresses ¾11 and ¾13 given by the FSDT are accurate only
for thin plates, whereas the transverse de� ection u3 is in excellent
agreement with the exact solution for thick plates also, as shown in
Fig. 3.

The through-the-thickness variation of the stresses for a thick
plate with length-to-thickness ratio S D 4 is depicted in Fig. 4 for
electrical and mechanical loads. The FSDT gives an af� ne varia-
tion of the longitudinal stress ¾11 and a parabolic variation for the
transverse shear stress ¾13 , which are in good agreement with the
shapes obtained from the exact solution. When the plate is sub-
jected to the electric load, the FSDT predicts the transverse normal
stress O¾33 to be zero, whereas the exact solution gives a nonzero but
small value (Fig. 4c). For the mechanical load, the FSDT gives a
cubic through-the-thickness variation for Q¾33, which is in excellent
agreement with the exact solution as shown in Fig. 4f. The through-
the-thickness variations of the longitudinal stress and the transverse
shear stress obtained from the FSDT solution agree very well with
those computed from the analytical solution of the problem.
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Fig. 2 Axial displacement, transverse de� ection, longitudinal stress, and transverse shear stress for an axially poled homogeneous PZT-5A plate
subjected to an electric load vs length-to-thickness ratio S.

Fig. 3 Axial displacement, transverse de� ection, longitudinal stress, and transverse shear stress for an axially poled homogeneous PZT-5A plate
subjected to a mechanical load vs length-to-thickness ratio S.

B. Sandwich Plate with a Piezoelectric Core
We consider a square sandwich plate consisting of an axially

poled PZT-5A sandwiched between two graphite–epoxy elastic fac-
ing sheets, as shown in Fig 5a. Application of electric potentials
¡Á0 cos ¼x1=L1 sin ¼x2=L2 and Á0 cos ¼x1=L1 sin ¼x2=L2 to the
top and bottom surfaces, respectively, of the piezoelectric core will
produce a transverse shear deformation in it, thus causing the sand-
wich structure to de� ect in the transverse direction. Only results

from the exact solution are presented in this section. The through-
the-thickness variation of the in-plane displacements and stresses
for length-to-thickness ratios S D 4 and 40 are depicted in Fig. 6.
The axial displacement u1 exhibits a zigzag variation for both thick
and thin laminates (Fig 6a). This implies that any equivalent sin-
gle layer theory, such as the FSDT, that assumes an af� ne variation
of the in-plane displacements through the entire thickness of the
laminate will give poor results even for thin sandwich plates. If the
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Fig. 4 Through-the-thickness variation of the stresses for an axially poled homogeneous PZT-5A thick plate with S = 4: a), b), and c) electrical load;
and d), e), and f) mechanical load.

Fig. 5a Axially poled piezoelectric shear actuator core sandwiched between graphite–epoxy facing sheets.

Fig. 5b Corresponding extension actuation con� guration with transversely poled actuators.

sandwich plate contains an axially poled piezoelectric core, then
a layerwise theory capable of capturing this zigzag behavior must
be employed. Zhang and Sun20;21 have developed a layerwise the-
ory for such sandwich beams by treating the top and bottom elastic
sheets as Euler–Bernoulli beams and the axially poled piezoelectric
core as a shear deformable Timoshenko beam.

The in-plane displacement u2 approaches an af� ne variation
through the entire thickness of the sandwich plate for S D 40. The
longitudinal stress ¾11 is piecewise af� ne, and it is signi� cantly
smaller in the piezoelectric core than that in the graphite-epoxy
facing sheets (Fig. 6c). The longitudinal stress ¾22 is an order of
magnitude smaller than ¾11, and it is also piecewise af� ne. The

transverse shear stress ¾13 attains its maximum value on the top and
bottom surfaces of the piezoelectric core (Fig. 6e). In comparison,
the transverse shear stress ¾23 attains its maximum value on the
midsurface of the piezoelectric core as shown in Fig. 6f.

Figure 7 depicts the displacements and stresses in the sand-
wich structure subjected to the sinusoidal mechanical load
¾3i .x1; x2; H=2/ D q0±3i sin.¼ x1=L1/ sin.¼ x2=L2/ on its top sur-
face. In this case, the through-the-thickness variation of the axial
displacement u1 approaches an af� ne distribution through the en-
tire thickness of the plate for increasing length-to-thickness ratios
(Fig. 7a), unlike the zigzag variation for the electric load. As ex-
pected, the longitudinal stress ¾11 in the piezoelectric core is smaller
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Fig. 6 Through-the-thickness variation of displacements and stresses for the sandwich structure with a piezoelectric shear actuator core between
graphite–epoxy facing sheets and subjected to an electric load, L1 = L2 .

than that in the graphite–epoxy facing sheets (Fig. 7b) because
the core is closer to the midsurface of the plate. The through-the-
thickness variations of the transverse shear stresses ¾13 and ¾23 are
depicted in Figs. 7c and 7d.

Zhang and Sun20 studied a cantilever beam made of a piezo-
electric shear actuator core sandwiched between two elastic facing
sheets, similar to that shown in Fig. 5a, and compared the results
with a cantilever beam made of an elastic substrate with piezoelec-
tric extension actuators bonded to its surfaces, like that shown in
Fig. 5b. They observed that the greatest advantage provided by the
sandwich structure with a piezoelectric shear actuator core is that
the longitudinal stresses in the piezoelectric layer are signi� cantly
smaller than those observed in the piezoelectric extension actua-
tors. Because we have obtained an exact solution for a sandwich
plate with piezoelectric shear actuator core, and the exact solution
for a plate with extension actuators was given by Heyliger,11 we
can compare the exact stresses induced in the piezoelectric layer
for the two con� gurations when the edges are simply supported.
The material properties for the PZT-5A extension actuators shown
in Fig. 5b, poled in the thickness direction, are given by Vel and
Batra.17 The thickness of the piezoelectric shear actuator core in
Fig. 5a is the same as the combined thicknesses of the piezoelec-
tric extension actuators in Fig. 5b, and the average applied electric

� eld intensities in the actuators are also the same for both con� gu-
rations. For S D 10, the transverse de� ection u3 of the plate centroid
is 8:025e0Á0=C0 for the sandwich plate with a shear actuator and
24:30e0Á0=C0 for the plate with extension actuators, that is, a larger
electric � eld has to be applied to the PZT-5A shear actuator than that
for the PZT-5A extension actuators to achieve the same transverse
de� ection. Note, however, that this may not be the case for other
piezoelectric actuators because the transverse de� ection depends
primarily on e31 for extension actuators and e35 for shear actua-
tors. Therefore, the relative magnitudes of these two coef� cients for
the piezoelectric material will determine which of the two con� g-
urations has a larger de� ection for the same applied electric � eld
intensity.

The maximum longitudinal stress in the piezoelectric actuator di-
vided by the centroidal de� ection of the sandwich plate is plotted
against the length-to-thickness ratio S in Fig. 8a. The stresses are
compared at different thickness locations for the two con� gurations
because the maximum longitudinal stress ¾11 in the piezoelectric
shear actuator occurs at x3 D 0:1H ¡ (and ¡0:1H C), and it occurs
at x3 D 0:4H C (and ¡0:4H ¡) for the piezoelectric extension actua-
tors. We use H §, de� ned as lim± ! 0 H § ±, because the longitudinal
stress may be discontinuous at the interface between laminae. As
is evident, the maximum longitudinal stress ¾11 in the actuator to



VEL AND BATRA 1371

Table 2 Mechanical displacements, stresses, electric potential, and electric displacement at speci� c locations of a square
sandwich plate made of an axially poled piezoelectric shear actuator core sandwiched between graphite–epoxy or aluminum

facing sheets and subjected to an electric load

Graphite–epoxy facing sheets Aluminum facing sheets

Variable S D 4 S D 10 S D 40 S D 4 S D 10 S D 40

Ou1.0; L2=2; 0:1H / 0.7209 0.7412 0.7451 0.8193 0.8482 0.8540
Ou2.L1=2; 0; 0:5H / ¡0.9959 ¡1.2179 ¡1.2697 ¡0.6513 ¡0.7147 ¡0.7274
Ou3.L1=2; L2=2; 0/=S 0.7711 0.8025 0.8101 0.4483 0.4611 0.4635
O¾11.L1=2; L2=2; 0:5H / 7.3066 7.8470 7.9416 0.1849 ¡0.1656 ¡0.2386
O¾22.L1=2; L2=2; 0:5H / 1.6436 1.9926 2.0736 6.8808 7.4231 7.5312
O¾12.L1=4; L2=4; 0:5H / ¡0.6672 ¡0.7944 ¡0.8235 ¡0.8602 ¡0.8836 ¡0.8879
O¾13.L1=4; L2=2; 0/S ¡4.0986 ¡4.6885 ¡4.8169 ¡4.5061 ¡4.8791 ¡4.9537
O¾23.L1=2; L2=4; 0/S 1.1635 1.4715 1.5445 1.6252 1.9132 1.9722
O¾33.L1=2; L2=2; 0:3H /S2 ¡1.3004 ¡1.4644 ¡1.4980 ¡1.1876 ¡1.2233 ¡1.2299
OÁ.L1=2; L2=2; 0:05H/ ¡0.4992 ¡0.4999 ¡0.5000 ¡0.4993 ¡0.4999 ¡0.5000
OD1.L1=2; L2=2; 0:1H / ¡10.4195 ¡10.5393 ¡10.5632 ¡10.803 ¡10.9627 ¡10.9941
OD2.L1=4; L2=4; 0:1H / 4.1060 4.1110 4.1107 4.4265 4.4487 4.4528
OD3.L1=4; L2=2; 0/=S 21.8052 22.0518 22.1024 21.7817 22.0502 22.1023

Fig. 7 Through-the-thickness variation of displacements and stresses for the sandwich structure with a piezoelectric shear actuator core between
graphite–epoxy facing sheets and subjected to a mechanical load, L1 = L2.

achieve a given transverse de� ection of the plate is signi� cantly
smaller for shear actuators than for extension actuators. Therefore,
it is advantageous to use shear actuators instead of extension actu-
ators because a large longitudinal stress is detrimental to the brittle
piezoceramic material. Thus, our comparison of the exact longitu-
dinal stresses for the two con� gurations supports the conclusion of
Zhang and Sun.20 The transverse shear stress ¾13 in the piezoelec-
tric layer is maximum on the interface x3 D 0:1H between it and the
graphite–epoxy layer for the shear actuation con� guration and at
x3 D 0:4H for the extension actuation con� guration. A comparison
of the maximum ¾13 divided by the midpoint de� ection is shown
in Fig. 8b for various length-to-thickness ratios. It reveals that the
maximum transverse shear stress is only slightly larger for shear
actuators than that for extension actuators. However, the maximum
shear stress ¾13 is signi� cantly smaller than the maximum longitu-
dinal stress ¾11 in the extension actuators, and, therefore, the overall
stress level within the shear actuator is still smaller than that in the
extension actuator. Note that Heyliger11 has considered electrically
grounded edges at x1 D 0 and L1 and a sinusoidal electric load in the

x1 direction for extension actuators, whereas we have assumed the
edges x1 D 0 and L1 to be electrically insulated and have assumed a
cosinusoidal electric load in the x1 direction toobtain exact solutions
for shear actuators. In spite of these differences, the results presented
in this section provide a useful comparison of the effectiveness of
extension and shear actuators.

Numerical results at speci� c points of the square sandwich plate
with a PZT-5A shear actuator core and having either graphite–epoxy
or aluminum facing sheets are given in Table 2 for the electric load.
Young’s modulus and Poisson’s ratio for aluminum are assumed to
be 70.3 GPa and 0.345, respectively.20

In all of the preceding problems studied, the piezoelectric layers
extended over the entire length of the laminate. However, in prac-
tice, small patches of a piezoelectric material are either af� xed to
the surfaces of a structure or embedded in it. Analytical solutions
for the cylindrical bending of laminates with segmented sensors
and/or actuators have been obtained by Vel and Batra16 by using the
Eshelby–Stroh formalism. The equilibrium equations are exactly
satis� ed at every point in the body, and the boundary conditions
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a) Longitudinal stress

b) Transverse shear stress, L1 = L2

Fig. 8 Comparison of the stresses in the piezoelectric layer for the
shear actuation mechanism and the corresponding extension actuation
mechanism for an electric load.

and the continuity conditions at the interfaces are satis� ed in the
sense of Fourier series. For the problems studied herein with sim-
ply supported edges, both the equilibrium equations and boundary
conditions are satis� ed pointwise.

VI. Conclusions
We have obtained an exact solution for the three-dimensional

static deformations of simply supported laminated thick plates with
embedded piezoelectric shear actuators. The governing equations of
linear piezoelectricity, the boundary conditions at the simply sup-
ported edges, and the interface conditions between dissimilar layers
are exactly satis� ed. We have developed a plate theory, based on
the displacement � eld of the FSDT, for homogeneous axially poled
piezoelectric plates with a known variation of the electric poten-
tial � eld. For a square plate, all of the displacements and stresses
obtained by using the FSDT are in good agreement with the exact
solution when the length-to-thickness ratio is greater than 15. The
deviation between the two sets of results increases as the length-to-
thickness ratio decreases.

We have also analyzed deformations of a sandwich plate with an
axially polarized piezoelectric core sandwiched between two elastic
surface layers. The application of an electric � eld in the thickness
direction induces transverse shear deformation of the core, thus
generating the desired transverse de� ection. The through-thickness
variation of the axial displacement takes a zigzag shape for both
thick and thin laminates. Thus, an equivalent single layer theory, like
the FSDT, that assumes a linear variation of the axial displacement
through the entire thickness of the laminate should not be used to
analyze such structures, even when the thickness of the plate is small
when compared to its length. Instead, a layerwise theory ought to
be employed for all sandwich laminates.

A comparison of stresses in a sandwich laminate with those
in an equivalent surface-mounted extension actuator con� gura-
tion reveals that the longitudinal stresses within the shear actu-
ators are signi� cantly smaller than those in the extension actua-
tors. Thus, it is advantageous to use shear actuators because large
longitudinal stresses can be detrimental to the brittle piezoceramic
material.

The results presented herein should help others validate simpler
models for sandwich structures with shear actuators.

Appendix: Solution for Rk

The solution for Rk in terms of the applied electric potential,
geometric, and material parameters of the homogeneous rectangular
simply supported plate is

R1 D 0

R2 D 2SÁ0 ¡ A2 ¼ 2 P11 Q22 C 12S2KP35 A2 Q12 C Q22 Q44

¡ A4 P11 ¼ 2 Q22 C 12A2 S2KQ44 Q55 C P26 ¼ 2 A2 Q12

¡ Q22 Q44 C A2 ¼ 2 A2 Q12 ¡ Q22 ¡ 24A2S2KQ44 Q55

¡ A4 24S2KP35 Q44 C ¼ 2 P11 Q44 C A2 Q55 Q66

C A2 P12 ¡12A2S2KQ44 Q55 C ¼ 2 Q12 Q44 C A2 Q55

C ¼ 2 Q44 C A2 Q55 Q66 L1 A2 ¡¼ 2 Q2
12 ¡ Q11 Q22 Q44

C ¡ A2¼ 2 Q2
12 ¡ Q11 Q22 C 12S2K A4 Q11 C 2A2 Q12

C Q22 Q44 Q55 C ¼ 2 A4 Q11 ¡ 2A2 Q12 C Q22 Q44

C A2 ¼ 2 A4 Q11 ¡2A2 Q12 C Q22 C 48A2S2KQ44 Q55 Q66

R3 D 0

R4 D 2ASÁ0 P26 ¡¼ 2 A2 Q11 ¡ Q12 Q44 ¡ A2 ¼ 2 A2 Q11

¡ Q12 C 24S2KQ44 Q55 C P12 ¡ A2 12S2KQ44 Q55

C ¼ 2 Q11 Q44 C A2 Q55 ¡ ¼ 2 Q44 C A2 Q55 Q66

C A2 12A2 S2KP35 Q11 Q44 C ¼ 2 P11 Q12 Q44

C 12S2KP35 Q12 Q44 C A2¼ 2 P11 Q12 Q55

¡ 12A2S2KP11 Q44 Q55

C 24S2KP35 Q44 C ¼ 2 P11 Q44 C A2 Q55 Q66

L1 A2 ¡¼ 2 Q2
12 ¡ Q11 Q22 Q44 C ¡A2¼ 2 Q2

12

¡ Q11 Q22 C 12S2K A4 Q11 C 2A2 Q12 C Q22 Q44 Q55

C ¼ 2 A4 Q11 ¡ 2A2 Q12 C Q22 Q44 C A2 ¼ 2 A4 Q11

¡ 2A2 Q12 C Q22 C 48A2S2KQ44 Q55 Q66

R5 D 2A2 SÁ0 A2¼ 2 P12 Q11 Q44 C A2¼ 2 P26 Q11 Q44

¡ A2¼ 2 P11 Q12 Q44 ¡ ¼ 2 P26 Q12 Q44 ¡ A2¼ 2 P12 Q12 Q55

¡ A2¼ 2 P26 Q12 Q55 C A2¼ 2 P11 Q22 Q55 C ¼ 2 P26 Q22 Q55

C 12A4S2KP11 Q44 Q55 C 12A2 S2KP12 Q44 Q55

C 24A2S2KP26 Q44 Q55 C ¼ 2 ¡A2 P11 C P12 Q44

¡ A2 Q55 Q66 C P35 A2 ¼ 2 Q2
12 ¡ Q11 Q22 ¡ 12S2K

£ A2 Q11 C Q12 Q44 ¡ ¼ 2 A4 Q11 ¡ 2A2 Q12 C Q22

C 24A2S2KQ44 Q66 A2¼ ¡¼ 2 Q2
12 ¡ Q11 Q22 Q44

C ¡A2¼ 2 Q2
12 ¡ Q11 Q22 C 12S2K A4 Q11 C 2A2 Q12

C Q22 Q44 Q55 C ¼ ¼ 2 A4 Q11 ¡ 2A2 Q12 C Q22 Q44

C A2 ¼ 2 A4 Q11 ¡ 2A2 Q12 C Q22 C 48A2 S2KQ44 Q55 Q66
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where A D L2=L1 is the aspect ratio of the plate and S D L1=H is
the length-to-thickness ratio.
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