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An exact solution is obtained for three-dimensional deformations of a simply supported functionally graded
rectangular plate subjected to mechanical and thermal loads on its top and/or bottom surfaces. Suitable temper-
ature and displacement functions that identically satisfy boundary conditions at the edges are used to reduce the
partial differential equations governing the thermomechanical deformations to a set of coupled ordinary differen-
tial equations in the thickness coordinate, which are then solved by employing the power series method. The exact
solution is applicable to both thick and thin plates. Results are presented for two-constituent metal–ceramic func-
tionally graded rectangular plates that have a power law through-the-thickness variation of the volume fractions
of the constituents. The effective material properties at a point are estimated by either the Mori–Tanaka or the
self-consistent schemes. Exact displacements and stresses at several locations for mechanical and thermal loads are
used to assess the accuracy of the classical plate theory, the � rst-order shear deformation theory, and a third-order
shear deformation theory for functionally graded plates. Results are also computed for a functionally graded plate
with material properties derived by the Mori–Tanaka method, the self-consistent scheme, and a combination of
these two methods.

I. Introduction

A DVANCED composite materials offer numerous superior
properties to metallic materials, such as high speci� c strength

and high speci� c stiffness. This has resulted in the extensive use
of laminated composite materials in aircraft, spacecraft, and space
structures. For example, a layer of a ceramic material when bonded
to the surface of a metallic structure acts as a thermal barrier in
high-temperature applications. However, the sudden change in ma-
terial properties across the interface between discrete materials can
result in large interlaminar stresses leading to delamination. Fur-
thermore, large plastic deformations at the interfaces may trigger
the initiation and propagation of cracks in the material. One way to
overcome these adverse effects is to use functionally graded materi-
als in which material properties vary continuously. This is achieved
either by gradually changing the volume fraction of the constituent
materials, usually in the thickness direction only, or by changing the
chemical structure of a thin polymer sheet to obtain a smooth vari-
ation of in-plane material properties and an optimum response to
external thermomechanical loads. The former class of functionally
graded structures can be manufactured by high-speed centrifugal
casting1;2 in which layers are formed in the radial direction due to
different mass densities of the constituents, or by depositing layers
of ceramic materials on a metallic substrate.3;4 Lambros et al.5 have
developed an ultraviolet irradiation process to obtain variations in
Young’s modulus in the plane of a sheet. A directed oxidation tech-
nique has been employed by Breval et al.6 and Manor et al.7 to obtain
a ceramic layer on the outside surface.

There are several three-dimensional solutions available for the
thermoelastic analysis of inhomogeneous plates. Most of these
studies have been conducted for laminated plates that have
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piecewise constant material properties in the thickness direction.
Three-dimensional solutions for functionally graded plates are use-
ful because they can be used as benchmarks to assess the ac-
curacy of various two-dimensional plate theories. Rogers et al.8

have employed the method of asymptotic expansion to analyze
three-dimensional deformations of inhomogeneous plates. How-
ever, the boundary conditions on the edges of the plate in their theory
are applied in an average sense like those in two-dimensional plate
theories, and the plate is assumed to be only moderately thick. Tarn
and Wang9 have also presented an asymptotic solution that may be
carried out to any order, but the manipulations become more and
more involved as one considers higher-order terms, and numerical
examples are given only for laminated plates consisting of homo-
geneous layers. Cheng and Batra10 have also used the method of
asymptotic expansion to study the three-dimensional thermoelastic
deformations of a functionally graded elliptic plate.

Tanaka et al.11;12 designed property pro� les for functionally
graded materials to reduce the thermal stresses. Reddy13 has pre-
sented solutions for rectangular plates based on the third-order shear
deformation plate theory. Reiter et al.,14 Reiter et al.,15 and Reiter
and Dvorak16 performed detailed � nite element studies of discrete
models containing simulated skeletal and particulate microstruc-
tures and compared results with those computed from homogenized
models in which effective properties were derived by the Mori–
Tanaka17 and the self-consistent18 methods. Cheng and Batra19 have
related the de� ections of a simply supported functionally graded
polygonal plate given by the � rst-order shear deformation theory
(FSDT) and a third-order shear deformation theory (TSDT) to that
of an equivalent homogeneous Kirchhoff plate. Lee and Yu20 and
Lee et al.21 have expanded the mechanical displacements, the elec-
tric potential, and the material moduli as a power series in the
thickness coordinate, derived plate equations of different orders for
functionally graded piezoelectric materials, and analyzed their free
vibrations. Batra22 has studied � nite plane strain deformations of
a functionally graded incompressible hollow cylinder loaded by a
uniform pressure on the inner surface.

The objective of this investigation is to present an exact solution
to the three-dimensional thermoelastic deformations of a simply
supported functionally graded rectangular thick plate. We assume
that the plate is made of an isotropic material with material prop-
erties varying smoothly in the thickness direction only. By the use
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of suitable temperature and displacement functions, the governing
partial differential equations are reduced to a set of coupled ordinary
differential equations in the thickness coordinate, which are solved
by the power series method. We consider a two-phase graded mate-
rial with a power law variation of the volume fractions of the con-
stituents through the thickness. The effective material properties at
a point are determined in terms of the local volume fractions and the
material properties of the two phases either by the Mori–Tanaka17

(also see Benveniste23 ) or by the self-consistent18 scheme. Results
are presented for an Al/SiC graded rectangular plate. Displacements
and stresses at critical locations for mechanical and thermal loads
are given for different length-to-thickness ratios, exponents in the
power law through-the-thickness variation of the constituents, and
different homogenization schemes. We compare the exact results
with those obtained from the classical plate theory24;25 (CPT), the
FSDT,26;27 and the TSDT.27;28 The results from the three plate theo-
ries are quite different from the exact solution for thick functionally
graded plates.

Results are also computed for a functionally graded plate for
which the effective material properties in the ceramic rich and the
metal rich regions are derived by the Mori–Tanaka17 method, and the
effective properties elsewhere are obtained by the self-consistent18

scheme. A third-order transition function of Reiter and Dvorak16 is
used in the transition regions to have a smooth variation of material
properties between the regions. For the thermal load, this combined
method of homogenizing material properties gives plate deforma-
tions and transverse normal and transverse shear stresses that differ
signi� cantly from those computed with either the Mori–Tanaka or
the self-consistent scheme alone. However, through-the-thickness
variation of the longitudinal stress given by the three homogeniza-
tion methods is essentially the same except at points near the top
surface of the plate where the volume fraction of the ceramic is high.
For the mechanical load, the homogenization technique in� uences
strongly the transverse displacements but not the values of the stress
components.

II. Formulation of the Problem
We use rectangular Cartesian coordinates xi ; i D 1; 2; 3, to de-

scribe the in� nitesimal static thermoelastic deformations of an
N -layer laminated plate occupying the region [0; L1] £ [0; L2] £
[¡H=2; H=2] in the unstressed reference con� guration. Each layer
of the laminated plate is made of an isotropic material with ma-
terial properties varying smoothly in the x3 (thickness) direc-
tion only. The vertical positions of the bottom and the top sur-
faces and the N ¡ 1 interfaces between the layers are denoted by
H .1/ D ¡H=2; H .2/; : : : ; H .n/; : : : ; H .N / and H .N C 1/ D H=2:

The equations of mechanical and thermal equilibrium in the
absence of body forces and internal heat sources are (e.g., see
Carlson29)

¾i j; j D 0 (1a)

q j; j D 0 (1b)

where ¾i j and q j are, respectively, the components of the Cauchy
stress tensor and the heat � ux vector, and where i; j D 1; 2; 3. A
comma followed by index j denotes partial differentiation with re-
spect to the position x j of a material particle, and a repeated index
implies summation over the range of the index.

The constitutive equations for a linear isotropic thermoelastic
material are29

¾i j D ¸"kk ±i j C 2¹"i j ¡ ¯±i j T (2a)

q j D ¡·T; j (2b)

where ¸ and ¹ are the Lamé constants, ¯ is the stress-temperature
modulus, · is the thermal conductivity, "i j are components of the
in� nitesimal strain tensor, T is the change in temperature of a mate-
rial particle from that in the stress-free reference con� guration, and
±i j is the Kronecker delta. The material properties ¸; ¹; ¯ , and · are
functions of x3:

The in� nitesimal strain tensor is related to the mechanical
displacements u i by

"i j D 1
2
.ui; j C u j;i / (3)

The edges of the plate are assumed to be simply supported and
maintained at the reference temperature. That is,

¾11 D 0 (4a)

u2 D u3 D 0 (4b)

T D 0 (4c)

at x1 D 0 and L1 and

¾22 D 0 (4d)

u1 D u3 D 0 (4e)

T D 0 (4f)

at x2 D 0 and L2 .
The mechanicalboundary conditions prescribed on the top and the

bottom surfaces can be either a displacement component u j or the
corresponding traction component ¾3 j : However, typically nonzero
normal and zero tangential tractions are prescribed on these two
surfaces. Because the normal load can be expanded as a double
Fourier series in x1 and x2 , it suf� ces to consider loads of the form

¾13 D ¾23 D 0 at x3 D §H=2

¾33.x1; x2; §H=2/ D p§ sin r x1 sin sx2 (5)

where pC and p¡ are known constants, r D k¼=L1; s D m¼=L2, and
k and m are positive integers. The thermal boundary conditions on
the top and the bottom surfaces are speci� ed as

#§ T .x1; x2; §H=2/ C »§ q3.x1; x2; §H=2/

D ’§ sin rx1 sin sx2 (6)

When values of constants #§ and »§ are chosen appropriately,
various boundary conditions corresponding to either a prescribed
temperature, a prescribed heat � ux, or an exposure to an ambient
temperature through a boundary conductance can be speci� ed.

The interfaces between adjoining layers are assumed to be per-
fectly bonded together and in ideal thermal contact so that

[[u i ]] D 0 (7a)

[[¾i3]] D 0 (7b)

[[T ]] D 0 (7c)

[[q3]] D 0 (7d)

on x3 D H .2/; H .3/; : : : ; H .N / . Here [[u i ]] is the jump in the value of
u i across an interface.

The mechanical and the thermal problems are one-way coupled
in the sense that the temperature � eld is determined � rst by solving
Eqs. (1b) and (2b) and the pertinent boundary conditions, and the
displacements are later obtained from Eqs. (1a) and (2a) and the
relevant boundary conditions.

III. Exact Solution
We construct a local rectangular Cartesian coordinate system

x .n/

1 ; x .n/

2 , and x.n/

3 with local axes parallel to the global axes and
the origin at the point where the global x3 axis intersects the mid-
surface of the nth lamina. In the local coordinate system, the nth lam-
ina occupies the region [0; L1] £ [0; L2] £ [¡h.n/=2; h.n/=2], where
h.n/ D H .n C 1/ ¡ H .n/ . We drop the superscript n for convenience
with the understanding that all material constants and variables
belong to this layer.

We assume that, within each layer, the Lamé constants ¸ and ¹;
the stress-temperature modulus ¯, and the thermal conductivity ·
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are analytic functions of x3 and, thus, can be represented by a Taylor
series expansion about its midsurface as

[¸; ¹; ¯; ·] D
1X

® D 0

£
Q̧ .®/; Q¹.®/; Q̄.®/; Q· .®/

¤
x®

3 (8)

Note that ¸; ¹; ¯ , and · are positive quantities for all x3, and there-
fore, Q̧ .0/; Q¹.0/; Q̄.0/, and Q· .0/ are positive.

A. Temperature Field
A solution for the change in temperature of points in the nth layer

is sought in the form

T D µ.x3/ sin r x1 sin sx2 (9)

The assumed temperature function T identically satis� es the bound-
ary conditions (4c) and (4f) at the edges of the plate. Substitution
for T from Eq. (9) into Eq. (2b) and the result into Eq. (1b) gives the
following second-order ordinary differential equation with variable
coef� cients:

· [.r 2 C s2/µ ¡ µ 00] ¡ · 0µ 0 D 0 (10)

where a prime denotes derivative with respect to x3: We assume a
solution for µ in the form of a power series

µ.x3/ D
1X

° D 0

Qµ .° /x°

3 (11)

The series (11) and the Taylor series for · in Eq. (8) are substituted
into Eq. (10). By multiplying the in� nite series, appropriately shift-
ing the index of summation, and equating each power of x3 to zero,
we obtain the following recurrence relation:

®X

° D 0

Q· .° /
£

Qµ .® ¡ ° C 2/.® ¡ ° C 2/.® ¡ ° C 1/ ¡ Qµ .® ¡ ° /.r 2 C s2/
¤

C Q· .° C 1/ Qµ .® ¡ ° C 1/.° C 1/.® ¡ ° C 1/ D 0 (12)

for ® D 0; 1; 2; : : : . Because Q· .0/ 6D 0, corresponding to ® D 0 in
Eq. (12), we obtain

Qµ .2/ D [.r 2 C s2/=2] Qµ .0/ ¡
£

Q· .1/
¯

2 Q· .0/
¤

Qµ .1/ (13)

Evaluation of the recursion formula (12) successively for ® D
1; 2; : : : , gives Qµ .® C 2/ in terms of arbitrary constants Qµ .0/ and Qµ .1/.
Substitution for Qµ .®/ into Eq. (11) and and the result into Eq. (9)
gives the following expression for the temperature change:

T D
£

Qµ .0/Ã .0/.x3/ C Qµ .1/Ã .1/.x3/
¤

sin r x1 sin sx2 (14)

where Ã .0/.x3/ and Ã .1/.x3/ are known in� nite series and Qµ .0/ and
Qµ .1/ are unknown constants. There are two unknown constants for
each layer, which result in a total of 2N unknowns for an N -layer
plate. The constants are determined by satisfying the thermal bound-
ary conditions (6) on the top and the bottom surfaces of the plate
and the interface continuity conditions (7c) and (7d) for the thermal
quantities between adjoining layers. This gives two conditions for
the top and the bottom surfaces and two conditions at each of the
N ¡ 1 interfaces. The resulting system of 2N linear algebraic equa-
tions for the 2N unknowns is readily solved to yield the change in
temperature and the heat � ux vector for the entire plate.

B. Displacement Field
A solution for the displacement � eld in the nth layer is sought in

the form

u1 D U1.x3/ cos rx1 sin sx2; u2 D U2.x3/ sin r x1 cos sx2

u3 D U3.x3/ sin rx1 sin sx2 (15)

which identically satis� es the homogeneous boundary conditions
(4a–4b) and (4d–4e) at the simply supported edges. Substitution for

u from Eq. (15) into Eq. (3), for " and also for T from Eq. (9) into
Eq. (2a), and then for ¾ into Eq. (1a) gives the following coupled
system of second-order ordinary differential equations:

.¸ C 2¹/U1r
2 C ¸U2rs C ¹

¡
U1s

2 C U2rs
¢

¡ ¸U 0
3r

¡ ¹0.U 0
1 C U3r/ ¡ ¹.U 00

1 C U 0
3r/ C ¯µr D 0

.¸ C 2¹/U2s2 C ¸U1r s C ¹
¡
U2s2 C U1rs

¢
¡ ¸U 0

3s

¡ ¹0.U 0
2 C U3s/ ¡ ¹.U 00

2 C U 0
3s/ C ¯µs D 0

¹.U 0
1r C U 0

2s/ C ¹U3.r 2 C s2/ C ¸0.U1r C U2s/ C ¸.U 0
1r C U 0

2s/

¡ .¸0 C 2¹0/U 0
3 ¡ .¸ C 2¹/U 00

3 C ¯ 0µ C ¯µ 0 D 0 (16)

We assume a power series solution for the displacements as

Ui .x3/ D
1X

° D 0

QU .° /

i x°

3 (17)

Inserting into the differential equations (16) the Taylor series for
the material properties ¸; ¹, and ¯ from Eq. (8) and the assumed
power series solution for the displacements and the temperature
change from Eqs. (17) and (11), we obtain the following recurrence
relations for every nonnegative integer ®:

®X

° D 0

¡
Q̧ .° / C 2 Q¹.° /

¢ QU .® ¡ ° /

1 r 2 C Q̧ .° / QU .® ¡ ° /

2 r s

C Q¹.° /

±
QU .® ¡ ° /

1 s2 C QU .® ¡ ° /

2 rs
²

¡ .® ¡ ° C 1/ Q̧ .° / QU .® ¡ ° C 1/

3 r

¡ .° C 1/ Q¹.° C 1/

±
.® ¡ ° C 1/ QU .® ¡ ° C 1/

1 C QU .® ¡ ° /

3 r
²

¡ .® ¡ ° C 1/ Q¹.° /

±
.® ¡ ° C 2/ QU .® ¡ ° C 2/

1 C QU .® ¡ ° C 1/

3 r
²

C Q̄.° / Qµ .® ¡ ° /r D 0

®X

° D 0

¡
Q̧ .° / C 2 Q¹.° /

¢
QU .® ¡ ° /

2 s2 C Q̧ .° / QU .® ¡ ° /

1 rs

C Q¹.° /

±
QU .® ¡ ° /

2 r 2 C QU .® ¡ ° /

1 rs
²

¡ .® ¡ ° C 1/ Q̧ .° / QU .® ¡ ° C 1/

3 s

¡ .° C 1/ Q¹.° C 1/

±
.® ¡ ° C 1/ QU .® ¡ ° C 1/

2 C QU .® ¡ ° /

3 s
²

¡ .® ¡ ° C 1/ Q¹.° /

±
.® ¡ ° C 2/ QU .® ¡ ° C 2/

2 C QU .® ¡ ° C 1/

3 s
²

C Q̄.° / Qµ .® ¡ ° /s D 0

®X

° D 0

Q¹.° /.® ¡ ° C 1/

±
QU .® ¡ ° C 1/

1 r C QU .® ¡ ° C 1/

2 s
²

C Q¹.° / QU .® ¡ ° /

3 .r 2 C s2/ C .° C 1/ Q̧ .° C 1/

±
QU .® ¡ ° /

1 r C QU .® ¡ ° /

2 s
²

C .® ¡ ° C 1/ Q̧ .° /

±
QU .® ¡ ° C 1/

1 r C QU .® ¡ ° C 1/

2 s
²

¡ .° C 1/.® ¡ ° C 1/
¡
Q̧ .° C 1/ C 2 Q¹.° C 1/

¢ QU .® ¡ ° C 1/

3

¡ .® ¡ ° C 2/.® ¡ ° C 1/
¡
Q̧ .° / C 2 Q¹.° /

¢ QU .® ¡ ° C 2/

3

¡ Q̄.° C 1/ Qµ .® ¡ ° /.° C 1/ ¡ Q̄.° / Qµ .® ¡ ° C 1/.® ¡ ° C 1/ D 0 (18)

The recurrence relations (18) are evaluated successively for
® D 0; 1; : : : , to obtain QU .® C 2/

1 ; QU .® C 2/

2 , and QU .® C 2/

3 in terms of ar-
bitrary constants QU .0/

1 ; QU .1/

1 ; QU .0/

2 ; QU .1/

2 ; QU .0/

3 , and QU .1/

3 : Thus, there
are six unknown constants for each layer, resulting in a total of 6N
unknowns for an N -layer plate. The constants are determined by sat-
isfying the mechanical boundary conditions (5) on the top and the
bottom surfaces of the plate and the interface continuity conditions
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(7a) and (7b) for the mechanical quantities between adjoining lay-
ers. This yields six conditions for the top and the bottom surfaces
and six conditions at each of the N ¡ 1 interfaces. The resulting
system of 6N linear algebraic equations for the 6N unknowns is
solved to obtain displacements and stresses for the entire plate.

The semi-inverse method of analyzing simply supported plate
problems as assumed in Eqs. (9) and (15) is due toVlasov,30 Srinivas
and Rao,31¡33 and Pagano34 and has been adopted by others to study
piezoelectric and thermoelastic plate problems. Vel and Batra35¡37

have used the Eshelby–Stroh formalism to analyze deformations of
plates with arbitrary boundary conditions prescribed at the edges.

IV. Plate Theories
The displacement � eld for the CPT,24;25 the FSDT,26;27 and the

TSDT13;27;28 can be written as

u° .xi / D u0
° ¡ x3u

0
3;° C g.x3/’° (19a)

u3.xi / D u0
3 (19b)

where u0
° ; u0

3, and ’° are independent of x3 and the func-
tion g.x3/ D 0 for the CPT, g.x3/ D x3 for the FSDT, and
g.x3/ D x3.1 ¡ 4x2

3=3h2/ for the TSDT. In this section, the Latin
indices range from 1 to 3 and the Greek indices from 1 to 2. Func-
tions u0 give displacements of a point on the midsurface of the plate
and .’1 ¡ u0

3;1/ and .¡’2 C u0
3;2/ are, respectively, the rotations of

the transverse normal to the midsurface about the x2 and x1 axes.
Displacement � elds (19) were proposed for studying isothermal de-
formationsof a plate; here we use them to analyze thermomechanical
deformations in the presence of temperature gradients in the thick-
ness direction. Cheng and Batra,10 among others, employed these
displacement � elds for analyzing thermomechanical deformations
of a functionally graded plate.

For the bending of a linear functionally graded plate subjected to
an arbitrary distributed normal load p.x° / on its surface, the � eld
equations are

N° ´;´ D 0; M° ´;° ´ C p D 0; P° ´;´ ¡ KR° D 0 (20)

where

[N° ´; M° ´; P° ´] D
Z H=2

¡H=2

¾° ´[1; x3; g] dx3

R° D
Z H=2

¡H=2

¾° 3g;3 dx3

¾° ´ D H° ´!½ "!½ ¡ ¯±° ´T ; ¾° 3 D 2E° 3!3"!3 (21)

and constant K is the shear correction factor used only for the FSDT.
We set K D 5

6
, although this value was proposed by Reissner for a

homogeneous plate. Because the temperature T is assumed to be
known in the CPT, the FSDT, and the TSDT, we substitute the
exact value for the temperature � eld from Eq. (9) into Eq. (21).
The transverse normal stress ¾33 is assumed to be negligible and
neglected in all three plate theories; this is inconsistent with the
assumption of zero transverse normal strain implied by Eq. (19b).
For an isotropic material,

H° ´!½ D [ºE=.1 ¡ º2/]±° ´±!½ C [E=2.1 C º/].±° !±´½ C ±°½±´!/

E° 3!3 D ¹±° ! (22)

where E ; º, and ¹ are, respectively, Young’s modulus, Poisson’s ra-
tio, and the shear modulus. For a functionally graded plate, material
properties are assumed to vary in the thickness direction only, that
is, E D E.x3/; º D º.x3/, and ¹ D ¹.x3/.

The boundary conditions for a simply supported plate are

N11 D 0; M11 D 0; P11 D 0; u0
3 D 0

u0
2 D 0; ’2 ¡ u0

3;2 D 0 at x1 D 0; L1

N22 D 0; M22 D 0; P22 D 0; u0
3 D 0

u0
1 D 0; ’1 ¡ u0

3;1 D 0 at x2 D 0; L2 (23)

A solution to the partial differential equations (20) can be obtained
by choosing the displacements and rotations as

£
u0

1; ’1

¤
D [S1; S2] cos rx1 sin sx2

£
u0

2; ’2

¤
D [S3; S4] sin r x1 cos sx2

u0
3 D S5 sin rx1 sin sx2 (24)

The assumed � elds (24) satisfy boundary conditions (23) identically.
Substitution from Eq. (24) into Eq. (21) and the result into Eq. (20)
yields � ve simultaneous linear equations for the � ve unknowns Sk ,
which can be readily solved. The transverse shear stresses ¾13 and ¾23

and the transverse normal stress ¾33 are obtained by integrating the
three-dimensional equilibrium equations in the thickness direction.

V. Effective Moduli of Two-Phase Composites
Consider a functionally graded composite material that is fabri-

cated by mixing two distinct material phases, for example, a metal
and a ceramic. Often, precise information about the size, shape,
and distribution of the particles may not be available, and the ef-
fective moduli of the graded composite must be evaluated based
only on the volume fraction distributions and the approximate shape
of the dispersed phase. Several micromechanics models have been
developed over the years to infer the effective properties of macro-
scopically homogeneous composite materials. We summarize two
popular methods for estimating the effective properties, the Mori–
Tanaka and the self-consistent methods, and use them to analyze
functionally graded materials.

A. Mori–Tanaka Estimate
The Mori–Tanaka (see Refs. 15, 17, and 23) scheme for esti-

mating the effective moduli is applicable to regions of the graded
microstructure that have a well-de� ned continuous matrix and a
discontinuous particulate phase as shown in Fig. 1a. It takes into

a)

b)

Fig. 1 Two-phase material with a) particulate microstructure and b)
skeletal microstructure.
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account the interaction of the elastic � elds between neighboring
inclusions. It is assumed that the matrix phase, denoted by the sub-
script 1, is reinforced by spherical particles of a particulate phase,
denoted by the subscript 2. In this notation, K1; ¹1; ·1, and ®1 are
the bulk modulus, the shear modulus, the thermal conductivity, and
the thermal expansion coef� cient, respectively, and V1 is the vol-
ume fraction of the matrix phase. K2; ¹2; ·2; ®2 , and V2 are the
corresponding material properties and the volume fraction of the
particulate phase. Note that V1 C V2 D 1, that the Lamé constant ¸ is
related to the bulk and the shear moduli by ¸ D K ¡ 2¹=3, and that
the stress-temperature modulus is related to the modulus of thermal
expansion by ¯ D .3¸ C 2¹/® D 3K ®. The following estimates for
the effective local bulk modulus K and shear modulus ¹ are use-
ful for a random distribution of isotropic particles in an isotropic
matrix:

K ¡ K1

K2 ¡ K1
D V2

,"
1 C .1 ¡ V2/

K2 ¡ K1

K1 C
¡

4
3

¢
¹1

#

¹ ¡ ¹1

¹2 ¡ ¹1
D V2

¿µ
1 C .1 ¡ V2/

¹2 ¡ ¹1

¹1 C f1

¶
(25)

where f1 D ¹1.9K1 C 8¹1/=6.K1 C 2¹1/. The effective thermal
conductivity · is given by38

· ¡ ·1

·2 ¡ ·1
D

V2

1 C .1 ¡ V2/.·2 ¡ ·1/=3·1

(26)

and the coef� cient of thermal expansion ® is determined from the
correspondence relation39

® ¡ ®1

®2 ¡ ®1
D

1=K ¡ 1=K1

1=K2 ¡ 1=K1

(27)

B. Self-Consistent Estimate
The self-consistent method15;18 assumes that each reinforcement

inclusion is embedded in a continuum material whose effective prop-
erties are those of the composite. This method does not distinguish
between matrix and reinforcement phases, and the same overall
moduli is predicted in another composite in which the roles of the
phases are interchanged. This makes it particularly suitable for de-
termining the effective moduli in those regions that have an inter-
connected skeletal microstructure as shown in Fig. 1b. The locally
effective moduli by the self-consistent method are

±=K D V1=.K ¡ K2/ C V2=.K ¡ K1/ (28a)

´=¹ D V1=.¹ ¡ ¹2/ C V2=.¹ ¡ ¹1/ (28b)

where ± D 3 ¡ 5´ D K=.K C 4¹=3/. These are implicit expressions
for the unknowns K and ¹. Equation (28a) can be solved for K in
terms of ¹ to obtain

K D 1=[V1=.K1 C 4¹=3/ C V2=.K2 C 4¹=3/] ¡ 4¹=3 (29)

and ¹ is obtained by solving the following quartic equation:

V1K1

K1 C 4¹=3
C

V2 K2

K2 C 4¹=3
C 5

³
V1¹2

¹ ¡ ¹2
C

V2¹1

¹ ¡ ¹1

´
C 2 D 0

(30)

The self-consistent estimate of the thermal conductivity coef� cient40

is in the implicit form

V1.·1 ¡ ·/

·1 C 2·
C

V2.·2 ¡ ·/

·2 C 2·
D 0 (31)

The self-consistent estimate of ® is obtained by substitution of the
self-consistent estimate of the bulk modulus K from Eq. (29) into
the correspondence relation (27). Because the quartic equation (30)
and the quadratic equation (31) have to be solved to obtain the shear
modulus ¹ and the thermal conductivity · , it is easier to use the
Mori–Tanaka method than the self-consistent scheme.

VI. Results and Discussion
Here we present exact results for a representative simply sup-

ported square plate with its top surface subjected to either a
mechanical load or a thermal load:

[¾33.x1; x2; H=2/; T .x1; x2; H=2/]

D [pC; T C] sin.¼ x1=L1/ sin.¼ x2=L2/ (32)

The bottom surface is traction free and held at the reference tem-
perature, that is, ¾i3.x1; x2; ¡H=2/ D 0 and T .x1; x2; ¡H=2/ D 0:

Because it is common in high-temperature applications to em-
ploy a ceramic top layer as a thermal barrier to a metallic structure,
we choose the constituent materials of the functionally graded plate
to be Al and SiC with the following material properties.11 For Al,
Em D 70 GPa, ºm D 0:3; ®m D 23:4 £ 10¡6/K, and ·m D 233 W/mK.
For SiC, Ec D 427 GPa, ºc D 0:17; ®c D 4:3 £ 10¡6/K, ·c D
65 W/mK. Recall that the bulk modulus and the shear modu-
lus are related to Young’s modulus E and Poisson’s ratio º by
K D E=3.1 ¡ 2º/ and ¹ D E=2.1 C º/: We assume that the vol-
ume fraction of the ceramic phase is given by the power-law-type
function

Vc D V ¡
c C

¡
V C

c ¡ V ¡
c

¢¡
1
2

C x3=H
¢n

(33)

Here V C
c and V ¡

c are the volume fractions of the ceramic phase on
the top and the bottom surfaces of the plate, respectively, and n is a
parameter that dictates the volume fraction pro� le through the thick-
ness. Cheng and Batra10 have also used a similar power law function
for the volume fraction, except that they have assumed V C

c D 1 and
V ¡

c D 0: We performed a convergence study for the temperature and
displacements. All results reported here have less than 0.001% trun-
cation error and are computed by retaining 200 terms in the series
expansion for the temperature and displacements in Eqs. (11) and
(17), respectively.

The physical quantities are nondimensionalized by relations

[ Nu1; Nu2] D
100Em H 2[u1; u2]

pC L3
1

; Nu3 D
100Em H 3u3

pC L4
1

[ N¾11; N¾22; N¾12] D
10H 2[¾11; ¾22; ¾12]

pC L2
1

[ N¾13; N¾23] D
10H [¾13; ¾23]

pC L1
; N¾33 D

¾33

pC
(34)

for the applied mechanical load and by

OT D
T

T C ; Oq3 D ¡
q3 H

·m T C ; [ Ou1; Ou2] D
10[u1; u2]
®m T C L1

Ou3 D
100Hu3

®m T C L2
1

; [ O¾11; O¾22; O¾12] D
10[¾11; ¾22; ¾12]

Em®m T C

[ O¾13; O¾23] D
100L1[¾13; ¾23]

Em ®m T C H
; O¾33 D

100L2
1¾33

Em ®m T C H 2
(35)

for the thermal load. Nondimensional quantities for the mechanical
load are denoted by a superimposed bar and those for the thermal
load by a superimposed caret.

Consider a simply supported metal–ceramic square plate
.L2 D L1/ with the metal (Al) taken as the matrix phase and the
ceramic (SiC) taken as the particulate phase. That is, P1 D Pm and
P2 D Pc , where P is either the volume fraction V or any material
property. The exact solution for displacements and stresses at spe-
ci� c points in the plate is compared with the CPT, the FSDT, and the
TSDT results in Fig. 2 for length-to-thickness ratio L1=H ranging
from 2 to 40. The effective material properties are obtained by the
Mori–Tanaka scheme. The transverse de� ection Nu3.L1=2; L2=2; 0/
of the plate centroid for the mechanical load predicted by the FSDT
and the TSDT is in excellent agreement with the exact solution
even for thick plates with L1=H < 10, but the CPT solution exhibits
signi� cant error for thick plates. The error in the CPT value for the
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a)

b)

c)

d)

e)

f)

Fig. 2 Transverse de� ection, longitudinal stress, and transverse shear stress vs length-to-thickness ratio for Al/SiC functionally graded square plate
computed with Mori–Tanaka homogenization scheme, V ¡

c = 0, V+
c = 0.5, and n = 2: a–c) mechanical load and d–f) thermal load.

a)

b)

c)

d)

e)

f)

Fig. 3 Transverse de� ection, longitudinal stress, and transverse shear stress vs power law index n for Al/SiC functionally graded square plate
computed with Mori–Tanaka homogenization scheme, V ¡

c = 0, V+
c = 1.0, and L1 /H = 5: a–c) mechanical load and d–f) thermal load.

transverse de� ection can be attributed to the large shear deformation
that occurs in thick plates. The CPT and the FSDT give identical
values of the longitudinal stress N¾11 and of the transverse shear
stress N¾13 , which deviate from the exact solution as the length-to-
thickness ratio decreases. The TSDT gives accurate results for N¾11

and N¾13 even for thick plates. When the plate is subjected to the ther-
mal load, both the longitudinal stress O¾11 and the transverse shear
stress O¾13 given by each one of the three plate theories are inaccurate
for thick plates with L1=H < 10. This could be due to the neglect

of transverse normal strains and the transverse normal stresses in
the plate theories. Furthermore, the displacement � elds in the plate
theories are constructed assuming isothermal conditions and need
to be modi� ed when thermal gradients are present, as is the case
in the present problem. Note that the transverse shear and normal
stresses have been computed by integrating the three-dimensional
elasticity equations in the thickness direction.

Figure 3 shows plots of the nondimensional values of the trans-
verse displacement u3 of the plate centroid, the longitudinal stress
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a)

b)

Fig. 4 Temperature at the center and heat � ux on the bottom surface of
Al/SiC functionally graded square plate vs volume fraction of ceramic
on the top surface for power law index n = 1, 2, and 5 computed with
Mori–Tanaka homogenization scheme, V ¡

c = 0, and L1/H = 5.

a)

b)

c)

d)

e)

f)

Fig. 5 Transverse de� ection, longitudinal stress, and transverse shear stress vs ceramic volume fraction on the top surface of Al/SiC functionally
graded square plate computed with Mori–Tanaka homogenization scheme, V ¡

c = 0, n = 2, and L1/H = 5: a–c) mechanical load and d–f) thermal load.

¾11, and the transverse shear stress ¾13 vs the power law index n
for a thick square plate .L1=H D 5/: The effective properties are
obtained by the Mori–Tanaka scheme, and the volume fraction Vc

of the ceramic phase is taken to be 0 and 1 on the bottom and the
top surfaces, respectively. It is seen that the differences between
the exact values and the CPT, the FSDT, and the TSDT values of
these quantities for the thermal load do not change appreciably for
increasing values of the power law index n: However, for the me-
chanical load, applied on the top surface of the plate, the errors in the
transverse de� ection of the plate centroid and the stresses computed
with each one of the three plate theories increase with an increase
in the value of n. Whereas the CPT and the FSDT underpredict, the
TSDT overpredicts the transverse displacement at the plate centroid
and the longitudinal stress at the centroid of the top surface. For the
thermal load, all three plate theories underpredict this longitudinal
stress. For the mechanical load, the transverse shear stress at the
plate centroid computed from the TSDT solution is lower than that
obtained from the exact solution, but the CPT and the FSDT give
a value higher than that obtained from the analytical solution. For
the thermal load, all three plate theories yield essentially the same
value of the transverse shear stress at the point .L1=2; L2=2; H=4/
and this value is lower than the analytical one.

The change in temperature OT .L1=2; L2=2; 0/ at the plate centroid
vs the ceramic volume fraction V C

c on the top surface for the ther-
mal load is shown in Fig. 4a. It is clear that the temperature change
decreases monotonically with an increase in the value of V C

c . The
nondimensional transverse component of the heat � ux on the bot-
tom surface, shown in Fig. 4b, decreases as the ceramic volume
fraction on the top surface increases because the thermal conduc-
tivity of the ceramic phase is much smaller than that of the metallic
phase. Figure 5 shows plots of the transverse displacements of the
plate centroid and components of the stress at speci� c points in
the plate vs the ceramic volume fraction on the top surface. As is
evident from Figs. 5a–5f, the percentage errors in the transverse
displacement of the plate centroid and stresses at the chosen points
obtained from the plate theories do not change appreciably with the
value of the ceramic volume fraction on the top surface. For both the
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Table 1 Exact displacements, stresses, temperature, and heat � ux at speci� c locations for the Al/SiC functionally graded square plate when
subjected to mechanical and temperature loads: Mori–Tanaka scheme

V ¡
c D 0; V C

c D 0:5; n D 2 V ¡
c D 0; n D 2; L1=H D 5

Variable L1=H D 5 L1=H D 10 L1=H D 40 V C
c D 0:2 V C

c D 0:6 V C
c D 1

Nu1.0; L2=2; H=2/ ¡2:9129 ¡2:8997 ¡2:8984 ¡3:6982 ¡2:6708 ¡1:7421
Nu3.L1=2; L2=2; 0/ 2:5748 2:2266 2:1163 3:0254 2:4326 1:8699
Nu3.L1=2; L2=2; H=2/ 2:5559 2:2148 2:1155 2:9852 2:4196 1:8767
N¾11.L1=2; L2=2; H=2/ 2:7562 2:6424 2:6093 2:3285 2:9359 4:1042
N¾12.0; 0; H=2/ ¡1:5600 ¡1:5529 ¡1:5522 ¡1:2163 ¡1:7106 ¡2:8534
N¾13.0; L2=2; 0/ 2:3100 2:3239 2:3281 2:3516 2:2918 2:1805
N¾33.L1=2; L2=2; H=4/ 0:8100 0:8123 0:8129 0:8300 0:8024 0:7623
OT .L1=2; L2=2; 0/ 0:3938 0:4240 0:4343 0:4315 0:3800 0:3162
Oq3.L1=2; L2=2; ¡H=2/ 0:7316 0:8075 0:8335 0:8219 0:7001 0:5625
Ou1.0; L2=2; H=2/ ¡1:2101 ¡1:2124 ¡1:2131 ¡1:6989 ¡1:0624 ¡0:5326
Ou3.L1=2; L2=2; 0/ 3:2497 3:3312 3:3567 5:0302 2:7110 0:7741
Ou3.L1=2; L2=2; H=2/ 4:4111 3:6337 3:3758 6:5843 3:7561 1:4115
O¾11.L1=2; L2=2; H=2/ ¡4:1764 ¡4:1555 ¡4:1492 ¡4:7912 ¡3:8561 ¡1:2077
O¾12.0; 0; H=2/ ¡6:4804 ¡6:4928 ¡6:4966 ¡5:5878 ¡6:8047 ¡8:7240
O¾13.0; L2=2; H=4/ 4:2264 4:4703 4:5501 1:7390 5:0227 7:9552
O¾33.L1=2; L2=2; 0/ ¡8:6829 ¡9:1622 ¡9:3191 ¡3:5531 ¡10:3675 ¡17:3524

a)

b)

c)

d)

e)

f)

Fig. 6 Through-the-thickness variation of the transverse de� ection and stresses in Al/SiC functionally graded square plate computed with Mori–
Tanaka homogenization scheme, V ¡

c = 0, V+
c = 0.75, L1/H = 5, and n = 2: a–c) mechanical load and d–f) thermal load.

mechanical and the thermal loads, the transverse de� ection of the
plate centroid decreases nearly af� nely with an increase in the value
of V C

c . However, the longitudinal stress at the centroid of the top
surface increases parabolically with a rise in the value of V C

c . With
an increase in the value of V C

c , the transverse shear stress decreases
parabolically for the mechanical load, and it increases essentially
linearly for the thermal load. Note that the transverse shear stresses
are evaluated at different points for the two loads. The through-the-
thickness variations of the displacements and longitudinal stresses at
points on the centroidal axis and the shear stress variation at an edge
are shown in Fig. 6 for a thick plate (L1=H D 5). When subjected
to the mechanical load, the TSDT overestimates the transverse de-
� ection Nu3 at all points within the plate, the CPT underestimates
it at all points, and the FSDT value of Nu3 is close to the average
value given by the exact solution. It is clear that the thickness of the
plate changes and that the transverse normal strain is not uniform
through the plate thickness. The longitudinal stress N¾11 does not
vary as a linear function of the thickness coordinate x3 because the

plate is functionally graded and the material properties are functions
of x3: The transverse shear stress N¾13 attains its maximum value at
x3 D 0:11H . Note that all three plate theories give very good val-
ues of the longitudinal stress and the transverse shear stress. When
the functionally graded thick plate with L1=H D 5 is subjected to
the temperature load, the error exhibited by both the CPT and the
FSDT values for the transverse de� ection Ou3 on the top surface is
26%. The corresponding error in the TSDT value for Ou3 is 28%.
The large errors are due to the assumption of inextensibility of the
normals to the midsurface inherent in all three plate theories consid-
ered here. The extensibility of transverse normals has been incor-
porated in plate theories proposed by Vidoli and Batra,41 Batra and
Vidoli,42 Soldatos and Watson,43 Kant,44 Lee and Yu,20 Lee et al.,21

and others. Simmonds45 showed that accurate three-dimensional
stresses can be derived from the CPT by including the transverse ex-
tensibility effects. The transverse centroidal displacements and the
stresses at the centroid of the top surface using the self-consistent
scheme vs the length-to-thickness ratio are plotted in Fig. 7 for
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Table 2 Exact displacements, stresses, temperature, and heat � ux at speci� c locations for the Al/SiC functionally graded square plate when
subjected to mechanical and temperature loads: self-consistent scheme

V ¡
c D 0:2; V C

c D 0:8; n D 2 V ¡
c D 0:2; n D 2; L1=H D 5

Variable L1=H D 5 L1=H D 10 L1=H D 40 V C
c D 0:3 V C

c D 0:5 V C
c D 0:7

Nu1.0; L2=2; H=2/ ¡1:7038 ¡1:6694 ¡1:6583 ¡2:8810 ¡2:3463 ¡1:8908
Nu3.L1=2; L2=2; 0/ 1:6159 1:3960 1:3249 2:2957 1:9956 1:7297
Nu3.L1=2; L2=2; H=2/ 1:6164 1:3921 1:3246 2:2693 1:9829 1:7268
N¾11.L1=2; L2=2; H=2/ 3:0504 2:9190 2:8775 2:1981 2:5302 2:8861
N¾12.0; 0; H=2/ ¡2:0000 ¡1:9596 ¡1:9466 ¡1:1916 ¡1:4876 ¡1:8313
N¾13.0; L2=2; 0/ 2:2624 2:2788 2:2815 2:3591 2:3254 2:2837
N¾33.L1=2; L2=2; H=4/ 0:7908 0:7941 0:7937 0:8344 0:8174 0:7994
OT .L1=2; L2=2; 0/ 0:3636 0:3921 0:4018 0:4412 0:4123 0:3804
Oq3.L1=2; L2=2; ¡H=2/ 0:5414 0:5984 0:6180 0:6898 0:6324 0:5721
Ou1.0; L2=2; H=2/ ¡0:6325 ¡0:6338 ¡0:6339 ¡1:3954 ¡1:0477 ¡0:7531
Ou3.L1=2; L2=2; 0/ 1:4036 1:4399 1:4492 4:1920 2:9097 1:8323
Ou3.L1=2; L2=2; H=2/ 2:0583 1:6110 1:4601 5:4598 3:8984 2:5860
O¾11.L1=2; L2=2; H=2/ ¡3:7621 ¡3:7399 ¡3:7372 ¡5:2147 ¡4:7038 ¡4:0586
O¾12.0; 0; H=2/ ¡7:4246 ¡7:4397 ¡7:4415 ¡5:7715 ¡6:6431 ¡7:2940
O¾13.0; L2=2; H=4/ 6:7961 7:1847 7:2838 1:2419 3:8282 6:0253
O¾33.L1=2; L2=2; 0/ ¡13:8128 ¡14:5591 ¡14:9234 ¡2:5369 ¡7:8219 ¡12:2810

a)

b)

c)

d)

Fig. 7 Transverse de� ection and longitudinal stress vs length-to-thickness ratio for Al/SiC functionally graded square plate obtained with self-
consistent homogenization scheme, V ¡

c = 0.2, V+
c = 0.8, and n = 2: a–c) mechanical load and d–f) thermal load.

V ¡
c D 0:2; V C

c D 0:8, and n D 2: The plots are qualitatively similar
to those obtained by using the Mori–Tanaka scheme and shown in
Fig. 2.

We have listed in Tables 1 and 2 values of displacements, stresses,
temperature, and heat � ux at speci� c points in a simply supported
Al/SiC functionally graded plate for the two loads considered. Val-
ues listed in Table 1 are obtained by using the Mori–Tanaka homog-
enization scheme and those in Table 2 by the self-consistent method.
These should facilitate comparisons between the exact values and
those obtained from plate theories or other approximate methods
such as the � nite element method. To capture well the through-the-
thickness variation of material properties, a very � ne mesh in the
thickness direction and, hence, throughout the domain will be re-
quired. Results presented herein should help decide the degree of
� neness of the mesh and/or the choice of elements.

In the examples studied so far, we used a single homoge-
nization scheme (either the Mori–Tanaka method or the self-
consistent method) to estimate the effective properties for the entire
plate. This approach is appropriate only for functionally graded
plates that have the same microstructure everywhere. Reiter and
Dvorak16 performed detailed � nite element studies of the response
of simulated discrete models containing both skeletal and par-
ticulate microstructures and concluded that homogenized models
of combined microstructures that employ only a single averag-
ing method do not provide reliable agreements with the discrete
model predictions. However, close agreement with the discrete
model was shown by homogenized models that employ differ-
ent effective property estimates for regions of the plate that have
different microstructures. They state that, in those parts of the
graded microstructure that have a well-de� ned continuous matrix
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a)

b)

c)

d)

Fig. 8 Effective properties for a) Young’s modulus, b) shear modulus, c) coef� cient of thermal expansion, and d) thermal conductivity as a function
of the thickness coordinate x3 obtained by various homogenization schemes.

a)

b)

c)

d)

Fig. 9 Through-the-thickness variation of the transverse de� ection and stresses in Al/SiC functionally graded square plate obtained by various
homogenization schemes; mechanical load, L1/H = 5.
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and discontinuous reinforcement, the effective properties should
be approximated by the appropriate Mori–Tanaka estimates and
that, in skeletal microstructure that often form transition zones
between clearly de� ned matrix and particulate phases, the ef-
fective properties should be approximated by the self-consistent
method.

We consider a functionally graded plate that has an af� ne vari-
ation of the ceramic volume fraction given by Vc D 1

2
C x3=H .

It is assumed to have a well-de� ned continuous metallic ma-
trix with discontinuous ceramic particles in the metal rich region
¡0:5H · x3 · ¡0:2H adjacent to the bottom surface and a well-
de� ned continuous ceramic matrix with discontinuous metallic par-
ticles in the ceramic rich region 0:2H · x3 · 0:5H adjacent to the
top surface. The plate is assumed to have a skeletal microstruc-
ture in the central region ¡0:2H · x3 · 0:2H . We use a combined
model, wherein the effective properties in the metal rich region
adjacent to the bottom surface are obtained by the Mori–Tanaka
scheme with a metallic matrix phase (MTM), the effective prop-
erties in the ceramic rich region adjacent to the top surface are
obtained by the Mori–Tanaka scheme with a ceramic matrix phase
(MTC), and the effective material properties in the central region
are obtained by the self-consistent scheme (SC). To accommodate
the discontinuities in homogenized material properties predicted at
the boundaries between the different regions, we employ the third-
order transition functions used by Reiter and Dvorak16 in transition
regions of width 0:05H centered at x3 D ¡0:2H and 0:2H . The
through-the-thickness variations of the effective Young’s modulus,
shear modulus, coef� cient of thermal expansion, and thermal con-
ductivity obtained by the combined homogenization technique are
plotted in Fig. 8. In Fig. 8, MTM, MTC, and SC signify effective
properties obtained by using a single averaging method through the
entire thickness of the plate.

In the combined model, there are � ve distinct regions in the thick-
ness direction, namely, the three primary regions in which the ef-

a)

b)

c)

d)

Fig. 10 Through-the-thickness variation of the transverse de� ection and stresses in Al/SiC functionally graded square plate obtained by various
homogenization schemes; thermal load, L1/H = 5.

fective properties are obtained by MTM, MTC, and SC and the
two transition regions at the boundaries between them. Within each
region, the effective material properties are expanded as a Taylor se-
ries, and the solution to the thermal and the mechanical equilibrium
equations are obtained in terms of 8 unknown constants, resulting in
a total of 40 unknowns . The constants are determined by satisfying
the mechanical and the thermal boundary conditions (5) and (6) on
the top and the bottom surfaces of the plate and the interface con-
tinuity conditions (7) for the thermal and the mechanical quantities
between adjoining layers. This results in eight conditions for the
top and the bottom surfaces and eight conditions at each of the four
interfaces between regions with distinct micromechanical models.
The resulting system of 40 linear algebraic equations for the 40 un-
knowns are solved to obtain the displacements and stresses for the
entire plate.

A comparison of the through-the-thickness variation of the de� ec-
tion and stresses obtained by the combined model and the two single
averaging methods, namely, MTM and MTC, are shown in Fig. 9 for
a thick plate .L1=H D 5/ subjected to the mechanical load. It is clear
from Fig. 9a that there are signi� cant differences in the values of
the transverse de� ection Nu3 given by the three homogenization tech-
niques. However, the longitudinal stress N¾11; the transverse shear
stress N¾13 , and the transverse normal stress N¾33 predicted by the three
different homogenization methods are essentially the same. The
corresponding displacements and stresses for the thermal load are
shown in Fig. 10. The combined model gives a smaller value for the
transverse de� ection Ou3 than either the MTM or the MTC method.
The magnitude of the longitudinal stress O¾11 from the MTM method
reaches a maximum value at a point situated slightly below the top
surface. However, the maximum value of O¾11 is predicted to occur on
the top surface by the MTC and the combined model. Unlike the re-
sults for the mechanical load, the MTM, the MTC, and the combined
model all give signi� cantly different values for the transverse shear
stress O¾13 and the transverse normal stress O¾33 for the thermal load.
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VII. Conclusions
We have analyzed thermomechanical deformations of a simply

supported functionally graded Al/SiC plate subjected to either a si-
nusoidalpressure or a sinusoidal temperature � eld on the top surface.
The effective properties at points in the plate are obtained either by
the Mori–Tanaka method, or the self-consistent scheme, or a com-
bination of the two. The volume fractions of the constituents and,
hence, the effective material properties are assumed to vary in the
thickness direction only. The effective material properties, the three
components of the displacement, and the temperature � eld are ex-
panded in Taylor series in the thickness coordinate. When in-plane
sinusoidal variations of the displacements and the temperature that
identically satisfy boundary conditions at the edges are presumed,
ordinary differential equations for functions giving their through-
the-thickness variation are derived and solved analytically.

The exact solutions of the problems studied here are compared
with those obtained by the classical plate theory, the FSDT, and
the TSDT. For thick functionally graded plates, there are signi� -
cant differences between the exact solution and that obtained with
any one of these three plate theories even when the transverse nor-
mal and the transverse shear stresses are computed by integrating
the three-dimensional elasticity equations. These differences could
be due to displacement � elds employed in plate theories that were
originally proposed for studying isothermal deformations of a plate.
It is found that the displacements, stresses, and temperatures com-
puted with either the Mori–Tanaka scheme, or the self-consistent
method, or their combination agree qualitatively but differ quanti-
tatively. For the thermal load, the differences in the transverse dis-
placements, the transverse shear stresses, and the transverse normal
stresses are noticeable, but those in the longitudinal stress are neg-
ligible except near the top loaded surface. For the mechanical load,
only the transverse displacements computed with the three methods
exhibit signi� cant variations. For each load, the nonzero transverse
normal strains vary through the plate thickness.

The exact solutions presented here provide benchmark results,
which can be used to assess the adequacy of different plate theories
and also to compare results obtained by other approximate methods
such as the � nite element method.

References
1Berger, R., Kwon, P., and Dharan, C. K. H., “High Speed Centrifu-

gal Casting of Metal Matrix Composites,” 5th International Symposium
on Transport Phenomena and Dynamics of Rotating Machinery, Maui, HI,
1994.

2Fukui, Y., “Fundamental Investigation of Functionally Gradient Mate-
rials Manufacturing System Using Centrifugal Force,” JSME International
Journal Series III, Vol. 34, No. 1, 1991, pp. 144–148.

3Choy, K.-L., and Felix, E., “Functionally Graded Diamond-Like Carbon
Coatings on Metallic Substrates,” Materials Science and Engineering A,
Vol. 278, No. 1, 2000, pp. 162–169.

4Khor, K. A., and Gu, Y. W., “Effects of Residual Stress on the Per-
formance of Plasma Sprayed Functionally Graded ZrO2/NiCoCrAlY Coat-
ings,” Materials ScienceandEngineering A, Vol. 277, No. 1–2, 2000, pp. 64–

76.
5Lambros, A., Narayanaswamy, A., Santare, M. H., and Anlas, G., “Man-

ufacturing and Testing of a Functionally Graded Material,” Journal of En-
gineering Materials and Technology, Vol. 121, No. 2, 1999, pp. 488–493.

6Breval, E., Aghajanian, K., and Luszcz, S. J., “Microstructure and Com-
positionof Alumina/Aluminum Composites Made by the Directed Oxidation
of Aluminum,” Journal of the American Ceramic Society, Vol. 73, No. 9,
1990, pp. 2610–2614.

7Manor, E., Ni, H., Levi, C. G., and Mehrabian, R., “Microstructure Eval-
uation of SiC/Al203/Al Alloy Composite Produced by Melt Oxidation,”
Journal of the American Ceramic Society, Vol. 26, No. 7, 1993, pp. 1777–

1787.
8Rogers, T. G., Watson, P., and Spencer, A. J. M., “Exact Three-

Dimensional Elasticity Solutions for Bending of Moderately Thick Inho-
mogeneous and Laminated Strips Under Normal Pressure,” International
Journal of Solids and Structures, Vol. 32, No. 12, 1995, pp. 1659–1673.

9Tarn, J. Q., and Wang, Y. M., “Asymptotic Thermoelastic Analysis of
Anisotropic Inhomogeneou s and Laminated Plates,” Journal of Thermal
Stresses, Vol. 18, No. 1, 1995,pp. 35–58.

10Cheng, Z. Q., and Batra, R. C., “Three-Dimensiona l Thermoelastic
Deformations of a Functionally Graded Elliptic Plate,” Composites: Part B,
Vol. 31, No. 2, 2000, pp. 97–106.

11Tanaka, K., Tanaka, Y., Enomoto, K., Poterasu, V. F., and Sugano, Y.,
“Design of Thermoelastic Materials Using Direct Sensitivity and Optimiza-
tion Methods. Reduction of Thermal Stresses in Functionally Gradient Mate-
rials,” Computer Methods in Applied Mechanics and Engineering, Vol. 106,
No. 1–2, 1993, pp. 271–284.

12Tanaka, K., Tanaka, Y., Watanabe, H., Poterasu, V. F., and Sugano,
Y., “An Improved Solution to Thermoelastic Material Design in Function-
ally Gradient Materials: Scheme to Reduce Thermal Stresses,” Computer
Methods in Applied Mechanics and Engineering, Vol. 109, No. 3–4, 1993,
pp. 377–389.

13Reddy, J. N., “Analysis of Functionally Graded Plates,” International
Journal for Numerical Methods in Engineering, Vol. 47, No. 1–3, 2000, pp.
663–684.

14Reiter, T., Dvorak, G. J., and Tvergaard, V., “Micromechanical Models
for Graded Composite Materials,” Journal of the Mechanics and Physics of
Solids, Vol. 45, No. 8, 1997, pp. 1281–1302.

15Reiter, T., and Dvorak, G. J., “Micromechanical Modelling of Function-
ally Graded Materials,” IUTAM Symposium on Transformation Problems in
Composite and Active Materials, editedby Y. Bahei-El-Din and G. J. Dvorak,
Kluwer Academic, London, 1997, pp. 173–184.

16Reiter, T., and Dvorak, G. J., “Micromechanical Models for Graded
Composite Materials: II. Thermomechanica l Loading,” Journal of the
Mechanics and Physics of Solids, Vol. 46, No. 9, 1998, pp. 1655–1673.

17Mori, T., and Tanaka, K., “Average Stress in Matrix and Average Elastic
Energy of Materials with Mis� tting Inclusions,” Acta Metallurgica, Vol. 21,
1973, pp. 571–574.

18Hill, R., “A Self-Consistent Mechanics of Composite Materials,” Jour-
nal of the Mechanics andPhysics of Solids, Vol. 13, No. 2, 1965, pp. 213–222.

19Cheng, Z. Q., and Batra, R. C., “De� ection Relationships Between the
Homogeneou s Kirchhoff Plate Theory and Different Functionally Graded
Plate Theories,” Archives of Mechanics, Vol. 52, No. 1, 2000, pp. 143–158.

20Lee, P. C. Y., and Yu, J.-D., “Governing Equations for a Piezoelectric
Plate with Graded Properties Across the Thickness,” IEEE Tansactions on
Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 45, No. 1, 1998,
pp. 236–250.

21Lee, P. C. Y., Yu, J.-D., and Shih, W.-H., “Piezoelectric Ceramic Disks
with Thickness Graded Material Properties,” IEEE Tansactions on Ultrason-
ics, Ferroelectrics, and Frequency Control, Vol. 46, No. 1, 1999, pp. 205–

215.
22Batra, R. C., “Finite Plane Strain Deformations of Rubberlike Materi-

als,” International Journal for Numerical Methods in Engineering, Vol. 15,
No. 1, 1980, pp. 145–160.

23Benveniste, Y., “A New Approach to the Application of Mori–Tanaka’s
Theory of Composite Materials,” Mechanics of Materials, Vol. 6, 1987,
pp. 147–157.

24Jones, R. M., Mechanics of Composite Materials, Scripta, Washington,
DC, 1975.

25Hyer, M. W., Stress Analysis of Fiber-Reinforced Composite Materials,
McGraw–Hill Higher Education, New York, 1998.

26Whitney, J. M., andPagano, N. J., “ShearDeformation inHeterogeneous
Anisotropic Plates,” Journal of Applied Mechanics, Vol. 37, No. 4, 1970,
pp. 1031–1036.

27Reddy, J. N., Mechanics of Laminated Composite Plates: Theory and
Analysis, CRC Press, Boca Raton, FL, 1997.

28Reddy, J. N., “A Simple Higher-Order Theory for Laminated Composite
Plates,” Journal of Applied Mechanics, Vol. 51, No. 4, 1984, pp. 745–752.

29Carlson, D. E., “Linear Thermoelasticity,” Handbuch der Physik, VIa/2,
Springer, Berlin, 1972.

30Vlasov, B. F., “On One Case of Bending of Rectangular Thick
Plates,” Vestnik Moskovskogo Universiteta. Seriëiõ̀a Matematici Mekhaniki,
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