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I. Introduction

F UNCTIONALLY graded structures are inhomogeneous bodies
usually composed of two constituents whose volume fractions

vary continuously throughout the body so as to attain a specific vari-
ation of material moduli that minimize a critical design variable, for
example, the maximum principal tensile stress or the maximum
strain energy density. Lekhnitskii’s1 book has solutions to many
linear elastic problems for inhomogeneous materials. Truesdell and
Noll’s2 and Green and Zerna’s3 books provide solutions for non-
linear elastic incompressible and inhomogeneous materials, but no
specific problem is analyzed. Batra’s4 paper has an explicit solution
for the radial expansion of a circular Mooney–Rivlin cylinder with
material moduli depending upon the radial coordinate. However, in-
terest in functionally graded materials (FGMs) seemed to originate
with the first International Symposium on FGMs.5

Most of the studies on FGMs are limited to composites made of
two isotropic linear elastic materials with the composite’s response
also being modeled as isotropic and linear elastic. Exceptions to this
include recent works in which the constituents and the composite
are assumed to be isotropic heat-conducting thermoviscoelastoplas-
tic materials, and the overall response of the body is also taken to be
isotropic and thermoviscoelastoplastic.6 Qian and Batra7 have stud-
ied linear elastic FGMs with the material response varying continu-
ously within the plane of deformation and found the compositional
profile so as to optimize the first fundamental frequency of a can-
tilever beam. Batra and Jin8 considered the angle of fiber orientation
as a variable and found its variation in the thickness direction so as
to optimize the fundamental frequency of an orthotropic plate.

Analytical solutions of the torsion and the flexure of FG bars
have been given by Rooney and Ferrari9; they assumed that the
elastic moduli are smooth functions of coordinates of a point within
a cross section. Horgan and Chan10 solved the torsion problem an-
alytically for prismatic bodies with special focus on the torsion of
a circular cylinder whose moduli depend upon the radial coordi-
nate of a point. Vel and Batra11,12 have provided analytical solutions
for static or quasi-static deformations of FG isotropic thermoelastic
plates; for the latter case the thermal problem studied is transient, but
the effect of inertia forces in the mechanical problem is neglected.
Numerous references are cited in the aforementioned papers. Qian
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and Batra13,14 have analyzed numerically transient heat conduction,
and transient thermomechanical deformations in a thick FG plate by
using a higher-order shear and normal deformable plate theory of
Batra and Vidoli.15 Cheng and Batra16−18 have provided a closed-
form solution to thermoelastic deformations of a rigidly clamped
elliptic plate and have related the deflection of a FG plate to that
of a homogeneous Kirchhoff plate and frequencies of a FG plate to
that of a membrane.

Here we analyze analytically the torsion of a circular cylindrical
bar made of either an isotropic compressible or an isotropic incom-
pressible linear elastic material with material moduli varying only
in the axial direction. Thus each cross section is made of one mate-
rial, but the material of one cross section is different from that of its
adjoining one. Results for the incompressible material are relevant
to rubber-like cylinders and cylinders composed of biological mate-
rials. Results are also obtained for a transversely isotropic material.

II. Formulation of the Problem
In the absence of body forces and in rectangular Cartesian coor-

dinates, static deformations of a body are governed by the following
balance of linear momentum:

Ti j, j = 0, i, j = 1, 2, 3 (1)

Here T = TT is the Cauchy stress tensor, Ti j, j = ∂Ti j/∂ X j , a re-
peated index implies summation over the range of the index, and
x gives the position of a material particle in the present configu-
ration that occupied the place X in the reference configuration. As
shown in Fig. 1, we assume that the origin of the rectangular Carte-
sian coordinate axes is located at the centroid of the left end and
the x3 axis is aligned along its centroidal axis. The symmetry of
T implies that the balance of moment of momentum is identically
satisfied. The constitutive relation for a compressible linear elastic
isotropic material is

Ti j = λekkδi j + 2μei j , ei j = (ui, j + u j,i )/2 (2)

where u = x − X is the displacement of a material point, δ is the
Kronecker delta, e is the infinitesimal strain tensor, and λ and μ are
Lamé constants that satisfy μ > 0 and 3λ + 2μ > 0. Substitution for
e from the second equation of Eqs. (2) into the first equation of
Eqs. (2) and then for T into Eq. (1) gives Navier’s equations

(λuk,k),i + [μ(ui, j + u j,i )], j = 0 (3)

For a cylinder with traction-free mantle and loaded on the opposite
end faces by equal and opposite (see Fig. 1) tractions that have

Fig. 1 Schematic of the problem studied.
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null resultant but a nonzero moment about the x3 axis, boundary
conditions are

Ti j n j = 0 on the mantle∫
A

Ti3 dA = 0, i = 1, 2, 3, x3 = 0, L

∫
A

εi jk x j Tk3 dA = Mtδi3, i = 1, 2, 3, x3 = 0, L (4)

Here A is the cross-sectional area, Mt the torque applied at the
end faces x3 = 0 and x3 = L , n a unit vector normal to the cylinder
surface, and εi jk is the permutation symbol or the alternating tensor.

When the cylinder material is incompressible, the body can un-
dergo only isochoric (or volume preserving) deformations for which

ekk = 0, Ti j = −pδi j + 2μei j (5)

where p is the hydrostatic pressure not determined by the deforma-
tion field. Substitution for e from the second equation of Eqs. (2)
into Eq. (5) and the result into Eq. (1) gives

uk,k = 0, −p,i + [μ(ui, j + u j,i )], j = 0 (6)

The four unknowns p, u1, u2, and u3 are determined by Eqs. (6) and
boundary conditions (4).

For a transversely isotropic compressible material with the axis
of transverse isotropy coincident with the x3 axis, the constitutive
relation (2) [first equation of Eqs. (2)] is replaced by

Ti j = Ci jklekl (7)

where the elasticity matrix [C] in the contracted notation19 has the
form

[C] =

⎡⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66

⎤⎥⎥⎥⎥⎥⎥⎦
C66 = (C11 − C44)

2
(8)

For a transversely isotropic incompressible material, Eq. (7) be-
comes

Ti j = −pδi j + Ci jklekl (9)

and the elasticity matrix [C] is given by Eq. (8).

III. Analytical Solutions
We use the semi-inverse method, that is, we presume the dis-

placement field in terms of an unknown variable that is found from
the equilibrium equations and the boundary conditions. Because of
the uniqueness theorem in linear elasticity, the solution so found is
unique within a superimposed rigid-body motion, for example, see
Batra.19 We presume that material parameters depend on x3 or X3

only, and plane sections remain plane. That is, under the action of
the applied torque one section rotates with respect to its adjoining
one.

A. Cylinder Material Isotropic and Compressible
For infinitesimal rotations of a cross section, the displacement

field is given by

u1 = −θ X2, u2 = θ X1, u3 = 0 (10)

where θ(X3) is the rotation of a cross section with respect to that of
the left end face. Substitution for u from Eq. (10) into Eq. (3) gives

(μθ ′)′ = 0 (11)

where a prime denotes differentiation with respect to X3. Setting
τ = θ ′, the angle of twist per unit length, and integrating Eq. (11),
we get

μτ = constant, β (12)

For a homogeneous cylinder, μ = constant; thus, τ = constant. For
a FG cylinder the variation of the shear modulus μ in the axial
direction can be adjusted to control the angle of twist of any cross
section.

One can easily show that stresses computed from the displacement
field (10) satisfy boundary conditions (4) provided that

Mt = μ(L)τ (L)J = β J (13)

where J is the polar moment of inertia of the cross section and
equals π R2/2, R being the radius of the cylinder. Assuming that
θ(0) = 0, the angle of twist θ of the cross section X3 = constant is
given by

θ(X3) =
∫ X3

0

β

μ(s)
ds (14)

For μ(X3) = (a + bX3)
n , where a, b, and n are constants, Eq. (14)

gives

θ(X3) =

⎧⎪⎨⎪⎩
−β

n[(a + bX3)
−n + 1 − a−n + 1]

(−n + 1)b
, n �= 0

−β

b
ln

(a + bX3)

a
, n = 1 (15)

whereβ = Mt/(a + bL)n . Whenμ(X3) = ae−bX3 with a and b being
constants,

θ(X3) = (β/ab)(ebX3 − 1) (16)

where β = Mt/(ae−bL). Recalling that the maximum shear stress at
a point is given by μτr where r 2 = X 2

1 + X 2
2, we can find one out

of the three constants a, b, and n in Eq. (15) to optimize either the
angle of twist or the maximum shear stress at a given cross section;
however, μ must always be positive. Similarly, from Eq. (16) one
can find b so that either θ or the maximum shear stress at a cross
section has the desired value.

B. Cylinder Material Isotropic and Incompressible
The displacement field (10) satisfies the first equation of Eqs. (6)

and is thus admissible in an incompressible linear elastic body. Sub-
stitution for u from Eq. (10) into the second equation of Eqs. (2)
and the result in the second equation of Eq. (5) gives

T11 = T22 = T33 = −p, T12 = 0

T13 = −μτ X2, T23 = μτ X1 (17)

where the hydrostatic pressure p is an arbitrary function of X. Sub-
stitution for T from Eq. (17) into Eq. (1), or equivalently for u from
Eq. (10) into the second equation of Eqs. (6), yields

−p,1 − (μτ)′ X2 = 0, −p,2 + (μτ)′ X1 = 0, −p,3 = 0

(18)

The third equation of Eqs. (18) implies that p is a function of X1 and
X2 only. The first two equations of Eqs. (18) satisfy the compatibility
condition p,12 = p,21 only if Eq. (12) holds. Thus p is independent
of X1 and X2 also, and is a constant. The boundary condition [first
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equation of Eqs. (4)] (4) requiring that the mantle of the cylinder be
traction free gives p = 0, and the stress field (17) reduces to

T11 = T22 = T33 = T12 = 0, T13 = −μτ X2, T23 = μτ X1

(19)

The torque Mt applied at the end face X3 = L is given by Eq. (13),
and when θ(0) = 0 the angle of twist θ of the cross section
X3 = constant by Eq. (14).

C. Cylinder Material Transversely Isotropic and Compressible
For the displacement field (10), the second equation of Eqs. (2)

gives

e11 = 0, e22 = 0, e33 = 0, 2e13 = −θ ′ X2

2e23 = θ ′ X1, e12 = 0 (20)

Substitution from Eq. (20) into Eqs. (7) and (8) gives

T11 = 0, T22 = 0, T33 = 0, T13 = −C44θ
′ X2

T23 = C44θ
′ X1, T12 = 0 (21)

Substitution for T from Eq. (21) into Eq. (1) yields Eq. (11) with
μ = C44. Thus Eqs. (12–16) are valid for the torsion of a compress-
ible transversely isotropic cylinder.

D. Cylinder Material Transversely Isotropic and Incompressible
We note that the strain field (2) is still valid and, when substituted

into Eqs. (9) and (8), gives

T11 = −p, T22 = −p, T33 = −p, T13 = −C44θ
′ X2

T23 = C44θ
′ X1, T12 = 0 (22)

Equations (22) are the same as Eqs. (17) with C44 = μ. Thus the
torque Mt applied at the end face X3 = L is given by Eq. (13), and
the angle of twist of the cross section X3 = constant by Eq. (14).

IV. Conclusions
Analytical solutions are given to the problem of the torsion of

a circular cylinder made of a functionally graded material with the
material moduli a smooth function of the axial coordinate only. Thus
by appropriately varying the shear modulus in the axial direction,
one can adjust the angle of twist of any cross section.
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