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Introduction

M ONOLITHIC piezoelectric materials (PZTs) have been
widely used as distributed sensors and actuators for

developing smart structures with self-monitoring and self-
controlling capabilities [1–10]. However, their major drawback is
low control authority as the magnitude of their electromechanical
coefficients is very small. The situation can be improved by using an
active constrained layer damping (ACLD) treatment [11,12] which
consists of a layer of a viscoelastic material constrained between a
host structure and an active constraining PZT layer. When the
constraining layer is activated with a voltage applied to the PZT
layer, the shearing deformations of the viscoelastic layer are
enhanced to improve the damping characteristics of the overall
structures. Since its inception, the ACLD treatment has been
extensively used for efficient and reliable control of flexible
structures [13–17].

Piezoelectric composites, also called piezocomposites, have
emerged as a new class of smart materials and have found wide
applications as distributed actuators and sensors. A piezocomposite,
composed of PZT reinforcements embedded in a conventional epoxy
matrix, provides a wide range of effective material properties not
offered by existing PZTs, is anisotropic, and has good conformability
and strength. We note that laminae of vertically reinforced 1-3
piezocomposites are commercially available [18] and are being
effectively used as underwater high-frequency transducers and in
medical imaging applications [19,20]. A 1-3 piezocomposite lamina
has PZT fibers vertically reinforced in the epoxy matrix across the
thickness of the lamina, thefibers are poled along their length, and the
top and the bottom surfaces of the lamina are electroded. The
effective PZT coefficient (e33) of the 1-3 piezocomposite, which
equals the normal stress (�z) along the fiber direction due to a unit
electric field applied across the thickness of the piezocomposite
lamina, is much larger than the effective coefficients e31 and e32
which signify the induced normal stresses (�x, �y) in directions
transverse to the fiber. However, very little attention has been paid to

using these 1-3 piezocomposites for active vibration control [21].
Until recently, the host structure in a smart system has been
considered to be made of a homogeneous and either isotropic or
orthotropic material. Recently, functionally graded materials
(FGMs) which exhibit smooth variation of material properties in
one or more directions have been investigated for developing high-
performance smart FG structures [22–27]. We also note that Batra
andGeng [12] considered a FGviscoelastic layer but a homogeneous
PZT constraining layer and performed the three-dimensional
transient analysis of the problem with the finite element method
(FEM). However, it appears that the performance of a vertically
reinforced 1-3 piezocomposite has not yet been investigated for
active control of FG structures.

Here, we use a first-order shear deformation plate theory (FSDT)
and the FEM to analyze ACLD of FG plates with the objective of
investigating the performance of the vertically reinforced 1-3
piezocomposite as the material of the constraining layer.

Problem Statement and Basic Equations

A schematic sketch of the problem studied is shown in Fig. 1. The
thicknesses of the substrate FG plate, piezocomposite layer, and the
viscoelastic layer are denoted by h, hp, and hv, respectively. The
midsurface of the substrate plate is taken as the reference plane with
the origin of the rectangular Cartesian coordinate system (xyz)
located in it such that lines x� 0; a and y � 0;b represent
boundaries of the substrate plate.

The overall smart structure is assumed to be thin; thus the FSDT is
used to model its deformations. Accordingly, displacements u, v,
and w of a point along the x, y, and z directions, respectively, are
expressed as

u�x; y; z; t� � u0�x; y; t� � �1�z��x�x; y; t� � �2�z��x�x; y; t�
� �3�z��x�x; y; t� (1)

v�x; y; z; t� � v0�x; y; t� � �1�z��y�x; y; t� � �2�z��y�x; y; t�
� �3�z��y�x; y; t� (2)

w�x; y; z; t� � w0�x; y; t� � �1�z��z�x; y; t� � �2�z��z�x; y; t�
� �3�z��z�x; y; t� (3)

where�1�z� � z � hz � h2i,�2�z� � hz � h2i � hz � h3i,�3�z��
hz � h3i, h2 � h=2, and h3 � h=2� hv. Variables u0, v0, and w0

represent the generalized translational displacement of a point (x, y)
on the reference plane (z� 0) along the x, y, and z directions,
respectively; �x, �x, and �x denote the generalized rotations of
normals to the midplane of the substrate plate, the viscoelastic layer
and the piezocomposite layer, respectively, in the xz plane while �y ,
�y , and �y represent their generalized rotations in the yz plane.
Variables �z, �z, and �z are generalized displacements representing
gradients with respect to z of the transverse displacement in the
substrate plate, the viscoelastic layer, and the piezocomposite layer,
respectively, t is the time variable and a function within the bracket
h i represents an appropriate singularity function for satisfying the
continuity of displacements at an interface between any two
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adjoining layers. Allowing for generalized rotations of normal to be
different in each layer should help satisfy the continuity of tractions
at these interfaces.

We assume that the FGM composed of two homogenous phases,
ceramic and metal, is isotropic and linear elastic with Young’s
modulus (EFG) and mass density (�FG) varying only in the (z)
direction according to

EFG�z� � �Ec � Em�
�
1

2
� ��1�k z

h

�
n

� Em and

�FG�z� � ��c � �m�
�
1

2
� ��1�k z

h

�
n

� �m

(4)

where Ec and �c are Young’s modulus and Poisson’s ratio of the
ceramic phase, respectively,Em and�m are the same for themetallic
phase, n is the power law exponent, and k is a positive integer. Note
that the top surface of the FG plate will be either the softest (metallic)
or the stiffest (ceramic) according as k equals 1 or 2, respectively.
Poisson’s ratio � of the FGM is assumed to be a constant [28] because
it does not vary much for several combinations of ceramics and
metals. It is also assumed that the electric field Ez applied to the
piezocomposite layer is along the z direction. To implement the
selective integration rule for deriving the stiffness matrices of an
element corresponding to bending and transverse shear deformations
separately, stresses and strains at a point are grouped as

f�bg � �x �y �xy �z
� �

T; f�sg � �xz �yz
� �

T

f�bg � �x �y �xy �z
� �

T and f�sg � �xz �yz
� �

T
(5)

where �x, �y , and �z are normal strains along the x, y, and z
directions, respectively; �xy is the in-plane shear strain; and �xz, �yz
are transverse shear strains while �x, �y , �z, �xy , �xz, and �yz are
corresponding stresses. Thus constitutive relations for the FGM can
be expressed as

f�bg � �Cb�f�bg and f�sg � �Cs�f�sg (6)

and the vertically reinforced 1-3 piezocomposite are given by [19]

f�bg � �Cb�f�bg � febgEz

f�sg � �Cs�f�sg and Dz � febgTf�bg"33Ez

(7)

where �Cb� and �Cs� are the elastic coefficient matrices,Dz equals the
electric displacement in the z direction, "33 is the dielectric constant
and febg � �e31 e32 0 e33�T. The viscoelastic layer is assumed to be
made of an homogenous and isotropic material. Employing the
complex modulus approach, its constitutive relations can also be
expressed by Eq. (6) [11,13,14].

Approximate Solution by the Finite Element Method

For brevity, the generalized degrees of freedom of a point in the
overall structure are grouped into the following two vectors:

fdtg � u0 v0 w0

� �
T and

fdrg � �x �y �z �x �y �z �x �y �z
� �

T
(8)

Using strain-displacement relations and Eq. (8), the strain vectors,
given by Eq. (5), at a point in a finite element can be expressed in
terms of the generalized nodal displacements (fde

t g and fde
rg) of the

element as follows:

f�bg � �Btb�
n
de
t

o
� �Zb��Brb�

n
de
r

o
and

f�sg � �Bts�
n
de
t

o
� �Zs��Brs�

n
de
r

o (9)

where �Btb� � �Ltb��Nt�, �Bts� � �Lts��Nt�, �Zb� � �L1���1�z�I
�2�z�I�3�z�I�,

�Ltb� �

@
@x 0 0

0 @
@y 0

@
@y

@
@x 0

0 0 0

2
664

3
775; �Lts� �

0 0 @
@x

0 0 @
@y

� �

�L1� �

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 @
@z

2
664

3
775; �Brb� � �Lrb��Nr�

�Brs� � �Lrs��Nr�
�Zs� � ��4�z� �I �5�z� �I �6�z� �I �1�z� �I �2�z� �I �3�z� �I �
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�6�z� � hz � h3i0

(10)

Here �Nt� and �Nr� are shape function matrices for the element, �Lrb�
and �Lrs� are (12 � 9) operator matrices, while I and �I are (4 � 4) and
(2 � 2) identity matrices, respectively. Nonzero elements of �Lrb� and
�Lrs� are given by

L rb�1; 1� �Lrb�3; 2� �Lrb�5; 4� �Lrb�7; 5� �Lrb�9; 7�

�Lrb�11; 8� �
@
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�Lrs�6; 8� � 1

L rs�7; 3� �Lrs�9; 6� �Lrs�11; 9� �
@

@x
and

Lrs�8; 3� �Lrs�10; 6� �Lrs�12; 9� �
@

@y

(11)

Employing the principle of virtual work [13] and recognizing that
Ez ��V=hp with V being the voltage applied across the
piezocomposite layer thickness, we derive the following open loop
equations of motion for an element:

�Me�
n
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�
h
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in
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in
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Fig. 1 Schematic sketch of a functionally graded plate integrated with

patches of a viscoelastic layer and a constraining layer composed of 1-3
piezoelectric composite.
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For an element of length ae and width be, the element mass matrix
�Me�, stiffness matrices �Ke

tt�, �Ke
tr�, �Ke

rr�, the electroelastic coupling
vectors fFe

tpg, fFe
rpg and the load vector fFeg are given by
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in which h1 ��h=2, h4 � h=2� hv � hp, �v and �p are mass
densities of the viscoelastic and the 1-3 piezocomposite materials,
respectively, and ffg is the externally applied surface traction. Here
we have neglected the rotary inertia because of the small thickness of
the overall structure. For an element not integrated with the ACLD
treatment, the electroelastic coupling matrices become null matrices
and the element stiffness matrices are real. Equations (12) and (13)
are assembled to obtain the following open loop global equations of
motion:

�M�f �Xg � �Ktt�fXg � �Ktr�fXrg �
Xq
j�1

n
Fj
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o
Vj � fFg (15)

and
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Xq
j�1

n
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o
Vj (16)

where �M� is the global massmatrix, �Ktt�, �Ktr�, and �Krr� are global
stiffness matrices, fFtpg, fFrpg are global electroelastic coupling
vectors, fXg and fXrg are global nodal generalized displacement
vectors, fFg is the global nodal force vector, q is the number of
patches, and Vj is the voltage difference applied to the jth patch.

Active Damping

The constraining layer of each patch is activated with a voltage
proportional to the transverse velocity of a point. That is

V j ��kj
d _w��k

j
d

h
Uj

t

i
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d�h=2�
h
Uj

r

i
f _Xrg (17)

where kj
d is the control gain for the jth patch, and unit vectors �Uj

t �
and �Uj

r� locate the velocity sensors. Substituting from Eq. (17) into
Eqs. (15) and (16), equations of motion governing the closed loop
dynamics of the overall FG plate=ACLD system become
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Results and Discussion

Using eight noded isoparametric elements, we compute results for
square FG Al=Al2O3 substrate plates integrated with two ACLD
patches, shown in Fig. 1, and the constraining layer composed of the
1-3 PZT-5H=spur composite with 60% volume fraction of PZT-5H
fibers. Values assigned to effective material parameters of the
piezocomposite are [19] C11 � 9:29 GPa, C12 � 6:18 GPa, C13�
C23 � 6:05 GPa, C33 � 35:44 GPa, C44 � 1:58 GPa, C55 �C44,
C66�1:54GPa, e31�e32��0:1902C=m2, e33 � 18:4107 C=m2,
and �p � 5090 kg=m3. Those for the materials of the FG plate are
aluminum: Em � 70 GPa and �m � 2707 kg=m3 and alumina:
Ec � 380 GPa and �c � 3800 kg=m3; Poisson’s ratio for Al and
Al2O3 is taken to be 0.3. Values of the complex shear modulus,
Poisson’s ratio, and the mass density of the viscoelastic layer are
taken as 20�1� i� MPa, 0.49 and 1140 kg=m3, respectively [9].
Unless otherwise mentioned, the thicknesses h of the FG plate, the
viscoelastic layer, and the piezocomposite layer are 0.003 m, 50:8 	
10�6 m and 250 	 10�6 m, respectively, and the length a of the FG
plate equals 0.4 m.

In Table 1 we compare presently computed natural bending
frequencies of the simply supported FG plate integrated with the
inactive ACLD patches of very small thickness such that their
stiffness and mass do not affect the dynamics of the FG plates with
those of [28]. It is clear that the two sets of results are in excellent
agreement with each other.

To demonstrate the performance of the 1-3 piezocomposite, the
frequency response of the ACLD treated FG plate is computed from
Eqs. (18) and (19) by exciting it with a time harmonic force of 2 N
amplitude applied at the point (a=2, a=4, h=2). The control voltages
supplied to the first and the second patches are proportional,
respectively, to the transverse velocity of points (a=2, a=4, h=2) and
(a=2, 3a=4, h=2). The control gains are chosen to efficiently annul
the first fewmodes. Figure 2 illustrates frequency response functions
for the transverse displacement (w) of the point (a=2, b=4, h=2) for

Table 1 Comparison of natural bending frequencies ($) of square FG

plates (a=h� 10)

FG platesa Source Mode (1,1) Mode (1,2) Mode (2,2)

n� 0:5 Present FEB 0.02517 0.06039 0.09319
Ref. [28] 0.02521 0.06048 0.09323

n� 1:5 Present FEB 0.02158 0.05178 0.07982
Ref. [28] 0.02165 0.05188 0.07991

a$�!h
�����������������������������
�0�1� ��=E0

p
, ! is the circular natural frequency, �0 � 1 kg=m3, and

E0 � 1 GPa.

AIAA JOURNAL, VOL. 45, NO. 7: TECHNICAL NOTES 1781



n� 2. The variation of the control voltage applied to each patchwith
the frequency of excitation is shown in Fig. 3. Results plotted in
Fig. 2 clearly reveal that if the constraining layer of the ACLD
treatment is made of vertically reinforced 1-3 piezocomposite, the
activated patches significantly attenuate the amplitude of vibrations,
and enhance damping characteristics of the system over that of the
passively damped system. Plots of Fig. 3 indicate that the maximum
control voltage required to achieve this damping is quite low. To
delineate contribution of the vertical actuation in improving the
damping characteristics of the FG plate, active control responses of
the FG plate for a gain of 1200 are plotted in Fig. 4 with and without
considering e33 and e31. Note that for e31 � 0 and e33 ≠ 0, the
vertical actuation by the ACLD treatment damps motion of the FG
plate. However, when e33 � 0 and e31 ≠ 0, the in-plane actuation of
the ACLD annuls motions of the FG plate. It is evident from results
depicted in Fig. 4 that the contribution of the vertical actuation of the
ACLD treatment is significantly larger than that of the in-plane

actuation for controlling modes displayed in Fig. 2. This is due to the
much higher value of the effective piezoelectric coefficient e33 of the
1-3 piezocomposite constraining layer than that of e31. Thus one
must consider the transverse normal strain of the constraining layer
even if it is a monolithic PZT with je33j> je31j. It suggests that the
shear and normal deformable plate theory of Batra and Vidoli [29]
may give better results than the FSDT.

Figures 5 and 6 illustrate that for the same locationsACLDpatches
bonded to the softest surface (metal rich,k� 1) of the FGplate cause
more attenuation of vibrations (Fig. 5) with less control voltage
(Fig. 6) than when they are attached to the stiffest surface (ceramic
rich,k� 1) of the plate. Note that in the FG plate material properties
vary through the thickness thereby coupling bending and stretching
deformations. This coupling is reduced if patches are attached to the
softest surface of the substrate FG plate resulting in an improved
performance of the ACLD treatment when patches are bonded to the
softest surface of the FG plate.

Conclusions

The performance of vertically reinforced 1-3 piezoelectric
composite distributed actuator in the ACLD system bonded to a
functionally graded FG plate has been investigated. Deformations of
each layer in the system are modeled by the first-order shear
deformable theory and the resulting 2-dimensional problem is
analyzed by the finite element method. The present work considers
transverse normal strains induced in each layer thereby using both
vertical and in-plane actuations caused by the constraining layer. The
frequency response of the FG plate of the system indicates that the
active constraining layer of the ACLD treatment significantly
enhances damping characteristics of the plate over that caused by
passive damping. It is also found that transverse deformations of the
constraining and hence of the constrained layer induce significantly
larger damping of the FG plate than that caused by their in-plane
deformations. Furthermore, the patches’ performance is maximum
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when they are bonded to the softest (metal rich) surface of the host
FG plate.
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