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We find closed-form solutions for axisymmetric plane strain radial deformations of a functionally graded circular

hollow cylinder and radial expansion/contraction of a hollow sphere loaded on inner and outer surfaces by uniform

hydrostatic pressures. The cylinder and the sphere are presumed to be made of isotropic and incompressible linear

elasticmaterials with the shearmodulus a general function of the radius. It is found that the optimal value of the hoop

or the circumferential stress in a cylinder and a sphere is a constant and occurs for the linear variation in the radial

direction of the shear modulus. The analytical results presented here should serve as benchmarks for verifying

numerical solutions of problems.

Nomenclature
~b = constant of integration for radial displacement of a

sphere particle
c = constant of integration for radial displacement of a

cylinder particle
D = constant appearing in expressions for stresses in the

sphere problem
d = constant of integration for pressure in the cylinder

problem
E = infinitesimal strain tensor
e = constant of integration for pressure in the sphere

problem
ĝ = constant appearing in expressions for stresses in the

cylinder problem
H = displacement gradient
n = unit outward normal to a bounding surface
n = inhomogeneity parameter
p = hydrostatic pressure
pin = pressure applied on the inner surface
pou = pressure applied on the outer surface
R, �, Z = coordinates of a point in cylindrical coordinate

system
R, �, � = coordinates of a point in spherical coordinate system
Rin = inner radius
Rou = outer radius
u = radial displacement of a point
� = slope of the shear modulus versus the radius in the

cylinder problem
� = slope of the shear modulus versus the radius in the

sphere problem
� = shear modulus
�o = reference shear modulus of the material on the inner

surface
� = stress tensor
�RR = radial stress at a point
��� = hoop stress at a point
�ZZ = normal axial stress at a cylinder particle

��� = circumferential stress at a sphere particle
�R� = shear stress on R� constant plane in the

circumferential direction
�Z� = shear stress on Z� constant plane in the

circumferential direction
�RZ = shear stress on R� constant plane in the axial

direction
��� = shear stress on �� constant plane in the �

direction
1 = 3 � 3 identity tensor

I. Introduction

F UNCTIONALLY graded materials (FGMs) are usually
composed of two or more constituents with their volume

fractions and, hence, effective material properties varying
continuously in one or more spatial directions. The volume fractions
of constituents and their materials can be tailored to suit intended
applications; e.g., for resisting elevated temperatures, one could
design the structure to have pure ceramic on the side exposed to high
temperatures and pure metal on the other side to provide strength [1].
Material properties of a polymer can be modified by exposing it to
light of different intensity (e.g., see Lambros et al. [2]). For a fiber
reinforced composite, one could vary the volume fraction of fibers
and their orientations in the thickness direction to obtain suitable
gradation in the moduli [3]. Natural materials such as bamboo sticks,
tree trunks, and human teeth exhibit continuously varying material
properties. There is extensive literature on FGMs and it is almost
impossible to review it in a paper other than in a review article. Here,
we mention works on cylinders and spheres.

Rubberlike materials are being increasingly used in aerospace,
automotive, and biomedical fields; a familiar example is an O-ring in
a space shuttle. These materials are usually regarded as incompres-
sible. Their material properties can be varied by vulcanization and
using different amounts of additives. In spite of numerous works on
FGMs, there is hardly any work related to functionally graded (FG)
rubberlike materials. Batra [4] studied numerically, with the finite
element method, radial deformations of a cylinder made of a
Mooney–Rivlin material, with material parameters varying
smoothly in the radial direction, and did not use the phrase FG.
Mathematically, these are inhomogeneous materials. In the solution
of problems with a numerical method, the procedure to analyze
problems for a homogeneous material can be adopted for inhomoge-
neous materials. For example, Batra [4] used values of material
properties at integration points to numerically evaluate integrals
defined on an element and obtained results for a nonlinear problem
that agreed well with its analytical solution.
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We note that Horgan and Chan [5] have analyzed deformations of
FG cylinders composed of compressible isotropic linear elastic
materials, with the variation of Young’s modulus in the radial
direction given by a power law relation and constant Poisson’s ratio.
Lechnitskii’s book [6] has solutions for several problems involving
inhomogeneous linear elastic materials. One could also divide the
thickness of an FG cylinder into several layers, regard material
properties in each layer as uniform, and use the approach outlined in
Timoshenko and Goodier’s book [7] for composite cylinders. With
an increase in the number of layers, the solution for the layered
cylinder will approach that for the FG cylinder. However, these
books focus on compressible materials. For FG simply supported
thermoelastic and magnetoelectroelastic plates made of compres-
sible materials, withmaterial properties varying only in the thickness
direction, Vel and Batra [8,9], and Pan and Han [10] have given
analytical solutions. Tarn [11], and Tarn and Chang [12] have
provided exact solutions for FG anisotropic cylinders subjected to
thermal and mechanical loads, by assuming that all elastic constants
are power law functions of the radiuswith the same exponent. Alshits
and Kirchner [13] have derived Green’s functions for hollow and
solid cylinders under different boundary conditions and with
material properties varying in the radial direction. Oral and Anlas
[14] have expressed governing equations for an inhomogeneous
cylindrical anisotropic body in terms of stress potentials, and
provided closed-form expressions for the potentials when Young’s
and shear moduli are expressed as power law functions of the radius
and Poisson’s ratio is constant. Liew et al. [15] computed thermal
stresses in an FG cylinder by dividing it into discrete homogeneous
subcylinders in the radial direction. Jabbari et al. [16] expanded
displacements and temperatures in a Fourier series to study
nonaxisymmetric deformations in a thick hollow FG cylinder with
temperature and pressure prescribed on its inner and outer surfaces.
Obata and Noda [17] found steady-state thermal stresses in FG
hollow cylinders and spheres, and Kim and Noda [18] used the
Green function to solve the corresponding transient problem. Pan
and Roy [19] used the method of separation of variables, expressed
the solution in terms of a Fourier series in the circumferential
direction, and divided the FG cylinder into multilayers to solve the
mechanical problem. Shao and Ma [20] employed the Laplace
transform technique and series solution of ordinary differential
equations to find stresses in an FG hollow cylinder subjected to
mechanical loads and linearly increasing boundary temperatures.
All of these works have considered power law variation of the
elastic moduli.

Whereas an incompressible material can undergo only isochoric
deformations, a compressible material can admit both isochoric and
nonisochoric deformations. For plane strain problems, results for an
incompressible material cannot be derived from those for a
compressible material simply by setting Poisson’s ratio equal to 0.5.

The constitutive relation for an incompressible material involves a
hydrostatic pressure that cannot be determined from the deformation
field. Note that only isochoric (volume preserving) deformations are
admissible in incompressible materials. The equation corresponding
to this condition and three equations expressing the balance of linear
momentum are solved for the four unknowns: three components of
displacements and the pressure at a point. However, the pressurefield
can be determined uniquely only if tractions are prescribed on a part
of the boundary. Here, we solve analytically the problem of radial
expansion/contraction of an FG cylinder and an FG sphere loaded by
uniform pressures on the inner and the outer surfaces and the shear
modulus varying in the radial direction only. We also find the
variation in the shear modulus that optimizes the hoop stress.

The analytical solutions presented herein are for an arbitrary
variation of the shear modulus through the plate thickness. The
constraint of incompressibility facilitates the solution of the problem.
These results should serve as benchmarks for verifying and
validating numerical works. For the cylinder problem, results
presented herein generalize those included in [21], inwhich the radial
variation of the shear modulus is assumed to be given by a power law
function for a second-order elastic material; the problem for the
sphere was not studied in [21].

II. Problem Formulation

A. Cylinder

We consider an infinitely long hollow cylinder of inner radius Rin

and outer radius Rou in the unstressed reference configuration. The
cylinder, made of an isotropic and incompressible linear elastic
material, is loaded by pressures pin andpou, respectively, on its inner
and outer surfaces as shown in Fig. 1. We assume that values of
material parameters of the cylinder vary only in the radial direction.
Because the material properties, the cylinder geometry, and the
applied loads are independent of the angular position and the axial
coordinate of a point, we presume that its deformations are axisym-
metric and are independent of the axial coordinate z. Thus, a material
point of the cylinder moves only in the radial direction. Let r and R
denote radial coordinates of a point in the present and the reference
configurations, respectively, and u�R� � r�R� � R its displacement
in the radial direction. Note that the radial displacement of a point
also induces strain in the circumferential direction, and the state of
deformation in the cylinder is that of plane strain in the �z plane
where � is the angular position of a point. Even though the axial strain
identically vanishes, the axial stress is not necessarily zero.However,
it is independent of the axial coordinate z.

In cylindrical coordinates �r; �; z�, physical components of the
displacement gradient H and the infinitesimal strain E� �H�
HT�=2 are given by

�H� � �E� �
u0 0 0

0 u
R

0

0 0 0

2
4

3
5 (1)

where u0 � du=dR, and �R;�; Z� are coordinates of a point in the
reference configuration.

The constitutive relation for an isotropic incompressible linear
elastic material is

� ��p1� 2�E (2)

where� is the stress tensor,p the hydrostatic pressure not determined
from the deformation field, 1 the identity tensor, and �� ��R�> 0
the shear modulus. Note that for an FG cylinder, � varies with the
radius R of a material point.

The FGMs are generally made of two or more constituents and
their effective elastic moduli are derived by using a homogenization
technique. Here, we do not address the determination of � for the
FGM from that of its constituents. However, because no assumption

pin

pou

.
n

R

R
n in

ou

a)

b)

Fig. 1 Schematic sketch of the problem studied.
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is made on the specific form of�, our results are valid for awide class
of distributions of volume fractions of constituents.

Infinitesimal deformations of the cylinder are governed by the
following equilibrium equations and boundary conditions:

Div � � 0; Rin < R< Rou (3a)

tr �E� � 0; Rin < R< Rou (3b)

� n��pinn on R� Rin (3c)

� n��poun on R� Rou (3d)

Here Div is the divergence operator with respect to coordinates in the
reference configuration, n is an outward unit normal to the surface,
and pin and pou are pressures applied, respectively, to the inner and
the outer surfaces of the cylinder.

B. Sphere

For a hollow sphere with material properties varying only in the
radial direction, and loaded by hydrostatic pressures on the inner and
the outer surfaces, it is reasonable to assume that the displacement of
a material point is only in the radial direction. Equations governing
deformations of an FG sphere are the same as those for a cylinder,
except that the divergence operator has a different expression, and
physical components of the infinitesimal strain tensorE are related to
the radial displacement u by

�E� � �H� �
u0 0 0

0 u=R 0

0 0 u=R

2
4

3
5 (4)

III. Analytical Solution for Cylinder

Substitution for E from Eq. (1) into Eq. (3b) gives

u0 � u=R� 0 (5)

whose solution is

u� c=R (6)

where c is a constant of integration.
We now substitute foru fromEq. (6) into Eq. (1) and the result into

Eqs. (2) and (3a) to get three equations, two of which imply that the
pressure field does not depend upon the axial coordinate Z and the
angular position� of amaterial point. The equation of equilibrium in
the radial direction gives

p0 � � 2�0

R2
c (7)

which upon integration gives

p� d � 2c

Z
R

Rin

�0�y�
y2

dy 	 d � 2cf�R� (8)

where d is a constant of integration, and f�Rin� � 0. For a
homogeneous material, �� constant and f�R� � 0. For an FGM,
values off�R� depend uponhow�varieswith the radiusR of a point.
The integral in Eq. (8) can be evaluated either analytically or
numerically.

Knowing the pressurefieldp and the radial displacement u, we get
the following expressions for the radial stress �RR, the hoop stress
���, and the axial stress �ZZ:

�RR ��d� 2cf�R� � 2��R� c
R2

(9a)

��� ��d� 2cf�R� � 2��R� c
R2

(9b)

�ZZ ��d� 2cf�R� (9c)

Constants c and d, determined from boundary conditions given by
Eqs. (3c) and (3d), have the following values:

c� �pin � pou�=2ĝ (10a)

d�
�
pou

��Rin�
R2
in

� pin

�
f�Rou� �

��Rou�
R2
ou

��
=ĝ (10b)

ĝ�
�
f�Rou� �

��Rou�
R2
ou

� ��Rin�
R2
in

�
(10c)

Thus, substitution for c and d from Eqs. (10a) and (10b) into
Eqs. (9a–9c) gives

�RR�R� �
pin

ĝ

�
f�Rou� � f�R� �

��R�
R2
� ��Rou�

R2
ou

�

� pou

ĝ

�
f�R� � ��Rin�

R2
in

� ��R�
R2

�
(11a)

����R� � �
pin

ĝ

�
f�Rou� � f�R� �

��R�
R2
� ��Rou�

R2
ou

�

� pou

ĝ

�
f�R� � ��Rin�

R2
in

� ��R�
R2

�
(11b)

�ZZ�R� � �
pin

ĝ

�
f�Rou� � f�R� �

��Rou�
R2
ou

�

� pou

ĝ

�
f�R� � ��Rin�

R2
in

�
(11c)

Subtracting each side of Eq. (9a) from the corresponding side of
Eq. (9b) gives

��� � �RR � 4��R� c
R2

(12)

Thus, the sign of ���� � �RR� depends upon the sign of c since
��R�> 0.

A. Homogeneous Cylinder

For a homogeneous cylinder,��R� � constant�0, f�R� 	 0, and
Eqs. (11a–11c) simplify to

�RR �
pinR

2
in � pouR

2
ou

R2
ou � R2

in

� �pou � pin�R2
ouR

2
in

R2�R2
ou � R2

in

� (13a)

��� �
�pouR

2
ou � pinR

2
in

R2
ou � R2

in

�

�
pin � pou

��
R2
ouR

2
in

�

R2
�
R2
ou � R2

in

� (13b)

�ZZ �
�pouR

2
ou � pinR

2
in

R2
ou � R2

in

(13c)

These expressions for stresses are identical to those for a cylinder
composed of a compressible isotropic linear elastic material.
However, displacement fields in otherwise identical cylinders made
of compressible and incompressible materials are different.

B. Homogeneous Cylinder Subjected Only to Internal Pressure

When the cylinder is subjected to internal pressure only, pou � 0,
and
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�RR �
pinR

2
in

R2
ou � R2

in

�
1 � R

2
ou

R2

�

 0 (14a)

��� �
pinR

2
in

R2
ou � R2

in

�
1� R

2
ou

R2

�
> 0 (14b)

�ZZ �
pinR

2
in

R2
ou � R2

in

(14c)

For Rou � Rin, Eqs. (14a–14c) yield

�RR ��pin

�
Rin

R

�
2

(15a)

��� � pin

�
Rin

R

�
2

(15b)

�ZZ � 0 (15c)

Equations (15a–15c) represent the stress field in an infinitely thick
homogeneous isotropic body with a uniformly pressurized
cylindrical cavity with zero traction at the remote surfaces.

C. Functionally Graded Cylinder Subjected to Internal Pressure

Setting pou � 0 in Eqs. (10a–10c) and (11a–11c), we find that the
radial displacement, the radial stress, and the hoop stress are given,
respectively, by the following equations:

u
�
R� � pin

2ĝ

1

R
(16a)

�RR�R� �
pin

ĝ

�
f�Rou� � f�R� �

��R�
R2
� ��Rou�

R2
ou

�
(16b)

����R� �
pin

ĝ

�
�f�Rou� � f�R� �

��R�
R2
� ��Rou�

R2
ou

�
(16c)

We note that results derived from the preceding equations are valid
for an arbitrary but continuous variation of��R�. In an FGM,��R� is
expected to be a continuous function of the radius R.

Intuitively, one expects that in a hollow cylinder with pressure
applied on the inner surface, all points will move radially outward.

Requiring that every point of the cylinder move radially outward,
we assume that �� ��R� is such that

ĝ > 0 or, equivalently,

Z
Rou

Rin

�0�y�
y2

dy >
��Rou�
R2
ou

� ��Rin�
R2
in

(17)

We note that ��� is tensile at the outer surface, and for it to be
tensile at the inner surface,Z

Rou

Rin

�0�y�
y2

dy <
��Rou�
R2
ou

� ��Rin�
R2
in

(18)

To see if inequalities (17) and (18) can be simultaneously satisfied,
we assume that

��R� � �0�R=Rin�n (19)

where �0 and n are constants, and n ≠ 2. Then, the two
inequalities (17) and (18) are satisfied, provided that

2

n � 2
A > 0;

4 � n
n � 2

A < 2; A 	
�
Rou

Rin

�
n�2
� 1 (20)

We now consider the case of a very thick cylinder, i.e., Rou � Rin.
For n > 4, the two inequalities in Eq. (20) are satisfied and ��� is
tensile at the inner surface. For certain combinations of n and

Rou=Rin, ��� may be compressive or zero at some points in the
cylinder.

For n� 2,

f�R� � 4�0

R2
in

ln �R=Rin�

and ��� is tensile at the outer surface when

�
1 � R2

in=R
2
ou

�
< 4 ln �Rou=Rin�<

�
1� R2

in=R
2
ou

�
(21)

For n > 0, the material defined by Eq. (19) hardens (i.e., its shear
modulus increases) with an increase in R, and the hardening
increaseswith an increase inn. However, thematerial softenswith an
increase in R for n < 0.

Knowing the shear moduli�1 and�2 of the two constituents, their
volume fractions V1 and V2 � 1 � V1 can be determined from the
rule of mixtures

��R� � �1V1�R� � �2�1 � V1�R�� (22)

Equation (22) can be readily solved for V1�R� in terms of ��R�, �1,
and �2.

D. Optimum Value of Hoop Stress in FG Cylinder

Assuming that pin ≠ pou, the point inside the cylinder where ���

has the extreme value is given by

0� �0�� � f0�R� �
�0�R�
R2
� 2��R�

R3
(23a)

� �
0�R�
R2
� ��R�

R3
(23b)

� 1

R

�
��R�
R

�0
(23c)

where the constant c has been assumed to be nonzero, which is
reasonable because, otherwise, u� 0 everywhere in the cylinder.
Thus, ��� has the extreme value at either R� Rin or R� Rou, or at

��R� � �R (24)

where � is a positive constant.
We now consider an FGM for which� is given by Eq. (24). It then

follows from Eq. (8) that

f�R� � �
�

1

Rin

� 1

R

�
(25)

which together with Eq. (9b) gives

��� ��d̂� 2ĉ�=Rin � constant (26)

That is, for a linear variation of the shear modulus, the hoop stress is
constant throughout the cylinder. However, the radial stress is not a
constant, and its variation is given by

�RR ��d̂� 2ĉ�

�
1

Rin

� 2

R

�
(27)

and has the extreme value either on the inner surface or on the outer

surface. Values of constants ĉ and d̂ cannot be found fromEqs. (10a–
10c) because the denominator vanishes. Their values computed from
Eq. (27) and boundary conditions (3c) and (3d) are

ĉ� �pin � pou�
2���1=Rin� � �1=Rou��

(28a)
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d̂� pin�1 � 2�Rin=Rou�� � pou

2�1 � �Rin=Rou��
(28b)

Substitution for ĉ and d̂ from Eqs. (28a) and (28b) into Eq. (26)
gives

��� �
pin��Rin=Rou�� � pou

�1 � �Rin=Rou��
(29)

For a cylinder loaded with internal pressure only, ĉ > 0, and the
constant hoop stress is tensile everywhere. The hoop stress
identically vanishes if pinRin � pouRou; otherwise, it is constant
throughout the cylinder thickness. The hoop stress is tensile so long
as pinRin > pouRou; otherwise, it is compressive.

E. Homogeneous Cylinder Subjected Only to External Pressure

Setting pin � 0 in Eqs. (13a–13c) gives

�RR �
pouR

2
ou

R2
ou � R2

in

�
�1� R

2
in

R2

�
(30a)

��� ��
pouR

2
ou

R2
ou � R2

in

�
1� R

2
in

R2

�
(30b)

�ZZ ��
pouR

2
ou

R2
ou � R2

in

(30c)

For Rou � Rin, Eqs. (30a–30c) reduce to

�RR � pou

�
�1� R

2
in

R2

�
(31a)

��� ��pou

�
1� R

2
in

R2

�
(31b)

�ZZ ��pou (31c)

Thus, the magnitude of the compressive circumferential or the hoop
stress at the inner surface of the cylinder equals twice the uniform
pressure applied on the outermost surface which is far from the inner
surface.

F. Functionally Graded Cylinder Subjected to External Pressure

For� given by Eq. (19), pin � 0, and n ≠ 2, Eqs. (11a) and (11b)
simplify to

�RR�R� � �
pou

Rn�2ou � Rn�2in

�
Rn�2 � Rn�2in

�
(32a)

����R� � �
pou

Rn�2ou � Rn�2in

h
�n � 1�Rn�2 � Rn�2in

i
(32b)

As pointed out earlier, ��� is constant for n� 1. For n > 2 and
Rou � Rin, �Rin=Rou�n�2 ’ 0, and Eqs. (32a) and (32b) give

�RR�R� ’ �pou

�
R

Rou

�
n�2

(33a)

����R� ’ ��n � 1�pou

�
R

Rou

�
n�2

(33b)

Thus, the sign of ��� depends upon the value of n in Eq. (19). For
n < 2 and Rou � Rin,

�Rou=Rin�n�2 � �Rin=Rou�2�n ’ 0 (34)

and Eqs. (32a) and (32b) can be approximated by

�RR�R� ’ pou

��
R

Rin

�
n�2
� 1

�

����R� ’ pou

�
�n � 1�

�
R

Rin

�
n�2
� 1

� (35)

Hence, the inhomogeneity of the cylinder material significantly
affects the stress near the hole in a very thick cylinder loaded by a
uniform pressure on the outer surface. For n� 0, stresses computed
from Eqs. (32a) and (32b) agree with those given by Eqs. (31a) and
(31b).

For n� 2,

�RR�R� �
�pou ln �R=Rin�
ln �Rou=Rin�

(36a)

����R� � �pou

�ln �R=Rin� � 1�
ln �Rou=Rin�

(36b)

G. Functionally Graded Hollow Cylinder with Affine Variation
of Shear Modulus

It is shown in [21] that, for ��R� � �0�1�m�R=Rin��, the hoop
stress at R�

��������������
RinRou

p
is independent of the constant m, and is the

same as in a homogeneous cylinder.

IV. Analytical Solution for Sphere

Substitution fromEq. (4) into Eq. (3b), expressing the requirement
that deformations be isochoric, gives

u0 � 2
u

R
� 0 (37a)

whose solution is

u�
~b

R2
(37b)

where ~b is a constant of integration. We now substitute for u from
Eq. (37b) into Eq. (4), and the result into the constitutive relation
listed as Eq. (2) to obtain

�RR ��p � 4��R�
~b

R3
(38a)

��� � ��� ��p� 2��R�
~b

R3
(38b)

�R� � ��� � ��R � 0 (38c)

Equations (38a–38c) when substituted into Eq. (3a) imply that the
pressure p is independent of� and �. The equation of equilibrium in
the radial direction gives

p0 � � 4�0 ~b

R3
(39)

whose integral is

p�R� � e � 4 ~b

Z
R

Rin

�0�y�
y3

dy 	 e � 4 ~bg�R� (40)

where e is a constant of integration. Substitution for p from Eq. (40)
into Eqs. (38a–38c) gives the following expressions for the stresses:

�RR ��e� 4 ~bg�R� � 4��R�
~b

R3
(41a)
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��� � ��� ��e� 4 ~bg�R� � 2��R�
~b

R3
(41b)

Boundary conditions (3c) and (3d) require that

� e � 4
��Rin�
R3
in

~b��pin (42a)

� e� 4 ~bg�Rou� � 4
��Rou� ~b
R3
ou

��pou (42b)

Subtraction of each side of Eq. (42b) from the respective side of

Eq. (42a) gives an equation for the determination of ~b with the
following result:

~b� �pin � pou�=4D (43)

where

D�
�
��Rin�
R3
in

� ��Rou�
R3
ou

� g�Rou�
�

(44)

Thus,

e� 1

D

�
pin

�
g�Rou� �

��Rou�
R3
ou

�
� ��Rin�

R3
in

pou

�
(45)

and stresses are given by

�RR�R� � �
pin

D

�
g�Rou� �

��Rou�
R3
ou

� g�R� � ��R�
R3

�

� pou

D

�
��Rin�
R3
in

� g�R� � ��R�
R3

�
(46a)

����R� � �
pin

D

�
g�Rou� �

��Rou�
R3
ou

� g�R� � 1

2

��R�
R3

�

� pou

D

�
��Rin�
R3
in

� g�R� � ��R�
2R3

�
(46b)

Subtraction of Eq. (41a) from Eq. (41b) gives

��� � �RR �
6��R�
R3

~b (47)

and has the same sign as the constant ~b.

A. Homogeneous Hollow Sphere

For a homogeneous sphere, ��R� � constant�0, g�R� 	 0, and
Eqs. (46a) and (46b) simplify to

�RR�R� �
pinR

3
in

R3
ou � R3

in

�
1 � R

3
ou

R3

�
� pouR

3
ou

R3
ou � R3

in

�
1 � R

3
in

R3

�
(48a)

����R� �
pinR

3
in

R3
ou � R3

in

�
1� R

3
ou

2R3

�
� pouR

3
ou

R3
ou � R3

in

�
1� R3

in

2R3

�
(48b)

For a homogeneous hollow sphere loaded internally by a hydrostatic
pressure, pou � 0, Eqs. (48a) and (48b) give

�RR�R� �
pinR

3
in

R3
ou � R3

in

�
1 � R

3
ou

R3

�
< 0 (49a)

����R� �
pinR

3
in

R3
ou � R3

in

�
1� R

3
ou

2R3

�
> 0 (49b)

Thus, �RR is compressive and ��� is tensile everywhere. Whereas

expressions for stresses in a sphere made of a homogeneous either
compressible or incompressible material are the same, the
displacement fields are different. For a very thick hollow sphere,
Rou � Rin, and Eqs. (49a) and (49b) give

�RR�R� � �pin

R3
in

R3
(50a)

����R� �
pinR

3
in

2R3
(50b)

Thus, the magnitude of the hoop stress at points on the inner surface
of a very thick sphere is one-half of the applied pressure.

For a very thin sphere (e.g., a balloon) of thickness t and radius R,
Eq. (49b) reduces to

��� � pinR=�2t� (51)

For a very thick homogeneous hollow sphere loaded externally by
a uniform pressure, i.e., pin � 0, Rou � Rin, Eqs. (48a) and (48b)
give

�RR�R� � �pou

�
1 � R

3
in

R3

�
(52a)

����R� � �pou

�
1� R3

in

2R3

�
(52b)

Thus, the compressive hoop stress at a point on the inner surface of an
externally loaded thick homogeneous cylinder equals one and a half
times the uniform pressure applied on the outer surface.

B. Functionally Graded Hollow Sphere Subjected to Internal
Pressure

Substitution for ~b from Eq. (43) into Eqs. (37b), (38a), and (38b)
gives the following expressions for the radial displacement, the radial
stress, and the circumferential stress:

u�R� � pin

4D

1

R2
(53a)

�RR�R� � �
pin

D

�
g�Rou� �

��Rou�
R3
ou

� g�R� � ��R�
R3

�
(53b)

����R� �
pin

D

�
�g�Rou� �

��Rou�
R3
ou

� g�R� � 1

2

��R�
R3

�
(53c)

where D is given by Eq. (44).
So that every point of the sphere moves radially outward, we

assume that

D> 0 or, equivalently,
��Rin�
R3
in

� ��Rou�
R3
ou

�
Z
Rou

Rin

�0�y�
y3

dy > 0

(54)

Equation (53c) implies that ��� is tensile on the outer surface. For
��� to be tensile on the inner surface,

��Rou�
R3
ou

� ��Rin�
2R3

in

�
Z
Rou

Rin

�0�y�
y3

dy > 0 (55)

To check whether or not inequalities (54) and (55) can be
simultaneously satisfied, we assume that

��R� � �0�R=Rin�n (56)

where �0 and n are constants, and n ≠ 3. Inequality (54) holds and
inequality (55) is satisfied, provided that

�
�n � 1�
2�n � 3�

�
Rn�3in �

�
1

n � 3

�
Rn�3ou > 0 (57)
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Thus, the sign of the circumferential stress strongly depends upon the
value of n and the ratio of the outer to the inner radii of the sphere.

For a very thick sphere, Rou=Rin � 1. When n > 3 we get

����R� ’ �pin

�
1 � n � 1

2

�
R

Rou

�
n�3�

(58)

and for n < 3,

����R� ’ pin

�
� n � 1

2

�
R

Rin

�
n�3�

(59)

That is, the distribution of the circumferential stress in a very thick
sphere depends upon the value of the index n in Eq. (56). However,
for a very thin sphere, the hoop stress is unaffected by the through-
the-thickness inhomogeneity of the material.

C. Functionally Graded Thick Hollow Sphere Subjected to External
Pressure

For n > 3, we have

����R� ’ �pou�n � 1�
�
R

Rou

�
n�3

(60)

and for n < 3,

����R� ’ �pou

�
1 � �n � 1�

2

�
R

Rin

�
n�3�

(61)

For R� Rin, Eq. (61) gives ����Rin� � ��3 � n�pou=2.

D. Optimum Value of the Circumferential Stress

Assuming that pin ≠ pou, points interior to the sphere where ���

has extreme values are roots of the equation

�0�� � 0 (62)

or, equivalently,

R�0�R� � ��R� � 0 (63)

where we have used Eq. (41b). The solution of Eq. (63) is

��R� � �R (64)

where � is a positive constant.
We now consider an FG sphere for which � is given by Eq. (64).

For this variation of �,

g�R� � �
2

�
� 1

R2
� 1

R2
in

�
� 0 (65)

Thus,

��� �
pinR

2
in � pouR

2
ou�

R2
ou � R2

in

� (66)

and is a constant throughout the sphere. However, �RR varies withR.
The stress ��� identically vanishes when pinR

2
in � pouR

2
ou.

V. Conclusions

We have studied analytically radial deformations of functionally
graded cylinders and spheresmade of incompressible isotropic linear
elastic materials, with shear moduli varying continuously in the
radial direction, and their inner and outer surfaces loaded by uniform
pressures. For each case, the variation of the shear modulus that
optimizes the hoop stress is found to be linear in the radial coordinate.
The optimum hoop stress is constant throughout the cylinder/sphere
and vanishes when pressures on the inner and outer surfaces are
inversely proportional to their radii for a cylinder, and square of the
radii for a sphere. The closed-form solutions provided herein will

help in validating numerical algorithms developed to solve problems
for incompressible materials.

Acknowledgments

Thisworkwas partially supported by theOffice of Naval Research
grant N00014-06-1-0567 to Virginia Polytechnic Institute and State
University with Y. D. S. Rajapakse as the program manager. Views
expressed herein are those of the author and not of the funding
agency nor of Virginia Polytechnic Institute and State University.

References

[1] Choy, K.-L., and Felix, E., “Functionally Graded Diamond-Like
Carbon Coatings on Metallic Substrates,” Material Science and

Engineering: A, Vol. 278, Nos. 1–2, 2000, pp. 162–169.
[2] Lambros, A., Narayanaswamy, A., Santare, M. H., and Anlao, G.,

“Manufacturing and Testing of a Functionally Graded Material,”
Journal of Engineering Materials and Technology, Vol. 121, No. 4,
1999, pp. 488–493.
doi:10.1115/1.2812406

[3] Batra, R. C., and Jin, J., “Natural Frequencies of a Functionally Graded
Anisotropic Rectangular Plate,” Journal of Sound and Vibration,
Vol. 282, Nos. 1–2, 2005, pp. 509–516.
doi:10.1016/j.jsv.2004.03.068

[4] Batra, R. C., “Finite Plane Strain Deformations of Rubberlike
Materials,” International Journal for Numerical Methods in

Engineering, Vol. 15, No. 1, 1980, pp. 145–160.
doi:10.1002/nme.1620150112

[5] Horgan, C. O., and Chan, A.M., “Pressurized Hollow Cylinder or Disk
Problem for Functionally Graded Isotropic Linear Elastic Materials,”
Journal of Elasticity, Vol. 55, No. 1, 1999, pp. 43–59.
doi:10.1023/A:1007625401963

[6] Lechnitskii, S. G., Theory of Elasticity of an Anisotropic Body, Mir
Publishers, Moscow, 1981.

[7] Timoshenko, S. P., and Goodier, J. N., Theory of Elasticity, McGraw–
Hill, New York, 1969.

[8] Vel, S. S., and Batra, R. C., “Exact Solutions for Thermoelastic
Deformations of Functionally Graded Thick Rectangular Plates,” AIAA
Journal, Vol. 40, No. 7, 2002, pp. 1421–1433.

[9] Vel, S. S., and Batra, R. C., “Three-Dimensional Exact Solution for the
Vibration of Functionally Graded Rectangular Plates,” Journal of

Sound and Vibration, Vol. 272, Nos. 3–5, 2004, pp. 703–730.
doi:10.1016/S0022-460X(03)00412-7

[10] Pan, E., and Han, F., “Exact Solution for Functionally Graded and
Layered Magneto-electroelastic Plates,” International Journal of

Engineering Science, Vol. 43, Nos. 3–4, 2005, pp. 321–339.
doi:10.1016/j.ijengsci.2004.09.006

[11] Tarn, J. Q., “Exact Solutions for Functionally Graded Anisotropic
Cylinders Subjected to Thermal and Mechanical Loads,” International
Journal of Solids and Structures, Vol. 38, Nos. 46–47, 2001, pp. 8189–
8206.
doi:10.1016/S0020-7683(01)00182-2

[12] Tarn, J. Q., and Chang, H. H., “Torsion of Cylindrical Orthotropic
Elastic Circular Bars with Radial Inhomogeneity: Some Exact
Solutions and End Effects,” International Journal of Solids and

Structures, Vol. 45, No. 1, 2008, pp. 303–319.
doi:10.1016/j.ijsolstr.2007.08.012

[13] Alshits, V. I., and Kirchner, H. O. K., “Cylindrically Anisotropic,
Radially Inhomogeneous Elastic Materials,” Proceedings of the Royal
Society of London, Series A: Mathematical, Physical and Engineering

Sciences, Vol. 457, No. 2007, 2001, pp. 671–693.
[14] Oral, A., and Anlas, G., “Effects of Radially Varying Moduli on Stress

Distribution of Nonhomogeneous Anisotropic Cylindrical Bodies,”
International Journal of Solids and Structures, Vol. 42, No. 20, 2005,
pp. 5568–5588.
doi:10.1016/j.ijsolstr.2005.02.044

[15] Liew,K.M.,Kitiporncai, S., Zhang,X. Z., andLim,C.W., “Analysis of
the Thermal Stress Behavior of Functionally Graded Hollow Circular
Cylinders,” International Journal of Solids and Structures, Vol. 40,
No. 10, 2003, pp. 2355–2380.
doi:10.1016/S0020-7683(03)00061-1

[16] Jabbari, M., Sohrabpour, S., and Eslami, M. R., “General Solution for
Mechanical and Thermal Stresses in a Functionally Graded Hollow
Cylinder Due to Nonaxisymmetric Steady State Loads,” Journal of

Applied Mechanics, Vol. 70, No. 1, 2003, pp. 111–118.
doi:10.1115/1.1509484

2056 BATRA

http://dx.doi.org/10.1115/1.2812406
http://dx.doi.org/10.1016/j.jsv.2004.03.068
http://dx.doi.org/10.1002/nme.1620150112
http://dx.doi.org/10.1023/A:1007625401963
http://dx.doi.org/10.1016/S0022-460X(03)00412-7
http://dx.doi.org/10.1016/j.ijengsci.2004.09.006
http://dx.doi.org/10.1016/S0020-7683(01)00182-2
http://dx.doi.org/10.1016/j.ijsolstr.2007.08.012
http://dx.doi.org/10.1016/j.ijsolstr.2005.02.044
http://dx.doi.org/10.1016/S0020-7683(03)00061-1
http://dx.doi.org/10.1115/1.1509484


[17] Obata, Y., andNoda, N., “Steady Thermal Stresses in aHollowCircular
Cylinder and a Hollow Sphere of a Functionally Gradient Material,”
Journal of Thermal Stresses, Vol. 17, No. 3, 1994, pp. 471–488.
doi:10.1080/01495739408946273

[18] Kim, K. S., and Noda, N., “Green’s Function Approach to Unsteady
Thermal Stresses in an Infinite HollowCylinder of FunctionallyGraded
Material,” Acta Mechanica, Vol. 156, Nos. 3–4, 2002, pp. 145–161.
doi:10.1007/BF01176753

[19] Pan, E., and Roy, A. K., “Simple Plane-Strain Solution for Functionally
Graded Multilayered Isotropic Cylinders,” Structural Engineering and
Mechanics, Vol. 24, No. 6, 2006, pp. 727–740.

[20] Shao, Z. S., and Ma, G. W., “Thermo-Mechanical Stresses in

Functionally Graded Circular Hollow Cylinder with Linearly
Increasing Boundary Temperature,” Composite Structures, Vol. 83,
No. 3, 2008, pp. 259–265.
doi:10.1016/j.compstruct.2007.04.011

[21] Batra, R. C., and Iaccarino, G. L., “Exact Solution for Radial
Deformations of a Functionally Graded Isotropic and Incompressible
Second-Order Elastic Cylinder,” International Journal of Non-Linear
Mechanics, Vol. 43, No. 5, 2008, pp. 383–398.

C. Cesnik
Associate Editor

BATRA 2057

http://dx.doi.org/10.1080/01495739408946273
http://dx.doi.org/10.1007/BF01176753
http://dx.doi.org/10.1016/j.compstruct.2007.04.011

