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ON THE FADING MEMORY OF INITIAL CONDITIONS*

By R. C. BATRA (The Johns Hopkins University)

1. Introduction. In [1], I attempted to derive the two-dimensional balance laws
for lpading devices from their three-dimensional counterparts. Loosely speaking, the
loa~g device L was defined to be a three-dimensional deformable continuum which
occupies a region R in the exterior of the region Rb occupied by the body and is such
thatlaR (\ aRb ~ cp. Taking a half space as a loading device, I derived, by mechanistic
caldulations, the linear representations for some of the two-dimensional constitutive
quantities from their known three-dimensional counterparts. These calculations suggest
that, in a purely thermal problem, a possible choice of the independent variables for
the surface constitutive quantities would be the fields of temperature 8 or heat flux
q defined on the boundary aR of R. In a purely mechanical problem, one could take the
fields of displacement u or surface tractions f defined on aR as the independent variables.
It should become clear from the details of. these calculations [1, Sects. 3, 4] that these
surface constitutive quantities would also depend upon the initial state of the loading
device, i.e. the deformation of the loading device at the instant of glueing to the body.
Here we show that such is not the case when L is linearly heat-conducting and the
history of either the temperature or the heat flux at the boundary points of L is known.
Rather, we prove such a result for a general three-dimensional continuum. In particular,
we show that for an inhomogeneous, anisotropic, linearly heat-conducting continuum,
the memory of the initial conditions fades away exponentially. The rate of the fading
of the memory depends upon the shape of the body, the specific heat, and the thermal
conductivity. Said differently, one can determine, merely from a knowledge of the
history of the boundary conditions, a unique solution of the heat equation.

In [2], Meizel and Seidman studied a somewhat similar problem. For a homogeneous,
isotropic, linear heat conductor of special geometry, they established the following
result. For a thermally insulated continuum occupying a region D. = (0,1) X D C R",
the mapping A from L2(D X (0, T)) to L2(D.) defined by

A : g = g(Y, t) = g(O, Y, t) 1'-+ 8(X, Y, T), 0 < t < T, (X, Y) ED. ,

is a well-defined, bounded (using L2 norms) linear map for the solutions of the heat
equation. It may be remarked that no information about the initial temperature distri-
bution is required. However, on the portion D of the boundary of D. , one knows
both the heat flux and the temperature g(Y, t); the latter is assumed to satisfy certain
consistency conditions. Meizel and Seidman [3] have proved a result similar to the
above for more general regions. It seems that the result proved below is slightly different
in spirit.
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Notation: We refer the deformation of the deformable continuum to a fixed set of
rectangular cartesian set of axes. The vector X denotes the position of a material particle
in the reference configuration which we take to be the one occupied by the continuum
at time t = - 00 . A comma followed by an index i designates differentiation with respect
to Xi . The superposed dot stands for the partial differentiation with respect to time t.
We adopt the summation convention. E" denotes Euclidean n-space; Cl , C2 , etc. denote
positive constants. The vector n(X, t) designates the outer unit normal to the current
configuration of the boundary aR of R at the point X EaR. aRt and aR2 denote com-
plementary parts of the boundary aR of R, i.e. aR = aRt V aR2 and aRt r'I aR2 = <1>.

Thermal Problem.

THEOREM 2.1: Let R C E" be a bounded open region with a smooth boundary.
the solution of

c(X)O(X, t) = (Ki;(X)8,;(X, t)),i ,

8(X, t) = 8o(X, e),

q(X, t) = qo(X, t),

is unique provided

(X, t) E R X (- 00, t],

(X, t) EaRl X (- 00, t],

(X, t) E aR2 X (- 00, t],

0 < c(X) ~ C2 ,aR1 ~ 1/11

L K;i8,i8,; dv ~ Cl L 8,;8,; dv.

Remark 2'11. In stating the above theorem, the existence of a solution is presumed.
Here c denotes the specific heat and K;i designates the conductivity tensor. For a
thermoelastic body, C > 0 was shown by Ericksen [4] to be a necessary condition for
stability. The positive semidefiniteness of K;; can be established by thermodynamic
arguments, see e.g. Day [5]. The requirement (2.2)1 is a necessary condition for (2.6)
to hold.

Proof of Theorem 2.1: We first note that the whole problem is invariant with respect
to the translation of the time axis. Hence it suffices to show that the solution of

c(X)8(X, t) = (K;i(X)8,i(X, t)),;, (X, t) E R X (0, t] (2.3)

under the null boundary conditions approaches the null solution as t -+ 00.

Multiplying (2.3) by 8, then integrating over the region R and using the divergence
theorem, we obtain

1 c()8 dv = 1 Kij().jfJni dA _ 1 Kij().j().i dv. (2.4)
Il all Il

Since the boundary data are the null data, the first term on the right-hand side of (2.4)
vanishes. Use of (2.2)3 , (2.4) yields

LCfJOdv::; -Cl L fJ,ifJ,idv.

For functions fJ E C1(R), fJ = 0 on iJR1 , we have Poincare's inequality [6, p. 355]



NOTES 369

i 82 dv ::; p i 8"8,, dv

where p is a constant which depends on R and aRl .
obtain

Combining (2.5) and (2.6), we

Now, using (2.2)2. we get

which upon integration gives

co2(X, t) dv ~
R

Thus

e(x, t) ~ 0 as t -+ IX).

When oRl = 4>, the solution of (2.1) can be expected to be unique only to within
an arbitrary constant. In order to rule out this trivial non-uniqueness, we normalize
the initial data by setting

This entails no loss of generality. Integrating (2.3) over the region R, using the divergence
theorem and the boundary condition

q(X, t) = 0, (X, t) E oR X (0, t],

we obtain

and therefore

= -~ l c282 dv
pC2 oR

LC(X)(J(X, t) = 0, 'v't E [0, t].

If the specific heat is an absolute constant, (2.9) gives

L 8(X, t) = 0, vot E [0, t]. (2.10)

In order to obtain (2.10), we used (2.8). For continuously differentiable functions which
also satisfy (2.10), Poincare's inequality is [8, p. 284]
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where d is the diameter of R. Now, by following a procedure similar to the one used
in getting (2.7) from (2.5), we obtain

1 82(X, t) dv :::;: (1 82(X, 0) dV) exp (-4c1t/n d2c). (2.12)

Thus we have proved the following

THEOREM 2.2: Let R C E" be a bounded open region with a smooth boundary. Then
the solution of

c8(X, t) = (Ki;(X)8,;(X, t)).-

under the boundary conditions (2.1)2.3 is unique provided (2.2)3 holds and the specific
heat c is a constant.

An immediate corollary of Theorem 2.2 is the following result:

THEOREM 2.3: Let R C E" be a bounded open region with a smooth boundary. Then

8(X, t) = 8.ii(X, e), (X, t) E R X (- m, t],

8(X, t) = 8o(X, e), (X, t) E iJR1 X (-m, t],

q(X, t) = qo(X, e), (X, t) E iJR2 X (- m, t],

has a unique solution.

Proof: Theorem 2.2 implies the uniqueness of the solution. Take any smooth field,
say

8(X, - 00) = 0
8B the initial temperature distribution. Then the existence of the solution follows from
the known theorems [7, p. 320].

Remark 2.2: The inequality (2.12) loosely confirms the intuitive idea that the
larger the region R, more is the time required for the fading away of the memory of the
initial state.

The physical idea underlying the above result is the following: whatever energy is
initially imparted to the continuum would be dissipated because of the thermal con-
duction. In a purely mechanical problem, the source of energy dissipation is the viscosity
and a simple example is provided by a linearly viscous material. For these materials
I can prove, by following a method essentially similar to the one used in the thermal
problem, that the history of the boundary conditions uniquely determines the stress
field in the body. Also, the memory of the initial conditions fades away exponentially
and the rate of the fading of the memory depends upon the shape of the body, the
density and the viscosity. This technique of proving the uniqueness of solutions seems
to work for linear thermoel8Btic and linear viscoel8Btic materials. But at present I have
not been able to obtain sharp estimates for these materials.
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