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ABSTRACT

It is shown that for isotropic elastic materials the principal
axes of stress are also the principal axes of strain provided
the empirical inequalities hold.

1. Introduction

A general form of the constitutive equation for an unconstrained iso-

tropic homogeneous elastic material is ([~J, Eqn. (47.9))

~ = fO~ + fl~ + f-l~-l (1.1

where T is the Cauchy stress tensor, B is the left Cauchy-Green tensor with
- -

respect to an undistorted configuration, and the response coefficients f
cx

(cx = -1,0,1) are functions of the principal invariants of B. We note that B
- -

is a symmetric positive definite tensor and T is symmetric. It is an immedi-

ate consequence of (1.1) that a proper vector of B is also a proper vector of

T so that the principal axes of strain are also the principal axes of stress.

That the converse need not be true unless some restrictions are imposed upon

the response coefficients f is clear from the following special case of (1.1):
cx

~ =fO (III) ~ . (1.2)

In (1.2). III is the third principal invariant of B. The constitutive relat-

ion (1.2) represents an elastic fluid and states that every vector is a prop-

er vector of T but it gives no information about the proper vectors of B.- -
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Here we show that

a principal axis of stress is also a principal axis of stPain provided

that (1.3)
f1 > 0, f-1 ~ o. (1.4)

These restrictions on f1 and f-1 and the requirement that fa ~ 0 were first

proposed by Truesdell and Noll ([lJ, Eqn. 51.27) who named these inequalities

as Empirical inequalities.

First we prove the result for unconstrained isotropic elastic materials;

then we prove it for incompressible isotropic elastic materials.

2. Proof of (1.3)

Given a Cauchy stress tensor T at any point, with respect to its proper

vectors as the bases, we can write T in the form

~ = diagonal (TII' T22' T33
(2.1)

The constitutive relation (1.1) requires that T B = B T.
- - --

(2.1) gives

This together with

(Tll - T22 (T22 - T33B12 = 0, (T33 - TllB2 = 03 . (2.2)B31 = O.

When Tll ~ T22 ~ T33' it follows from (2.2) that B12 = B13 = B23 = 0 so that ~

is also diagonal and, therefore, proper vectors of T are also proper vectors

of B. We now assume that, if at all, atmost two proper values of T are equal,
- -

say Tll = T22. Then in view of (2.2) ~ has the form

BII B12

B =
B22 (2.3)

0 0

Since B is positive definite

(2.4)B33 > 0, C :: Bll B22Bll> 0,

Substituting from (2.3) and (2.1) into (1.1), we obtain

10 = (f1 - C f-1) B12 '
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1Tll = fa + fl Bll + C f-l B22

(2.5)1T22 = fO + fl B22 + C f-l Bll

1T33 = fa + fl B33 + ~ f-l .

33

is

Assuming that this equation can be solved, not necessarily uniquely, for B,

we take proper vectors of B as the bases. With respect to these bases ~ is a

diagonal matrix and therefore

-1q = fO + f1 B11 + f-1 B11

Subtraction of (2.6)1 from (2.6)2 and (2.6)3 gives equations which imply that
B11 = B22 = B33 = b provided that (1.4) holds. Thus for a spherical stress

tensor, B is also a spherical tensor.

The constitutive relation for an incompressible homogeneous isotropic

elastic material is

B-1
-1 -

T = -p 1 + f B + f
~ ~ 1 ~

where p is an arbitrary hydrostatic pressure and, f1 and f-1 are functions of

the first and second invariant of B; the third invariant of B equals 1. The E
- -

inequalities suggested as plausible by Truesdell ([2], Eqn. 41.24) are

f > 0 ,
1

f-l.s:. 0

Since we used restrictions of this type on f1 and f-1 in proving (1.3) for

unconstrained materials, it follows that E inequalities imply (1.3) for incom-

When inequalities (1.4) hold, it follows from (2.5)1 that B12 = 0 so that ~

diagonal even when Tll = T22'

We now consider the case when all principal stresses are equal i.e. T =

q~, where q is a constant. Thus (1.1) becomes

-1q ~ = fO~ + fl~ + f-l ~ .
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pressible homogeneous isotropic materials

3. Remarks

Subtraction of (2.5)3 from (2.5)2 and of (2.5)4 from (2.5)3 gives equa-

tions which together with the inequalities (1.4) imply that

(3.1Bll ~ B22 ~ B33 wheneverTll ~ T22 ~ T33 .

That is, the principal stretches are ordered in the same way as are the

principal stresses. That the greater principal stress occur in the direction

of the greater principal stretch has been proposed by Baker and Ericksen [3]

who also showed that this is equivalent to the inequalities

(i,j = 1,2,3, i # j) (3.2)
£'1

~ f-l ~ O.1

In (3.2) bl' b2' b3 are proper values of ~ and the equality si~ holds only if

b. = b.. We note that (3.2) is also sufficient to conclude from (2.5) 1 that
]. J

B12 = 0 and from the equations obtained by subtracting (2.6)1 from (2.6)2 and

(2.6)3 that Bll = B22 = B33' Hence Baker - Ericksen inequalities (3.2) also

imply (1.3).

Batra (4J proved that a simple tensile load produces a simple extension

in an isotropic elastic material provided (1.4) holds. This is a special case

of (3.1) and is also implied by (3.2).

We remark that (3.1) holds for both unconstrained and incompressible

isotropic elastic materials. For unconstrained materials, B11' B22' and B33

are solutions of (2.5)2,3,4 whereas for incompressible materials, B11' B22 and

B33 are solutions of equations obtained by subtracting (2.5)3 and (2.5)4 from

(2.5)2 and the equation B11 B22 B33 = 1. As is shown in Section 2, ~ = b ~

whenever T = q 1. For unconstrained isotropic elastic materials, b is a solu-
- -

tion of

(3.3)q = fO + fl b + f-l b-l

where fO' fl and f-l are functions of (3b, 3b2, b3). For incompressible

materials b = 1. We remark that we have neither shown that (3.3) has a real

solution for real q nor that a solution of (3.3) even if it is assumed to

exist lies between 0 and 1 for negative q and is greater than 1 for positive q

However, when fl and f-l are constants which satisfy (2.8) then (2.7) can be

solved for ~ uniquely ([lJ, p.351).
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We note that the results obtained above hold locally, that is, at a

material point.
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