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We consider a linear elastic helical spring of arbitrary length and of uniform cross section
loaded by a self-equilibrated force system at one end only. We show that the elastic ener-
gy, stored in the portion of the spring beyond a certain distance from the loaded end, de-
creases exponentially with the distance. We thus establish an analog of Toupin's version
of the Saint- Venant principle for a helical spring.

Introduction assume that the cross sections are materially uniform in the sense that
one cross section can be obtained from the other by a rigid body mo-
tion. Thus the material properties do not depend upon the axial
coordinate of t~e point. This idea of material uniformity is due to
Ericksen [8) who has discussed this concept in more general terms.

Whereas, previous discussions (e.g., Love [9), Shahinpoor [10) of
the deformation of helical bodies use rod -theories, we use the three-
dimensional theory. By describing the deformation of the helical body
with respect to suitably selected coordinate axes, we keep the analysis
close to that of Toupin.

Formulation of the Problem
Consider a linear elastic body B of arbitrary but constant cross

section which in the unstressed state is a clockwise helix. Introduce
a fixed rectangular Cartesian coordinate system X with X3-axis
coinciding with the axis of the helix, the plane X3 = 0 containing one
end cross section of the helix and X3 ? 0 for points in the body. In-
troduce a curvilinear coordinate ~ystem Y by the transformation

[ YI ] [COS bX3 -sin bX3 0] [ Xl ]Y2 = sin bX3 cos bX3 0 X2,

Y3 0 0 1 X3

or

In 1965 Toupin [IP gave a precise mathematical formulation of
Saint- Venant's principle. He showed that for a linear elastic homo-
geneous cylindrical body of arbitrary length and cross section loaded
on one end only with an arbitrary system of self-equilibrated forces,
the elastic energy U(8) stored in that part of the body which is beyond
a distance 8 from the loaded end satisfies the inequality

U(8) ~ U(O) exp (-(8 -1)/8c(I). (1)

The characteristic decay length 8c(1) depends upon the maximum and
the minimum elastic moduli for the material and the smallest nonzero
characteristic frequency of free vibration of a slice of the cylinder of
length I. For isotropic materials he showed that the inequality (1)
implies the exponential decay of the stresses with the distance from
the loaded end. An inequality of the type (1) for a homogeneous iso-
tropic micropolar linear elastic cylindrical body has recently been
obtained by Berglund [2]. By using an estimate, due to Ericksen [1,
p. 88], for the norm of the stress-tensor in terms of the strain-energy
density, Berglund showed that8c(1) depends on the maximum elastic
modulus.

Other mathematical versions of Saint- V enant's principle are due
to Sternberg [3], Knowles [4], Zanaboni [5], and Robinson [6]. The
statements and proofs of these and of Toupin's version of the Saint-
Venant principle are also given by Gurtin [7].

In this paper, we prove an inequality si~ar to (1) for a linear elastic
anisotropic helical spring of arbitrary but constant cross section. We

(2a)

Thus, for each point of the body, y3 = X 3 and the yl, y2- coordinate

curves are obtained by rotating clockwise the Xl, X2-coordinate axes
through an angle bX3, the axis of rotation being parallel to the X3-
axis. b equals the angle of twist of the helix. Using the index notation
we write (2a) as
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gives the present position of material particles with respect to the fixed

rectangular Cartesian X-axes. However, in the following, we will work
with the ordered triplet u 1, U 2, U 3 denoted by u and defined as

u" = R'tui or ui = R:,u.". (5)

In terms ofu, (4) becomes

g ~2 '

xa = Rr(yi + ui).

We note that u3 equals the displacement of a point along the axis of
the helix and, Ul and u2 equal components of a. along yl and y2
coordinate curves. Thus u3 is not a component of u along the y3-
coordinate curve. Note that (5) is a linear relationship between u and
u and also it is a one to one correspondence between u and the dis-
placement vector u. The use of u rather than of u simplifies consider-
ably the algebraic work involved. Calculating

-- X'

x2¥
Fig. 1

2Eij = gij - Gij,

where

gij = xjxj,

and retaining terms linear in u, we obtain for the infinitesimal strain
tensor e the following;

2eKL = OKjU!L + OLjU!K,

2eK3 = OKjU!3 + 03jU!K + bEK3jUj + bU!K Ej3N yN, (6)

e33 = 03j U!3 - bU!3 Ej3N yN + b2uMYNoMNo

In (6) Eijk is the permutation symbol assuming values 1 or -1 ac-
cording as i, j, k form an even or an odd permutation of 1, 2, 3 and zero
otherwise. eij are components of the infinitesimal strain tensor with
respect to Y -coordinate axes. That their expressions in terms of u and
its gradients involve u and Y should not be surprising since such is also
the case in cylindrical coordinates (r, 0, z).

Since in the unstressed reference configuration, various cross sec-
tions are assumed to be materially uniform, the strain energy density
W per unit volume (dV = dyldy2dY3) is a function of gij and at most
of yK. That is

Throughout this paper we use a mixture of direct and indirect
notation. Repeated indices imply summation over the range of indices.
Oij = oij = oj is the Kronecker delta. The Greek indices refer to com-

ponents with respect to X-axes and both the lower case and upper case
Latin indices refer to components with respect to V -axes. The upper
case Latin indices assume values 1, 2; other indices take values 1, 2,
3. We note that b = 0 corresponds to a straight prismatic body. If

C. = !V:V E B, y3 = X3 = s},

= Values of (yl, y2, s) for points of the body which

lie in the plane X3 = s, (3)

then Co = C.- That is, the cross section of the helical body is constant.

Thus, in the V -coordinate system, the helical body of axial length L
occupies the cylindrical region Co X tooL]. Said differently, the helical
body is being considered as generated by translating along and uni-
formly rotating about the X3-axis a material cross section Co con-
tained in the plane X3 = o.

The covariant base vectors gi directed tangentially along the yi-
coordinate curves are given by

i)X = (R!'~Ji,.R,!,.yK\A
W = W(g.. yK )'1' ,

= W(Eij, Gij, yK).

In the linear theory, W is approximated by

W"" W(O, G, yK) + 2x(eij),

gi = ~ ,._,. -", '-".'" ,-a,

in which a comma followed by an indexj indicates partial derivative
with respect to yj and 8a are base vectors for the Cartesian coordinate
axes X. The base vectors gi at a typical point are shown in Fig. 1. We
note that these do not form an orthogonal set. This fact is also brought
out by the explicit expression, given below,for the metric tensor G
defined as

(7)

where

i)2W2X = I eij ekl = A ijkl eij ekl
i)Eiji)Ekl E=O

= 2X(u~j, uk, yK), (8)

Aijkl = Ajikl = Aijlk = Aklij (9)

In (7) the term linear in eij vanishes because the reference configu-

ration is unstressed. X is assumed to be positive-defmite. The elasticity
A is a function of yK. Note that even when the body is homogeneous
in the reference configuration in the sense that W does not depend
upon X explicitly, the elasticity A will still depend upon yK because
of the dependence of Gij upon yK. The strain energy density X is in-
variant with respect to the superimposed infinitesimal rigid body
motion. An infinitesimal rigid body motion in rectangular Cartesian
coordinates is given by

IN" = c" + {2" XP {2" = -{2P
P ,P ",

where c" and {2p are constants. By using the coordinate transformation
(2), we obtain the following:

INi = R~(c" + (2pR1Yj),

()yi ()yi--
()Xa()Xa

c>X"c>X"G ij = 3Yi -;;-YJ , Gij=

-b2yl y2 b y2
"1 + b2(yl)2 -bY;

-byl 1

One can raise or lower Latin indices by using G. Since Greek indices
refer to components with respect to rectangular Cartesian X-axes,
these can be used as subscripts or superscripts. Since det [Gij] = 1,
the volume element dV given by dXldX2dX3 equals dyldy2dy3.

Due to the application of loads to the body, let the points of the
body undergo a displacement 0. Then

xa=Xa+aa (4)
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,1 cosl/> + c2sinl/> + d1y2 +Y3(d2cosl/> + d3sinl/»
-c1 sin I/> + C2COS I/> - d1y1 + y3(-d2sin I/> + d3 COB 1/»
.3 - d2(Y1 COB I/> - Y2 sin 1/» - d3(y1 sin I/> + Y2 COB 1/»

(10)

we state the theorem which we prove below.
Theorem: If for a linear elastic body which in the unstressed state

is helical, the loads applied at the end X3 = 0 satisfy (14) and

()x nj = 0 on ()B - Co
~Ui.U .J

then
Here ",1 and ",2 are measured along yI and Y2 coordinate curves and
",3 is measured along the axis of the helix. The expressions for the

components of the infinitesimal rigid body motion involve six arbi-

traryconstants cl, C2, c3, dl, d2, d3, corresponding to the six degrees
of freedom. These are not linear in Y because R in (2) depends upon
Y3. The situation here is somewhat similar to that in cylindrical (r,

0, z) coordinates in which an infinitesimal rigid body motion is given

by

U(s) :S U(O) exp (-(s -1)/sc(I» (18)
where

sc(l) =!/--V+ (1 + 20), ,--,J 1 >.(1)

IL = the supremum of the eigenvalues of A regarded as a linear

transformation on the space of symmetric tensors, (20)

>'(1) = the smallest nonzero characteristic value of free

vibration of a slice of the helical spring of axial

length 1 and mass density per unit volume equal to one. (21)
Proof of the Theorem. Since X is a homogeneous quadratic form

in u ~j and u i, by Euler's theorem, we have

i 1 i (i)X. i)X ,)U(s) = xdV = - --:- u'. + --: u' dV
y3 2: s 2 y3 2: s i)u :j .J i)u'

iJ: i)x '= --,- u'dA. 1,__,c. i)u ~3

To obtain (22)3 from (22)2, we used the divergence theorem, equilib-
rium equations (12)1. and dsk = -dyldY2o3k = -dAo3k on Ca. Be-
cause of (11) we can replace u in (22) by

v = u + (ij (23)

where (ij is an infinitesimal rigid body motion given by (10). Thus

U(s) = -.LI ~ vi dA. (24)
Qc. i)V:3

Physically this expresses the fact that any self-equilibrated force
system does no work during a rigid motion of the body. From (6) and
(8) we obtain

(19)

(22)=U+CII, (11)1

then

eij (v) = eij (U),

- ( i. i YK ) - - ( i. i YK) (11)xv,pv, -x U,pU,. 2,3

Equilibrium equations governing the static deformations of a helical
body B in the absence of body forces obtained by taking the extremum
of

~

(}x(~) J -

~--

()x

()Ui

()x

:;Ku .3

1 (}X

2em3

(}x

()x

e33

= 0 in B,
bEK3n Y",

i 0 ,"()yi"()yk j;,c~~; -==~,'. "," i; 0;"n i)B (12)

(15)

(16)

- . .,

n'=%E" k--. (13). IJ ()Ul ()U2

Here ()B, the boundary of the body B, is assumed to be given para-

metrically by Y = Y( U1, U2) and the sign is selected so that n points

out of B. I is the applied force per unit coordinate area d U1d U2. We

are interested in the case when the loads are applied at the end X3 =
0 and the remainder of the boundary is traction free. In order that

there exist a solution of (12)1,2 under these conditions, the applied

loads must be self-equilibrated and hence should satisfy

()-i ~ dY1dy2 = i lidY1dy2 = 0,
Co ()U:3 Co (14)

r ok! Eijk yj/tdY1dY2 = o.
Jco

Here moments are taken about the origin and Co is defined by (3).
With the definitions

~v,\ ~ej3 ,-'

The Schwarz and geometric-arithmetic mean inequality give (e.g.,
see Toupin [1, p. 93])

2 IfhdV.5/J If2dV+! Ih2dV
JB JB /J JB

for all /J > 0 and all scalar fields f and h defined on B. Thus

i ~X i 1 ~X f ~X i"vldA = --vidA - b _Y2vldA,
C. ~V,3 C. 2 ~el3 ~e33i 1 ~x i I ~X I.5 --vidA + a -Vi dA,

C. 2 ~el3 c. ~e33

l [i 1~x~x I i.5- /J ---dA+- (Vl)2dA
2 c. 4 ~el3 ~el3 /J C.

{ i ~X ~X 1 i } .
+a /J --dA+- (Vl)2dA

c. ~e33 ~e33 /J C. .
Bounding the other two terms in a similar way, we obtain

( ) r [ i ~x ~X 1 i ., Us .5-0ij /J --dA+- v'vJdA

2 c. ~ei3 ~ej3 /J c.
with r =J{1 + 2a). Now

L
~X ~X ~ Oi; Okl' ~X ~X

~

(25)

a=bsup(IY11, IY21),
VECo

C../ = Iv: v E B, S ~ y3 ~ S + II,

= portion of the body between the planes

y3 = sand y3 =.. + I

~

= Oij Okl A ikpq epq Ajlmn emn, (26)
Oij-- --

i)ei3 i)ej3 i)eik i)ej/

(17) in which we have used (8). A regarded as a linear transformation on

Journal of Applied Mechanics JUNE 1978, VOL 45/299



the space of symmetric tensors has six positive eigenvalues j:i's given

by
The minimum value

sc(l) = 2r g (35)
X(l)

occurs for v = 1/~. Henceforth, we assume that v has this value.
Differentiation of (29) with respect to s yields

ddQ. _1[- r xdV,
s JC'.1

and this together with (34) and (35) results in

dQsc(l) -+ Q ~ O.
ds

Aijklekl = j"iepq Oip ojq,

Here ekl are components in the six dimensional space of symmetric
tensors of an eigenvector corresponding to the eigenvalue j"i. Since A
is a function of yK, j"i will also be a function of yK. Denoting by IJ. the
supremum taken for all Y E Co of the eigenvalues of A, we conclude
that

= ru(s + I) - U(s)]/l =

Integrating this and using

U(s + I) ~ Q(s,l) ~ U(s)

which follows from the fact that U(s) is a nonincreasing function of
s, we obtain

Oij Okl emn A ikpq Ajlmn epq ~ 2JLX. (27)

Details of obtaining Ericksen's estimate (27) are given by Berglund
[2]. Substituting from (27) and (26) into (25) we arrive at

U(s) ~!: [211 JL r X dA + ~ r vivjdA ] . (28)
2 Jc. II Jc.

Integrating both sides of this inequality with respect to Y3 from ya
= s to Y3 = s + I for some I> 0 and setting

1 5. 1+, - U(s')ds' = Q(s,l), (29)

I ,

U(S2 + I) ~ exp «S2 - sJ/sc(I».
U(sJ

The choice Sl = 0 and S2 + I = s gives the desired inequality (18).we obtain

Remarks
When b = 0 the helical spring becomes a straight prismatic body

and the V-coordinate curves coincide with the X-coordinate curves.
From (6) one sees that the expressions for strains reduce to the fa-
miliar ones. Also from (15) one gets a = 0 and the value of r given
immediately after equation (25) becomes 1. Thus the characteristic
decay length sc(l) reduces to essentially that given by Toupin, the
remaining difference being due to the sharper estimate (27) used in
our work.

If one had worked with the displacement vector Ii, then calculations
,similar to that carried out in the foregoing would show that the elas-
ticity A and the strain energy density X depend upon X3 also. This
would require taking supremum of the eigenvalues of A over the entire
body. Also the choice of the length 1 and the lowest characteristic
frequency of the free vibration >.(1) in (32) would be more involved.

It does not seem obvious that the present analysis will apply,
without any major modification, to other theories in which the gov-
erning differential equations are similar to (12) with X a homogeneous
positive-definite quadratic function of the U,k and u. This is because
we make explicit use of the strain-displacement relations (6) and the
alternate form (8h of the strain-energy density.

2 fxdV
A = ..,

Oij Su'uJdV

and that if lA, u] and I:\:, ii] are two characteristic solutions, then

(A - :\:)Oij S uiujdV= O. (31)

Hence u's corresponding to different A'S are orthogonal in the sense
made precise by (31). If A(l) denotes the lowest nonzero characteristic
value corresponding to the free vibration of C..I, then

(' X (V:k. vi, yK)dV
Jc.,
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X(l) :5 2-'. (32)
Oii f vividV

JC..1

for every smooth displacement field y on C..l that satisfies

oii f vividV ~ 0, f vidV= f Eiik YivkdV= O.
JC'.1 JC..I JC'.1

(33)

Following Toupin [1], the rigid displacement I;; in (23) can be chosen
so as to satisfy (33). Substituting from (32) into (30) and using (11)3
we get

(34)

in which
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