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1 Introduction proved plate theorieq[22]) and finite element formulations
0,23). However, simply supported boundary conditions are

In recent years, piezoelectric materials have been |ntegra{é s frequently realized in practice and they do not exhibit the

W.ith structu_ral systems to form a class of "S’.“a“ structures.” Th\?/ell-known singular effects observed near clamped or traction-
piezoelectric materials are capable of altering the structure’s | ee edges. The available analytical solution techniques for three-
sponse through sensing, actuation and control. By Integratiff e nsional deformations are incapable of analyzing laminates

surface-bonded and embedded actuators into structural systejy) clamped or traction-free edges and/or when the edges are
desired localized strains may be induced by applying the appr@éctrically in contact with a low-permittivity medium like air,

priate voltage to the actuators. . . . Yvherein the normal component of the electrical displacement
In order to successfully incorporate piezoelectric actuators inta biches

structures, the mechanical interaction between the actuators an
the base structure must be fully understood. Mechanical modﬁ[§n
were developed by Crawley and de LU, Im and Atluri [2],

he Eshelby-Stroh formalisnf24—26) provides exact solu-
s to the governing differential equations of anisotropic mate-
rials under generalized plane-strain deformations in terms of arbi-

%rary analytical functions. Vel and Batf27,28 adopted a series
mounted to top and/or bottom surfaces of a beam. [Ugelevel- 5 ytion for the analytic functions to analyze the generalized

oped a theory for laminated plates with distributed piezoelectrifiane sirain deformation of laminated elastic plates subjected to
layers based on the classical lamination theory. Wang and Roggfjirary boundary conditions, and the cylindrical bending of a
[5] applied the classical lamination theory to plates with surfacgyyinated elastic plate with embedded or surface mounted piezo-
bonded or embedded piezoelectric patches. A coupled first-ordelsmic patches. Recently, Vel and Bafe9] generalized the
shear deformation theory for multilaygred piezoelectric plates W% helby-Stroh formalism to study the three-dimensional deforma-
presented by Huang and Wi6]. Mitchell and Reddy's[7] iions of laminated elastic rectangular plates with arbitrary bound-
coupled higher-order theory is based on an equivalent single-laygy; congitions. Here we extend this method to multilayered piezo-
theory for the mechanical displacements and layerwise discretizaactric plates subjected to arbitrary boundary conditions. The
tion of the electric potential. Numerqus finite element studies ha\é‘?jges of each lamina may be subjected to mechanical and electri-
also been conducte@.g., see Robbins and Redf8], Ha et al. 5" houndary conditions different from those on the adjoining
[9], Heyliger et al[10], and Batra and Lianfl1]). laminae. The governing differential equations are solved exactly
Vlasov [12], Pagano[13,14, and Srinivas and Rafl5] ob- 414 various constants in the resulting series solution are deter-
tained three-dimensional analytical solutions for simply SURpined from the boundary conditions at the edges and the continu-
ported, laminated anisotropic elastic plates. Their method h@g conditions at the interfaces. This results in an infinite system of
been extended by Ray et 16] and Heyliger and BrookEL7]t0  gquations in infinitely many unknowns. By retaining a large num-
study the cylindrical bending of laminated piezoelectric platéger of terms in the series solution, the mechanical displacements,
Analytical solutions for the static behavior of a homogeneous sindyresses; electric potential, and electric displacement can be com-
ply supported, piezoelectric rectangular plate was given by Biyted to any desired degree of accuracy. Results are presented for
segna and Macefil8] and Lee and Jianfl9]. Heyliger[20,21] hick piezoelectric plates with two edges simply supported and the
provided a three-dimensional solution for the static behavior gkher two edges subjected to arbitrary boundary conditions. These

multilayered piezoelectric rectangular plates. All the aforemeRagyits can be used to assess the accuracy of different plate theo-
tioned three-dimensional solutions are restricted to piezoelectfigs and finite element formulations.

laminates whose edges are simply supported and electrically
grounded. Such solutions are useful for validating new or im-
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I(S)[ }H(S){ } & on x,=0,
L3=L(];I+]) ¢

L(,}\,) (s=1,2,3, (8)

A 35 & +J(S){ } g® on x.=Lg,

2 where (0g)i=0is. The functions f® g are known and
oo D 15,153,963 are 4<4 diagonal matrices. For most applica-

3 tions, these diagonal matrices have entries either zero or one such

that
Fig. 1 An N-layer laminated piezoelectric plate |(S>+ |(5> 7‘](3)_’_\](5) =l (s=1,2,3, (9)

with | being the 4< 4 identity matrix. For example, if the surface

The vertical positions of the bottom and top surfaces as well as>€x{-0 is rigidly clamped and electrically grounded thEfy) =1,
the N—1 interfaces between the laminae are denotedL§y 153=0andfM(x;,x5)=0, i.e.,u;=u,=u3=0, $=0. If the sur-

=0, |_(2) |_(n) . |_(N) |_(N+1)_|_3 face is rigidly clamped and the normal component of the electric
The equlllbrlum equatlons and charge equations of eIectrostdtsmacement is zero, then I()=diad1,1,1,0, I
ics in the absence of body forces and free charges are =diad0,0,0,]. Boundary conditions at an electrically grounded

— simply supported edgex;=0 may be simulated bylu¢
Timm=0, Dmm=0, (j,m=12.3), (1) =diad0,1,1,1, 1'Y=diad1,0,0,d and fM(x,,x3)=0, i.e., u,

wherea;,, are the components of the Cauchy stress tensoband =u;=0, ¢=0 ando;;=0. The method is valid even when the

the electric displacement. A comma followed by indeindicates gjements of matr|ce$&5(z, 1), SS) and J$) are functions of

partial differentiation with respect to the present positignof a  coordinates only.

material particle, and a repeated index implies summation over therhe nterface conditions on the material surfaces

range of the index. @ LY, LYY may be specified as follows:
The constitutive equations of a linear piezoelectric medium are ")
([30)) (. ) If the surface<3— L3"” is an interface between two laminae,
the mechanical dlsplacements surface tractions, electric potential,
Tim=Cimgreqr—€imErs  Dm=€mqieqrt €mEr s and the normal component of the electric displacement between

(9,r=1,2,3), ) them are taken to be continuous. That is

n
wheree, are the components of the infinitesimal strain tengor, [ul=0[o3]=0, [$]=0,[D3]=0 on x;=Lj (10)
the electric fieldC;,4, the elasticity constants,;,, the piezoelec- Here[u] denotes the jump in the value afacross an interface.
tric moduli, ander,, the electric permittivity. The infinitesimal Thus the adjoining laminae are presumed to be perfectly bonded
strain tensor and electric field are related to the mechanical disgether.

placementi, and electric potentiad by (b) If the surfacex;=L{" is an electroded interface, then the
potential on this surface is a known functié(x,,x,) while the
Sqrzz(uq,r"—ur,q)! Ei=—9¢;. (3) normal component of the electric displacement need not be con-
tinuous across this interface, i.e.,

We will interchangeably use the direct and indicial notation. The - _ _ )
stored energy densitw for a piezoelectric medium is given by [u]=0, [o3]=0, ¢=T(x1,X;) On X3=L5". (11)

([30D We assume that the electrode is of infinitesimal thickness and
1 ignore its influence on the mechanical deformations of the
E(ijqrsjmeqr"— €mEmEr). (4) structure.

The symmetry of the stress and strain tensors and the existence of

thed_s_tored energy function imply the following symmetry3 A sojution of the Governing Differential Equations
conditions:

1
W= E(O'jmsjm+ DnEm) =

We construct a local coordinate systeff? x4 ,x{" with local
Cimar=Cmiqr=Carjm €rjm=Ermj, €mr= €rm- (®)  axes parallel to the global axes and the origin at the point where
In the most general case, there are 21 independent elastic ce- globalxs-axis intersects the bottom surface of thté lamina.
stants, 18 independent piezoelectric moduli, and 6 independ#this local coordinate system, tinth lamina occupies the region
dielectric permittivities. Material elasticities are assumed to yiefd,|,]1x[0,,]x[0]{"], wherel;=L;, l,=L, and I{V=L{"*""
a positive stored energy density for every nonrigid deformation| (" = we drop the superscript for convenience with the un-

and/or nonzero electric field. That is, derstanding that all material constants and variables belong to this
Cimarlli mUqr>0,  €mEmE, >0, g) lamina.
Jmarelmea T Emr=mer © The Eshelby-Stroh formalisiti24—26) provides a solution for
for every real nonzere;, andE,. The total stored energy of the generalized plane-strain deformations of a linear elastic/
the piezoelectric laminate is given by piezoelectric anisotropic material. We extend it to three-
dimensional deformations by assuming that
J de (7) u . kl7T k27T X3
=aexpi|——X;+ —Xo+tp—||, (12)
¢ Iy I I3

whereR=[0L,]X[0L5]X[0,L3]. The displacement or traction
components and electric potential or normal component of tieherea andp are possible complex constants to be determined,
electric displacement on the edges=0, L;; x,=0, L,; and on k; andk, are known integers, and= /= 1. The chosen displace-
the bottom and top surfaces are specified as ment and potential field has a sinusoidal variation onxhe x,
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plane with an arbitrary exponential variation in tkgdirection; IM(Pp)>0, Puia=Pu, 8yis=a, (a=1,....4,
k, andk, determine the period of the sinusoidal terms in xhe (20)
andx,-directions respectively. h b . d tity denotes it |
From Egs.(12), (3), and(2) we obtain where a bar superimposed on a quantity denotes its complex con-
jugate. For distinctp, we can superpose eight solutions of the
. ko ko S form (12) to obtain
Tim=1 (ijqraq+ erjma4) 0 ot T, St p 1.
1 2 3 [u} % Ky Ko x3) _
=A{expi| —X;+ —=——X,+p,~—|| ) ctconjugate,
. kl’7T k27T X3 ¢ Il |2 |3
Xexp i l—x1+ I—x2+p|— , (21)
1 2 3

where A=[a,,a,,83,84], C is an arbitrary &« 1 vector of un-
D= i (€araq— €mrs) I‘1_7T(S I‘2_77 5r3 known complex coefficients,  ((p,))=diad ¥(py),
m mar®q - Smre4 rl (p2),(p3),¥Aps)], and conjugate stands for the complex conju-
gate of the explicitly stated term. We obtain the following expres-
) kl7T k27T X3
xXexpgi | —X+ —Xo+p—]|.
;{ ( I I |3)

sions for the stress tensor and electric displacement by superpos-
ing eight solutions of the forn13),

Here §;; is the Kronecker deltd 30]). Substitution 0f(13) into (1) o kym kK, X3 )
gives equations which can be written as D, =Spl expi TX1+ vxﬁ P*E c+conjugate,
{QC+p[RC+(R%)T]+ p?TC}aC+{q°+ p[re+°] + p2t®a,=0, (22)
where
{(@®)T+pL(r)T+ () 1+ p*(t) T1a"—{q“+ p[r =+ s+ p*tFay
o Sn=[Vimpa1,Vm222:Vm33s,V(madal,
B} vE Ve
where a®=[a;,a,,a5]", the matricesQ®,R®, TC are related to Vima= e(r”'“)T (m.e) }
the elastic constantS; by T W) T U(ma
k272 kiky k372 [ Ky ko ]mq3
Q]% |2 leql T(leq2+C]2q1)+ |2 C|2q21 (me,a))jqzl chmq1+ chmq2 Po , (23)
(15)
ki Ko 1 Ky Ko7 €3jm
C 1 2 Cc_ e I . ]
qu | || Cj3q1+ EC]&}Z; qu—ECj;}qfﬂy (v(m,a))J |( |l ellm+ | ezjm+pa s
the vectorgy®, r¢, s¢, andt® are related to the piezoelectric moduli o kg Ky €mj3
€rjm by (W(m,a))j_l |_emj1+ | em12 Pe7— | )
1
K22 Kqkpm? K32 Kk k
e_ 1T 2T €m3
a;= 2 €1t I, (ejp+ep1) + —2— 12 €2j2, Uima) = T €m1t temﬁ- pat)
o ki kzw o Ko ko7 The expression&1) and(22) are valid when the eigenvalugs
ri :W | B T 32, ST Il €3t Wezja- (16) are distinct, or if they are not, there exist eight independent eig-
st st 32 envectorsa, . If an eigenvalue is repeatedimes (2<r<4) and
o 1 it does not have corresponding independent eigenvectors, then
t =|—29313, (21) and(22) need to be modified appropriately. The procedure is
3

similar to that given for elastic laminates by Vel and B424].
and the scalarg®, r¢, s¢, andt€ are related to the electric permit-

tivity €, by 4 A Series Solution
K22 KoKy 2 k272 The complete double Fourier series expansion constructed to
9 ="z eut o, (€12t €21) + 7~ €22, satisfy the boundary/interface conditions on the surfacgs
1 2 (17)  =0,1{" is obtained by superposing solutions of the fa@d). In
o kqymr ko .k ko 1 the following equations the first superscriptdenotes thenth
r 1. I €t T I, €32, S = . I €13t T~ I, €3, Tz €3 lamina and the second superscript 3 indicates that the series terms

3 have a double Fourier series expansion on the pIa?ﬁésO and

It should be noted that"=r< due to the symmetry restrictid®); | The dependence of the eigenvalues and eigenvectoks on
on the electric permittivity tensor. The two equationg14) can andk, is indicated by the subscripts
be combined as 2 '

(n3)
+p[R+R"]+p?Tla=0, 18 U™ an3 r.(n3 ~nd n3 (3 n3)

. {Q+pl 1+p°T} (18) »"d = Ay ko)l kg ko) Ciky ko) §fk0 ko) Ak ko)]+ E Ak o

where
Q¢ q° R ré TC t® (n3) (N3 | #n3 43 ; n3) . (n3 ~(n3
Q= @ —q¢’ = (€7 —re|’ T= 9T —te|" X[’?(kl 0Cky.0 1 8(ks.0 (k1 olt E A(Okz)[ﬂ<0k2)c<0kz)
19)

Following the method used by Suo et §81] for generalized +E02 dio )]+ 2 {AEE ORI AR
plane deformations of piezoelectric materials, we can prove that : v e
the eigenvaluep of (18) cannot be real. Since the matrid®@sR, LNy (3 +A(” 3 (n.3) n3
andT in (18) are real, there are four pairs of complex conjugate (k1 .kz) <k1 kz>] (k1v*k2)["(k1 —k)Clky,—kp)
values forp. Let (p,,a,) (¢=1,2,...,8) beeigensolutions of 3 (n, .
(18) such that T &kl - 1+ conjugate. (24)
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The terms involvingky € (0,1) play the role of the constant termpeated for the boundary conditidB), on the top surface of the

in the double Fourier series expansion and Nth lamina withs= 3 and the interface continuity conditiofk0)
or (11) between the various laminae.
1,22,31( >(X(1n) X Xy = < ex;{ i (kl_wxgnhr kz_ﬂ'x(zm On the side surfaces” =0, the functions are extended over
1 Iy 2 the interval[ —1,,1,]X[—1{V,1{"] in the x{V—x{" plane. We
L then multiply (8) corresponding tos=1 by exgi(kom/l,
p& ,)kz,*>|(_n>) > +kemxPN§Y)] and integrate the result with respectd® andx{™
(25) over[—l,,1,1x[—1{" 1{"]. A similar procedure is used to sat-
isfy the boundary condition$8) corresponding ts=2 on the
£ O XY g = < eXF{ i (kr—w X"+ klz—w xg" sm?r/facesx(z”) =0, 23./ ® P ’
. 2 Substitution from(26) into (27) and the other equations that
n3 X(3n> enforce the .b(.)u.ndary qonditions on the top surface, the interfape;
+ p(kikaY*)(l(_n) ))D between adjoining laminae and the side surfaces leads to an infi-
3 nite set of linear algebraic equations for the infinitely many un-
The functionsz{f, (<™ & x{) and £07), (VX ,x{Y)  known coefficients:E’k‘f)kz) and d§rk‘if),(2). A general theory for the

vary sinusoidally on the surface§” =0, 1" and exponentially in solution of the resulting infinite system of equations does not ex-

the xg”)-direction. The inequality20), ensures that all functions |st..However, reqsonably accurate results can be obtglned by trun-

decay exponentially towards the interior of théh lamina cating l.(l ano_l K in (24) 10 Ky andK, terms, respecnvel_y. The
Similar expressions can be written g™ ¢("’1)].T and Stnes involving summations ové&g andk; in the expression for

(D 40D M i
. . ) uth, are truncated toK, and K%" while those for
[u™? 42T which have a complete double Fourier series e% ¢ ] 2 3

uh2d pn.2) (n)

. . )_ ) _ . ut™?, ¢'\"9] are truncated t&3” andK, terms. In general, we
pansion on the S'd.e surfacm% 0l a’?dxz O.’|2 respectively. trx to maintain approximately the same period of the largest har-
The mechanical displacement, electric potential, stress, and elec- . . o)
tric displacement fields for theth lamina are monic on all interfaces and boundaries by choosiKg'

. . =Ceil(K.1{"/I;) andK,=Ceil(K,l,/I,), where Ceily) equals

u™] u<”'s>} [ o] s n.s) (26) the smallest integer greater than or equal.t6hus, the size of the
oM & 9|’ DET?) ] Dg:s) : truncated matrix will depend solely on the choicekof.
The unknownscl®, ) and dii:%) ) in (26) are assumed to be 6 Results and Discussion
complex, except focl%) | andd{:%}  which are real. Problems studied by Heyligé20] and Heyliger et al[10] were

analyzed by the present method with= 200, and the two sets of

5 Satisfaction of Boundary and Interface Conditions Lzsnugz gwoantqc;ligdvz\r/)ér\]/v \?J:th?i ;Sown below, satisfactory results
The boundary conditiong) on the surfacegs=0, Ls and con- We present results for laminated plates with each lamina made

tinuity conditions (10) or (11) on the interfacesxs=L$?, of either graphite-epoxy{22]), PVDF ([10,32) or PZT-5A([22])

LY, ... LY are satisfied by the classical Fourier series metholyith nonzero values of material variables listed in Table 1. We

resulting in a system of linear algebraic equations for the utfeat the graphite-epoxy layer as a piezoelectric material with the

- ) (n.s) piezoelectric moduli set equal to zero, and solve for the electric
known coefficientscy; k) and dy;’i, - On the bottom surface field in the graphite-epoxy layer which is uncoupled from the

x§"=0, we extend the component functions (@6) defined on elastic field. In this section we denote the thickness of the lami-
[0J,]X[0],] to the intervall —14,1;]X[—1,,l,]. The functions nate byH(=Lj).

7, and&id ) which have a sinusoidal variation on the plane Although our solution is applicable to laminates with general
Qoundary conditions on all four edges, here we consider laminated

x{P=0 are extended without modification since they form th 8 . .
basis functions for this surface, except for terms involviqag piezoeleciric plates tha.t are simply supportgd and electrically
’ grounded on the opposite edges=0 andL,, i.e.,u;=u3;=0,

i i inil ; .
which are extended as even functions. The functhﬁgkz) and 05,=0, =0, and the other two edges subjected to various
§E,§*11?k2) which have an exponential variation in th§”-direction boundary conditions. The reason for this choice is that if each
and a sinusoidal variation in the-direction are extended as
even functions in the<{V-direction and without modification in . . . .
the xD_direct . (1.2 12 Table 1 Nonvanishing material properties of the graphite-

5 ’-direction. The functlonm(klykz) andggklvkz) are extended epoxy, PVDF, and PZT-5A

. - l) . . . e . .

as even f_unct.lons in the; -dlr_ectlon and_ without modlflgatlorl in Property  0° Graphite-epoxy 0° PVDF  PZT-5A
the x{"-direction. The prescribed functioit®(x{" ,x{V) is suit- T (GPa) 55405 R 99301
ably extended. We multiply(8); corresponding tos=3 by Caz2e(GPa) 11.662 23.60 99.201
expli(k, &9, +k,mEV11,] and integrate the result with respect to Cyaa(GPa) 11.662 1064  86.856
x{ andxtM over the interva[ —1,1,]1X[—1,1,] to obtain Crin(GPa) 4.363 3.98 54.016
1 2 11 2272 Ch133(GPa) 4.363 2.19 50.778
L [y [ u® () Ci233(GPa) 3.018 1.92 50.778
13 1@ 73 _f<3)] Chs23 (GPa) 2.870 2.15 21.100

f|2j|l ut| g M| " oD DEY Ca1s1(GPa) 7.170 440 21.100
5 B Ch212(GPa) 7.170 6.43 22.593

KomxD Komxd ez (Cm2) 0 -0.130 -7.209

Xex%i( L 222 XX =0 at x{P=0, ez (Cm™?) 0 0145 -7.209

l1 P ess3 (Cm~?) 0 0276  15.118

(27) €223 (Cm"") 0 -0.009 12.322

o ens (Cm2) 0 -0.135 12.322

for all  (kq,kp) e ({0} {0hHu (2" x{ohuoyx zH)yu(z* €11(10710 F/m) 153.0 1.1068 153.0
X Z")U(Z*x 27), whereZ" andZ~ denote the sets of positive €22(1071° F/m) 153.0 1.0607 1530
€33(1071° F/m) 153.0 1.0607 150.0

and negative integers, respectively. The same procedure is re-
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Table 2 Convergence study for a [0 deg PVDF/90 deg PVDF] square laminate
subjected to mechanical load, L;/H=5

Ky w(H)  @(HY/2) eu(H) u(H*/2) $(B3H/4)  Dy(H) v
6.803677 0.232611
25 0244744 oo pen 1690089 oo —0221222 2784989 1028037
6.803 253 0.233188
50 —0244314  Soooo 1676082 oooo.e  —0220854 2758772 1.028027
6.803 264 0.232722
100 ~0.244253  oooon. 1681768 ol on.  —0.220854 2.772986 1.028026
6.803 245 0.232879
150 ~0.244243 oo L67818L oo, ~0.220851 2764628 1.028026
. 6.803248 0.233243
200 —0244237  oiao,. 1680697 (Too0y  —0.220850 2770503 1.028025
lamina is made of a monoclinic material of crystal clasqsee 03(X1,%2,0)=[0,0,— /2] sin( X, /L 1)Sin(mX, /L)
[33]), then the boundary conditions at the edges-0.L, are
identically satisfied by the following mechanical displacement and d(xg, X2, H) = d(X1,%2,00=0;
electric potential distributions: (ii) Electrical load:
U=IT0a Xg)sinhmxz [L2). F2(X1,X3) (X1, %2, H) = B(X1,X2,0) = 0.5 Sin(mxy /Ly)sin(mx, /L),
; T
XCOS)\WXZ/Lz),fg(Xl,X3)S|n()\7TX2/L2):| (Tg(Xl,XZ,H):0'3(X1,X2,0):O. (30)
&= T4(Xq,x3)SIN(N XL /L 5). (28) Results for combined mechanical and electrical loads can be
The equilibrium and charge equations will yield coupled partigPtained by superposition of the solutions corresponding to loads
differential equations forf ,(x;,x3), (a=1,...,4). Thus, we () and(i).

need only one term, namel, =X\, in the x,-direction in the  1he effect of truncation of the series on the accuracy of the
double Fourier series expansion and the size of the truncated @lution is investigated for the two-ply laminated plate with two
trix is greatly reduced. PVDF and graphite-epoxy are orthorhor?PPOSite edges simply supported and grounded and the other two
bic materials of crystal class mm2 and PZT-5A is a hexagon@fl9es subjected to FD-FD boundary conditions. Computed results
material of crystal class 6mm, all of which belong to the group dPr various quantities at specific points in the laminate are listed in
monoclinic materials of crystal class m. Table 2 for the case of the mechanical loading. The following

The edgesx;=0,L; may be either clampe¢C) with u;=u, hondimensionalization has been used:

=u3=0, or free of tractior(F) with 1,= 01,=0413=0 or simply Co L, L, Ly Ly
supported(S) with u;=u3=0, o1;=0. We append P when the  [T;(X3),Ts(X3)]= —— ul(—, —,x3),u3(—, —,xs) ,
edge is electrically groundedp=0) or D when the normal com- L1do 472 2°2
ponent of the electric displacement is set to zero, Dg=0. For 1 L, L, L, L,
example, FP-FP denotes a laminated plate that is traction-free anfor,,(x3),515(X3) 1= — 0'11(—, —,x3) ,013(—, —.X3] |
electrically grounded on the edges=0 andL ;. In this notation, %o 2°2 82
all analytical three-dimensional solutions available to dat8— 1 L L, L
21]) are for piezoelectric laminates that have all four edges sub- [T y(Xs),F35(X3)]= — 023( —1,0,x3) ,033(—1, 2 sl
jected to SP boundary conditions. %o 8 2°2

6.1 PVDF Cross-Ply Laminate. Consider a two-ply square F(xg) = 100G, (ﬂ Ly « (31)
laminate with the bottom and top layers made of 0 deg PVDF and 3 Ligo (27273

90 deg PVDF, respectively. The material properties of the 90 deg

PVDF may be inferred from those of the 0 deg PVDF given in 5 B &D (ﬂ Lz
Table 1. Both layers are of equal thickness,/H=5 andL, 3(X) = e S\ 2’2 ’X?’, ’
=1.0 m. The interface is electroded and conditioh%) are en-

forced withf(x41,X,) =0 onx;=H/2. The following two electro- U= U_Co
mechanical loading cases are considered: CqgiLy

(i) Mechanical load: )
where C,=23.60 GPa and,=—0.145Cm? are representative

03(X1,%2,H)=[0,000/2]" sin(mx; /L 1)sin( 71X, /L5) (29) Values of the elastic and piezoelectric moduli for a PVOBEble

Table 3 Convergence study fora [0 deg PVDF/90 deg PVDF] square laminate
subjected to electrical load, L,/H=5

Ko a(H)  as(HY2)  6u(0)  8wu(H*/2) $(B3H/4)  Dy(H) Y

25 0664816 008 ousazns 0S001% gamame —6r2rses 0708785

50 0665182 1000 2440661 D000 0244286 6791965 0.708884
100 0665181 )0 ousamis DSONNY 02u4286 6757052 0708008
150 0665180 0% paumsea D3NS 0500085 6777602 0708013
200 0665201 ol 2asseas JO000Y 0244285 —6763651 0708014
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1). These results show that the mechanical displacenignéd
T, transverse shear stre@s; and electric potentialp converge
rapidly, but the axial stresé,; and transverse componebt of
the electric displacement converge slowly. The upper and lower
values of the transverse displacem&nt and transverse shear
stressa 3 are at corresponding points on the two sides of the
interface between the laminae. As is evident, the interface conti-
nuity conditions are also satisfied very well with increaskg

The difference in the values @f,;(H) and o,5(H*/2) for K,
=150 and 200 is 0.15 percent and 0.16 percent, respectively. The
total stored energy) exhibits monotonic convergence from above
and has converged to four decimal placeskgr=50. Whilekg in

(24) was chosen to be 0.5 for this study, a similar convergence
behavior was observed for other valueskgf Table 3 presents a
convergence study for the case of electric loading wherein the
nondimensional variables are defined as

N N Co L Ly L Ly
[Ul(Xs),Ue,(X3)]:% Uy Z'?’X?’ Uz 7,7%3’
R R Ly Ly L, Ly Ly

[011(X3)1013(X3)]:% ol 5 5 X3 .013 g o X3

R R Ly Ly L L,
[023(X3)10'33(X3)]=% 023 §,0X3 10733 317%3

Fig. 2
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Influence of the boundary conditions on the through-
thickness distribution of the potential due to a mechanical load
for the [0 deg PVDF/90 deg PVDF] laminate

100090.5L 0.5L , x,)e,/L,q,

) above. Thus for the combined mechanical and electrical loading,
the total stored energy may not converge monotonically. Results
presented below are fd¢, = 200.

Electric potential is induced in the laminate due to the applica-
tion of the mechanical load. The through-thickness distribution of

) 1 (L, L,

¢(X3):¢TO¢ 55 %)
Da(Xe) = —geDy| =, =2 0= .
00~ 5,04 7 3] 0=

the electric potential at the midspan is shown in Fig. 2 correspond-
ing to three different boundary conditions. The electric potential
distribution within each layer is parabolic and the magnitude de-
pends on the boundary condition at the edge. Figure 3 depicts for
the mechanical and electric loading the through-thickness distri-
bution of the transverse displacement, longitudinal stress, and

Hereeo=1.0607x 10" *°F/m is the typical magnitude of the elec-transverse shear stress for three different sets of boundary condi-
tric permittivity of a PVDF. In this case too, the mechanical distions at the edges,=0,L,. The transverse displacement essen-
placements, electric potential, and transverse shear stress d@ily remains independent of the thickness coordinate for me-
verge faster than the longitudinal stress and transverse compor@ranical loading, as is usually assumed in the theory of laminated
of the electric displacement. The total stored energy for the eleglastic plates. When subjected to an electric load, the top and
trical loading converges monotonically from below, in contrast tbottom surfaces exhibit larger transverse displacement than the
the case of the mechanical loading where the convergence is fraridplane. The longitudinal stregs;, is discontinuous across the

1 T I
: — SP-SP AN
075} CD-CD 5
[ FD-FD :5' Y N
T os) i SRR I S VR
= E . el
i s ~.‘
025]
o L4
3 4 5 6 7 20 -15 -10 5 0 5 10
"3(0'5L| 0.5L,x)Cy/Ligq, 6,,(0.5L,,0.5L,,.x ;)/q,
®)
1
0.75
Em 0.5
=
0.25
0 S
-4 -1 0 -8 6 4 2 0 2 4 -03 0I5 0 015 03
15(0.5L,,0.5L,, % )C, ey 0,(0.5L,,0.5L,.x )L feyd, 0,3(0.25L ,0.5L ,,x,)L feybq
Fig. 3 Influence of the boundary conditions on the through-thickness distribution of the trans-

verse displacement, longitudinal stress, and transverse shear stress for the

[0 deg PVDF/90 deg

PVDF] laminate subjected to (a) mechanical load and (b) electrical load
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Fig. 4 Axial variation on the interface of the [0 deg PVDF/90
deg PVDF] laminate (a) transverse electric displacement for the
mechanical load and (b) transverse shear stress for the electric

load

—_~
S
g

D,(x,0.5L,0.5H)Cylegd,,

0,(x,05L, 0.5H)L e,

14

1.2

of the mechanical loading and is largest when the edges are
clamped. When subjected to the electrical load, the maximum
transverse shear stress occurs on the interface when the edges are
simply supported or traction-free andxat=0.3H when the edges

are clamped.

The axial variation of the induced electric displacement com-
ponentD5 on the 0 deg PVDF side of the interface is shown in
Fig. 4(a) for the mechanical loading. The result is plotted over
--- SD.SD only half the span since it is symmetric about the midspan. When
----- CD-CD the edges are simply supported and grounded, i.e., SP boundary
conditions,D is largest at the midspan and vanishes at the edges
X1=0\L,. In the case of SD and CD boundary conditioBs, is

01 02 0.3 04 0.5 essentially uniform over the middle eight-tenth of the span but

varies from—19 atx; =0 to —1 atx,;=0.1L,. This rapid change

in D3 near the edges has not been investigated in detail. The large
electric displacements could lead to dielectric failure at the edges
when the laminate is subjected to only a moderate mechanical
load. The shear stregs;; on the interface due to an electric load

is antisymmetric about the midspan and is shown in Fig).4A
thorough study of this rapid change in; at the edges except
when they are simply supported and grounded, necessitates the
use of special functions and has not been pursued here. The shear
stress at the edges seems to be singular for SD and CD boundary
conditions and could lead to delamination failure at the edges
even for moderate electrical loads. Such large stresses were also

o1 02 3 07 o observed at the edges of piezoelectric layers by Batra ¢84l.
’ Y ' ’ and Robbins and Reddy].

Figures %a) and(b) show the transverse deflection of the mid-
plane for the case of the mechanical and electrical load, respec-
tively, when two of the edges are clamped or traction-free. The
transverse deflection of a laminate that is simply supported and
electrically grounded on all four edges has the double-sinusoidal
shape of the applied mechanid@9) or the electrical load30),

interface due to the change in material properties between thed is not depicted. This is not true when two of the edges are
laminae. The longitudinal stress is largest in magnitude on tlséamped or traction-free. The transverse deflection at the center of
bottom surface for the mechanical loading and on the 0 deg PVIite plate is largest when two edges are traction-free and smallest
side of the interface for the electrical loading. The maximumwhen they are clamped. The transverse deflection near the
transverse shear stresg; occurs at about;=0.3H for the case clamped edges is opposite in direction to that at the center of a
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Fig. 5 Influence of the boundary conditions on the midplane transverse dis-
placement of the [0 deg PVDF/90 deg PVDF] laminate for (a) mechanical load and
(b) electrical load
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1 Table 4 Mechanical displacement, stresses, electric potential,
and electric displacement at specific locations of a square [0
x /L, =005 deg PVDF/90 deg PVDF] laminate for various boundary condi-
ors| T i’/,i‘:gés tions, L,/H=5
i Variable SP-SP CD-CD FD-FD (CD,FD)-(CD,FD)
iy (H) -0.785 -0.406 -0.244 -0.617
ug(H/2) 4.360 3.298 6.803 3.676
gu(H) 3.770 2.361 1.681 3.080
F13(H/2)  0.766 0.902 0.233 0.600
Fu(H/2) 0317 0.186 0.908 0.239
Fss(H/2)  0.000 0.051 -0.089 0.057
P(H/4) -0.293 -0.177 -0.365 -0.205
Ds(0) -3.432 -3.147 -4.157 -3.247
. @ (H) 0.676 0.382 0.665 0.620
0.25 05 z}a(H/Z) -1.357 -0.664 -1.541 -1.046
6. (x 05L, x)Li/e-d &11(0) 2.642 -0.017 2.454 0.738
BT 0o G13(H/2) 0.321 0.042 0.361 0.376
. . - Ga3(H /2 0.133 2 . .
Fig. 6 Through-thickness variation of the transverse shear ngHkg 0.000 8033 _%g)i _%B%i
stress on three sections of a [0 deg PVDF/90 deg PVDF] lami- 3(3H/4) 0'244 0'244 0'244 0'244
nate with layerwise variation of boundary conditions Dy(H) 6770 6758 6764 6762
3 -0, -0. -0. -6.

CD-CD laminate when subjected to the electric load.

nae. As an example, consider the configuration denote(Cby

6.2 Graphite-Epoxy and PZT-5A Hybrid Laminate.

The present method can also analyze laminated plates when dihsider a three-ply square laminate with the bottom and middle
edges of each lamina are subjected to boundary conditions diffefyers made of graphite-epoxy with fibers parallel toxh@ndx,
ent from those on the corresponding edge of the adjoining langiirections, respectively, and the topmost layer made of PZT-5A,

i.e., [0 deg GE/90 deg GE/PZT-§AThe graphite-epoxy layers

FD)-(C_ID,FD) wherein the bottom lamina of the two-plylaminatedare of thickness OHM, the PZT-5A layer is of thickness 02
plate is clamped at; =0 andL, and the corresponding edges ofi ; /H=5 andL,;=1.0 m. Interface condition&L0) are assumed

the top lamina are traction-free with the normal component of thgstween the graphite-epoxy laminae. The interface between the
electric displacement set equal to zero for both laminae. FigureP@T-5A and its neighboring graphite-epoxy lamina is electroded

depicts the through-thickness distribution of the transverse sheaid grounded. The bottom surface of the laminate is traction-free
stresso;3 on three sections when the laminate is subjected to th@ad the following two electromechanical loadings are considered
electric load. As we approach the edge, the point of the maximu@y the top surface:

transverse shear stress in the 0 deg PVDF lamina shifts closer to
the interface and it is accompanied by large gradients. Numerical
results at specific points in the laminate for four sets of boundary

conditions given in Table 4 can be used to compare predictiofis)
from various plate theories and finite element solutions.

Mechanical  load: o5(X;,X,,H)=[0,000]" sin(mx, /L,)
XSin(WXZ/Lz),¢(X1,X2,H):O,

Electrical load: ¢(Xq,X5,H) = ¢ Sin(mx, /L) Xsin(mX, /L),
(T3(X1,X2,H):O.

.....
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Fig. 7 Influence of the boundary conditions on the through-thickness distribution of the

stresses for the [0 deg GE/90 deg GE/PZT-5A] laminate, (a) mechanical load and (b) electrical
load
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(a) Table 5 Mechanical displacement, stresses, electric potential,

and electric displacement at specific locations of a square [0
deg GE/90 deg GE/PZT-5A] laminate for various boundary con-
o — SeeP ditions, L;/H=5
R --- CD-CD '
a0 FD-FD | Variable SP-SP CD-CD FD-FD
= | @ (H) -1.933 71,082 0.322
= i3(H/2) 14.325 10.851 35.728
A \ Fu(H) 9.329 6.652 6.991
= % 513(08H) 0972 1.056 0.388
e Lr ! 3(0.8H)  0.384 0.096 1.216
Yool F33(H/2) 0.419 0.462 0.356
R S $(0.9H) -3.668 -3.020 -5.117
e o Dy(H) 21.563 13.301 29.818
0L - s il i (H) 10.161 4.774 10.326
0 0.1 02 L 0.3 04 0.5 43(H/2) -25.862 -14.205 -36.201
il - 61(0) 15.517 11.115 12.631
® , , , 615(0.8H)  1.042 0.057 1.389
65(0.8H) 0836 2.184 1.419
6:(H/2)  -0.119 -0.012 -0.112
#(0.9H) 0.505 0.502 0.506
< Dy(H) -9.878 -9.440 -10.000
X
5
3
<,
ﬁN
< b coefficients. By keeping a large number of terms in the series
% 2k solution, the mechanical displacements, stresses, electric potential,
© i and electric displacement can be computed to any desired degree
R of accuracy.

We have computed results for a two-giy deg PVDF/90 deg
PVDF] laminate and a three pif0 deg GE/90 deg GE/PZT-5A
hybrid laminate that is simply supported and electrically grounded
Fig. 8 Axial variation of the transverse shear stress on the on two opposite edges and subjected to various mechanical and
midsurface of the PZT-5A lamina of the [0 deg GE/90 deg GE/  electrical boundary conditions at the remaining two edges. The
PZT-5A] laminate for (a) mechanical load and (b) electrical load effect of either mechanically clamping the edges, simply support-

ing them or leaving them traction free and prescribing either the
electric potential or the normal component of the electric displace-

The nondimensionalization&31) and (32) are used withC, ment to vanish, has been delineated. It is observed that the solu-
=99.201 GPa and,= — 7.209 Cn% they are representative val- tion, valid for thick plates, exhibits sharp variations near the edges
ues of the elastic and piezoelectric moduli of a PZT-5A. Figuréxcept when they are simply supported and electrically grounded.
7(a) depicts the through-thickness distribution of stresses for thelt is found that for the two-ply laminate, the total stored energy
mechanical loading. The longitudinal stress is approximatefpnverges monotonically from above for the mechanical loading
piecewise affine. The transverse shear stregsis larger when and from below for the electric loading. When the normal com-
the edges are clamped than when they are simply supportedpenent of the electric displacement is prescribed to be zero at the
traction-free. The shear stress; attains the maximum value in edges, the longitudinal distribution of the component of the elec-
the 90 deg GE lamina and is largest when the edges are tractitfit displacement in the thickness direction exhibits, near the
free. The corresponding through-thickness variation of the stressglges, rapid variations in a region of width D.&herelL equals
for the electric loading is shown in Fig.(ly). The longitudinal the span of the square plate. However, the width of such a layer
stressor;; on the PZT-5A side of the interface is larger than that @&quals 0.0R for the longitudinal distribution of the transverse
other points. The maximum value of the transverse shear stréb¢ar stress. For a sinusoidal loading on the top surface, the de-
013 is at the interface between the PZT and the substrate figcted shape of the midsurface is sinusoidal only when all four
simply supported and traction-free boundary conditions and ogdges are simply supported. When the two opposite edges of the
curs in the 0 deg GE lamina for the clamped boundary conditionpper PZT layer are free but that of the lower one are clamped,
The maximum value of the transverse shear steessis at the Mmost severe deformations occur at points on the interface where
interface between the PZT and the substrate for all three boundtg free edge meets it.
conditions. Figures @) and (b) show the axial variation of the For the three-ply hybrid laminate, the axial variation of the
transverse shear strasg; on the mid-surface of the PZT-5A layer transverse shear stress on the midsurface of the PZT layer exhibits
for three different boundary conditions. They exhibit rapid variesharp variations in a region of width @.Inear the clamped and
tions at the edges except when the edges are simply supported #aetion free edges. The maximum value of the transverse shear
electrically grounded. Further results at specific points are givéiress occurs at a point on the interface between the PZT and the
in Table 5 for the three sets of boundary conditions. substrate when the edges are either simply supported or traction-

free but at a point within the 0 deg graphite-epoxy lamina when
. the edges are clamped. The tabulated results presented herein
7 Conclusions should help establish the validity of various approximate theories.

We have extended the Eshelby-Stroh formalism to study tikénally we note that edge singularities, if any, have not been de-
three-dimensional deformations of thick piezoelectric laminatdieated by using special functions. The present technique seems
subjected to arbitrary boundary conditions at the edges. The eqt@-capture adequately the sharp variations in the fields near the
tions of static, linear, piezoelectricity are satisfied at every point afamped and traction-free edges but neither gives the order of the
the body. The analytical solution is in terms of an infinite seriesjngularity nor its precise width. The interested reader should con-
the boundary conditions and the continuity conditions at the intesult Ting[26]; Vel and Batrg 27] have commented on this for a
faces between the laminae are used to determine the unknayemeralized plane-strain problem.

0 0.1 02 03 04 05

x /L,
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