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Three-Dimensional Analytical
Solution for Hybrid Multilayered
Piezoelectric Plates
Analytical solutions for the static three-dimensional deformations of multilayered pi
electric rectangular plates are obtained by using the Eshelby-Stroh formalism. The
nated plate consists of homogeneous elastic or piezoelectric laminae of arbitrary t
nesses. The equations of static, linear, piezoelectricity are exactly satisfied at every
in the body. The analytical solution is in terms of an infinite series; the continuity co
tions at the interfaces and boundary conditions at the edges are used to determin
coefficients. The formulation admits different boundary conditions at the edges a
applicable to thick and thin laminated plates. Results are presented for thick piezoele
plates with two opposite edges simply supported and the other two subjected to v
boundary conditions.@S0021-8936~00!01803-1#
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1 Introduction
In recent years, piezoelectric materials have been integr

with structural systems to form a class of ‘‘smart structures.’’ T
piezoelectric materials are capable of altering the structure’s
sponse through sensing, actuation and control. By integra
surface-bonded and embedded actuators into structural sys
desired localized strains may be induced by applying the ap
priate voltage to the actuators.

In order to successfully incorporate piezoelectric actuators
structures, the mechanical interaction between the actuators
the base structure must be fully understood. Mechanical mo
were developed by Crawley and de Luis@1#, Im and Atluri @2#,
Crawley and Anderson@3#, and others for piezoelectric patche
mounted to top and/or bottom surfaces of a beam. Lee@4# devel-
oped a theory for laminated plates with distributed piezoelec
layers based on the classical lamination theory. Wang and Ro
@5# applied the classical lamination theory to plates with surfa
bonded or embedded piezoelectric patches. A coupled first-o
shear deformation theory for multilayered piezoelectric plates
presented by Huang and Wu@6#. Mitchell and Reddy’s@7#
coupled higher-order theory is based on an equivalent single-l
theory for the mechanical displacements and layerwise discre
tion of the electric potential. Numerous finite element studies h
also been conducted~e.g., see Robbins and Reddy@8#, Ha et al.
@9#, Heyliger et al.@10#, and Batra and Liang@11#!.

Vlasov @12#, Pagano@13,14#, and Srinivas and Rao@15# ob-
tained three-dimensional analytical solutions for simply su
ported, laminated anisotropic elastic plates. Their method
been extended by Ray et al.@16# and Heyliger and Brooks@17# to
study the cylindrical bending of laminated piezoelectric plat
Analytical solutions for the static behavior of a homogeneous s
ply supported, piezoelectric rectangular plate was given by
segna and Maceri@18# and Lee and Jiang@19#. Heyliger @20,21#
provided a three-dimensional solution for the static behavior
multilayered piezoelectric rectangular plates. All the aforem
tioned three-dimensional solutions are restricted to piezoele
laminates whose edges are simply supported and electric
grounded. Such solutions are useful for validating new or

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
2, 1999; final revision, Nov. 23, 1999. Associate Technical Editor: I. M. Danie
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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proved plate theories~@22#! and finite element formulations
~@10,23#!. However, simply supported boundary conditions a
less frequently realized in practice and they do not exhibit
well-known singular effects observed near clamped or tracti
free edges. The available analytical solution techniques for th
dimensional deformations are incapable of analyzing lamina
with clamped or traction-free edges and/or when the edges
electrically in contact with a low-permittivity medium like air
wherein the normal component of the electrical displacem
vanishes.

The Eshelby-Stroh formalism~@24–26#! provides exact solu-
tions to the governing differential equations of anisotropic ma
rials under generalized plane-strain deformations in terms of a
trary analytical functions. Vel and Batra@27,28# adopted a series
solution for the analytic functions to analyze the generaliz
plane-strain deformation of laminated elastic plates subjecte
arbitrary boundary conditions, and the cylindrical bending o
laminated elastic plate with embedded or surface mounted pi
ceramic patches. Recently, Vel and Batra@29# generalized the
Eshelby-Stroh formalism to study the three-dimensional deform
tions of laminated elastic rectangular plates with arbitrary bou
ary conditions. Here we extend this method to multilayered pie
electric plates subjected to arbitrary boundary conditions. T
edges of each lamina may be subjected to mechanical and ele
cal boundary conditions different from those on the adjoini
laminae. The governing differential equations are solved exa
and various constants in the resulting series solution are de
mined from the boundary conditions at the edges and the cont
ity conditions at the interfaces. This results in an infinite system
equations in infinitely many unknowns. By retaining a large nu
ber of terms in the series solution, the mechanical displaceme
stresses, electric potential, and electric displacement can be
puted to any desired degree of accuracy. Results are presente
thick piezoelectric plates with two edges simply supported and
other two edges subjected to arbitrary boundary conditions. Th
results can be used to assess the accuracy of different plate
ries and finite element formulations.

2 Formulation of the Problem
We use a rectangular Cartesian coordinate system, show

Fig. 1, to describe the infinitesimal quasi-static deformations of
N-layer piezoelectric laminated plate occupying the reg
@0,L1#3@0,L2#3@0,L3# in the unstressed reference configuratio
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The vertical positions of the bottom and top surfaces as well a
the N21 interfaces between the laminae are denoted byL3

(1)

50, L3
(2) , . . . ,L3

(n) , . . . ,L3
(N) , L3

(N11)5L3 .
The equilibrium equations and charge equations of electros

ics in the absence of body forces and free charges are

s jm,m50, Dm,m50, ~ j ,m51,2,3!, (1)

wheres jm are the components of the Cauchy stress tensor andDm
the electric displacement. A comma followed by indexm indicates
partial differentiation with respect to the present positionxm of a
material particle, and a repeated index implies summation ove
range of the index.

The constitutive equations of a linear piezoelectric medium
~@30#!

s jm5Cjmqr«qr2er jmEr , Dm5emqr«qr1emrEr ,

~q,r 51,2,3!, (2)

where«qr are the components of the infinitesimal strain tensor,Er
the electric field,Cjmqr the elasticity constants,er jm the piezoelec-
tric moduli, andemr the electric permittivity. The infinitesima
strain tensor and electric field are related to the mechanical
placementuq and electric potentialf by

«qr5
1

2
~uq,r1ur ,q!, Ej52f , j . (3)

We will interchangeably use the direct and indicial notation. T
stored energy densityW for a piezoelectric medium is given b
~@30#!

W5
1

2
~s jm« jm1DmEm!5

1

2
~Cjmqr« jm«qr1emrEmEr !. (4)

The symmetry of the stress and strain tensors and the existen
the stored energy function imply the following symmet
conditions:

Cjmqr5Cm jqr5Cqr jm , er jm5erm j , emr5e rm . (5)

In the most general case, there are 21 independent elastic
stants, 18 independent piezoelectric moduli, and 6 indepen
dielectric permittivities. Material elasticities are assumed to yi
a positive stored energy density for every nonrigid deformat
and/or nonzero electric field. That is,

Cjmqruj ,muq,r.0, emrEmEr.0, (6)

for every real nonzero« jm andEm . The total stored energyU of
the piezoelectric laminate is given by

U5E
R

Wdv, (7)

whereR5@0,L1#3@0,L2#3@0,L3#. The displacement or traction
components and electric potential or normal component of
electric displacement on the edgesx150, L1 ; x250, L2 ; and on
the bottom and top surfaces are specified as

Fig. 1 An N-layer laminated piezoelectric plate
Journal of Applied Mechanics
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Iuf
~s!F u

f G1IsD
~s! F ss

Ds
G5f~s! on xs50,

~s51,2,3!, (8)

Juf
~s!F u

f G1JsD
~s! F ss

Ds
G5g~s! on xs5Ls ,

where (ss) i5s is . The functions f(s),g(s) are known and
Iuf
(s) ,IsD

(s) ,Juf
(s) ,JsD

(s) are 434 diagonal matrices. For most applica
tions, these diagonal matrices have entries either zero or one
that

Iuf
~s!1IsD

~s! 5Juf
~s!1JsD

~s! 5I ~s51,2,3!, (9)

with I being the 434 identity matrix. For example, if the surfac
x150 is rigidly clamped and electrically grounded thenIuf

(1)5I ,
IsD
(1) 50 andf(1)(x2 ,x3)50, i.e.,u15u25u350, f50. If the sur-

face is rigidly clamped and the normal component of the elec
displacement is zero, then Iuf

(1)5diag@1,1,1,0#, IsD
(1)

5diag@0,0,0,1#. Boundary conditions at an electrically grounde
simply supported edgex150 may be simulated byIuf

(1)

5diag@0,1,1,1#, IsD
(1) 5diag@1,0,0,0# and f(1)(x2 ,x3)50, i.e., u2

5u350, f50 ands1150. The method is valid even when th
elements of matricesIuf

(s) , IsD
(s) , Juf

(s) and JsD
(s) are functions of

coordinates only.
The interface conditions on the material surfacesx3

5L3
(2) , . . . ,L3

(n) , . . . ,L3
(N) may be specified as follows:

~a! If the surfacex35L3
(n) is an interface between two laminae

the mechanical displacements, surface tractions, electric poten
and the normal component of the electric displacement betw
them are taken to be continuous. That is

vub50,vs3b50, vf b50, vD3b50 on x35L3
~n! . (10)

Here vub denotes the jump in the value ofu across an interface
Thus the adjoining laminae are presumed to be perfectly bon
together.

~b! If the surfacex35L3
(n) is an electroded interface, then th

potential on this surface is a known functionf (x1 ,x2) while the
normal component of the electric displacement need not be c
tinuous across this interface, i.e.,

vub50, vs3b50, f5 f ~x1 ,x2! on x35L3
~n! . (11)

We assume that the electrode is of infinitesimal thickness
ignore its influence on the mechanical deformations of
structure.

3 A Solution of the Governing Differential Equations

We construct a local coordinate systemx1
(n) ,x2

(n) ,x3
(n) with local

axes parallel to the global axes and the origin at the point wh
the globalx3-axis intersects the bottom surface of thenth lamina.
In this local coordinate system, thenth lamina occupies the region
@0,l 1#3@0,l 2#3@0,l 3

(n)#, where l 15L1 , l 25L2 and l 3
(n)5L3

(n11)

2L3
(n) . We drop the superscriptn for convenience with the un-

derstanding that all material constants and variables belong to
lamina.

The Eshelby-Stroh formalism~@24–26#! provides a solution for
the generalized plane-strain deformations of a linear elas
piezoelectric anisotropic material. We extend it to thre
dimensional deformations by assuming that

F u
f G5a expF i S k1p

l 1
x11

k2p

l 2
x21p

x3

l 3
D G , (12)

wherea and p are possible complex constants to be determin
k1 andk2 are known integers, andi 5A21. The chosen displace
ment and potential field has a sinusoidal variation on thex12x2
SEPTEMBER 2000, Vol. 67 Õ 559
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plane with an arbitrary exponential variation in thex3-direction;
k1 andk2 determine the period of the sinusoidal terms in thex1
andx2-directions respectively.

From Eqs.~12!, ~3!, and~2! we obtain

s jm5 i ~Cjmqraq1er jma4!S k1p

l 1
d r11

k2p

l 2
d r21p

d r3

l 3
D

3expF i S k1p

l 1
x11

k2p

l 2
x21p

x3

l 3
D G ,

(13)

Dm5 i ~emqraq2emra4!S k1p

l 1
d r11

k2p

l 2
d r21p

d r3

l 3
D

3expF i S k1p

l 1
x11

k2p

l 2
x21p

x3

l 3
D G .

Hered i j is the Kronecker delta~@30#!. Substitution of~13! into ~1!
gives equations which can be written as

$QC1p@RC1~RC!T#1p2TC%aC1$qe1p@re1se#1p2te%a450,
(14)

$~qe!T1p@~re!T1~se!T#1p2~ te!T%aC2$qe1p@r e1se#1p2te%a4

50,

where aC5@a1 ,a2 ,a3#T, the matricesQC,RC,TC are related to
the elastic constantsCjmqr by

Qjq
C 5

k1
2p2

l 1
2 Cj 1q11

k1k2p2

l 1l 2
~Cj 1q21Cj 2q1!1

k2
2p2

l 2
2 Cj 2q2 ,

(15)

Rjq
C 5

k1p

l 3l l
Cj 3q11

k2p

l 3l 2
Cj 3q2 , Tjq

C 5
1

l 3
2 Cj 3q3,

the vectorsqe, re, se, andte are related to the piezoelectric modu
er jm by

qj
e5

k1
2p2

l 1
2 e1 j 11

k1k2p2

l 1l 2
~e1 j 21e2 j 1!1

k2
2p2

l 2
2 e2 j 2 ,

r j
e5

k1p

l 3l 1
e3 j 11

k2p

l 3l 2
e3 j 2 , sj

e5
k1p

l 3l 1
e1 j 31

k2p

l 3l 2
e2 j 3 , (16)

t j
e5

1

l 3
2 e3 j 3 ,

and the scalarsqe, r e, se, andte are related to the electric permi
tivity e j r by

qe5
k1

2p2

l 1
2 e111

k1k2p2

l 1l 2
~e121e21!1

k2
2p2

l 2
2 e22,

(17)

r e5
k1p

l 3l 1
e311

k2p

l 3l 2
e32, se5

k1p

l 3l 1
e131

k2p

l 3l 2
e23, te5

1

l 3
2 e33.

It should be noted thatse5r e due to the symmetry restriction~5!3
on the electric permittivity tensor. The two equations in~14! can
be combined as

$Q1p@R1RT#1p2T%a50, (18)

where

Q5F QC qe

~qe!T 2qeG , R5F RC re

~se!T 2r eG , T5F TC te

~ te!T 2teG .
(19)

Following the method used by Suo et al.@31# for generalized
plane deformations of piezoelectric materials, we can prove
the eigenvaluesp of ~18! cannot be real. Since the matricesQ, R,
andT in ~18! are real, there are four pairs of complex conjuga
values forp. Let (pa ,aa) (a51,2, . . . ,8) beeigensolutions of
~18! such that
560 Õ Vol. 67, SEPTEMBER 2000
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Im~pa!.0, pa145 p̄a , aa145āa ~a51, . . . ,4!,
(20)

where a bar superimposed on a quantity denotes its complex
jugate. For distinctpa we can superpose eight solutions of th
form ~12! to obtain

F u
f G5AK expF i S k1p

l 1
x11

k2p

l 2
x21p*

x3

l 3
D G L c1conjugate,

(21)

where A5@a1 ,a2 ,a3 ,a4#, c is an arbitrary 431 vector of un-
known complex coefficients, ^c(p* )&5diag@c(p1),
c(p2),c(p3),c(p4)#, and conjugate stands for the complex con
gate of the explicitly stated term. We obtain the following expre
sions for the stress tensor and electric displacement by supe
ing eight solutions of the form~13!,

F sm

Dm
G5SmK expF i S k1p

l 1
x11

k2p

l 2
x21p*

x3

l 3
D G L c1conjugate,

(22)

where

Sm5@V~m,1!a1 ,V~m,2!a2 ,V~m,3!a3 ,V~m,4!a4#,

V~m,a!5F V~m,a!
C v~m,a!

e

~w~m,a!
e !T 2v ~m,a!

e G ,

~V~m,a!
C ! jq5 i S k1p

l 1
Cjmq11

k2p

l 2
Cjmq21pa

Cjmq3

l 3
D , (23)

~v~m,a!
e ! j5 i S k1p

l 1
e1 jm1

k2p

l 2
e2 jm1pa

e3 jm

l 3
D ,

~w~m,a!
e ! j5 i S k1p

l 1
em j11

k2p

l 2
em j21pa

em j3

l 3
D ,

v ~m,a!
e 5 i S k1p

l 1
em11

k2p

l 2
em21pa

em3

l 3
D .

The expressions~21! and ~22! are valid when the eigenvaluespa
are distinct, or if they are not, there exist eight independent e
envectorsaa . If an eigenvalue is repeatedr times (2<r<4) and
it does not haver corresponding independent eigenvectors, th
~21! and~22! need to be modified appropriately. The procedure
similar to that given for elastic laminates by Vel and Batra@29#.

4 A Series Solution
The complete double Fourier series expansion constructe

satisfy the boundary/interface conditions on the surfacesx3
(n)

50, l 3
(n) is obtained by superposing solutions of the form~21!. In

the following equations the first superscriptn denotes thenth
lamina and the second superscript 3 indicates that the series t
have a double Fourier series expansion on the planesx3

(n)50 and
l 3
(n) . The dependence of the eigenvalues and eigenvectors ok1

andk2 is indicated by the subscripts.

F u~n,3!

f~n,3!G5A~k0 ,k0!
~n,3! @h~k0 ,k0!

~n,3! c~k0 ,k0!
~n,3! 1j~k0 ,k0!

~n,3! d~k0 ,k0!
~n,3! #1 (

k151

`

A~k1,0!
~n,3!

3@h~k1,0!
~n,3! c~k1,0!

~n,3! 1j~k1,0!
~n,3! d~k1,0!

~n,3! #1 (
k251

`

A~0,k2!
~n,3! @h~0,k2!

~n,3! c~0,k2!
~n,3!

1j~0,k2!
~n,3! d~0,k2!

~n,3! #1 (
k1 ,k251

`

$A~k1 ,k2!
~n,3! @h~k1 ,k2!

~n,3! c~k1 ,k2!
~n,3!

1j~k1 ,k2!
~n,3! d~k1 ,k2!

~n,3! #1A~k1 ,2k2!
~n,3! @h~k1 ,2k2!

~n,3! c~k1 ,2k2!
~n,3!

1j~k1 ,2k2!
~n,3! d~k1 ,2k2!

~n,3! #%1conjugate. (24)
Transactions of the ASME
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The terms involvingk0P(0,1) play the role of the constant term
in the double Fourier series expansion and

h~k1 ,k2!
~n,3! ~x1

~n! ,x2
~n! ,x3

~n!!5K expF i S k1p

l 1
x1

~n!1
k2p

l 2
x2

~n!

1p
~k1 ,k2 ,* !

~n,3! x3
~n!

l 3
~n! D G L ,

(25)

j~k1 ,k2!
~n,3! ~x1

~n! ,x2
~n! ,x3

~n!!5K expF2 i S k1p

l 1
x1

~n!1
k2p

l 2
x2

~n!

1p
~k1 ,k2 ,* !

~n,3! S x3
~n!

l 3
~n! 21D D G L .

The functionsh(k1 ,k2)
(n,3) (x1

(n) ,x2
(n) ,x3

(n)) and j(k1 ,k2)
(n,3) (x1

(n) ,x2
(n) ,x3

(n))

vary sinusoidally on the surfacesx3
(n)50, l 3

(n) and exponentially in
the x3

(n)-direction. The inequality~20!1 ensures that all functions
decay exponentially towards the interior of thenth lamina.

Similar expressions can be written for@u(n,1),f (n,1)#T and
@u(n,2),f (n,2)#T which have a complete double Fourier series e
pansion on the side surfacesx1

(n)50,l 1 andx2
(n)50,l 2 respectively.

The mechanical displacement, electric potential, stress, and
tric displacement fields for thenth lamina are

F u~n!

f~n!G5(
s51

3 F u~n,s!

f~n,s!G , F sm
~n!

Dm
~n!G5(

s51

3 F sm
~n,s!

Dm
~n,s!G . (26)

The unknownsc(k1 ,k2)
(n,s) and d(k1 ,k2)

(n,s) in ~26! are assumed to be

complex, except forc(k0 ,k0)
(n,s) andd(k0 ,k0)

(n,s) which are real.

5 Satisfaction of Boundary and Interface Conditions
The boundary conditions~8! on the surfacesxs50, Ls and con-

tinuity conditions ~10! or ~11! on the interfacesx35L3
(2) ,

L3
(3) , . . . ,L3

(N) are satisfied by the classical Fourier series meth
resulting in a system of linear algebraic equations for the
known coefficientsc(k1 ,k2)

(n,s) and d(k1 ,k2)
(n,s) . On the bottom surface

x3
(1)50, we extend the component functions in~26! defined on

@0,l 1#3@0,l 2# to the interval@2 l 1 ,l 1#3@2 l 2 ,l 2#. The functions
h(k1 ,k2)

(1,3) andj(k1 ,k2)
(1,3) which have a sinusoidal variation on the pla

x3
(1)50 are extended without modification since they form t

basis functions for this surface, except for terms involvingk0

which are extended as even functions. The functionsh(k1 ,k2)
(1,1) and

j(k1 ,k2)
(1,1) which have an exponential variation in thex1

(1)-direction

and a sinusoidal variation in thex2
(1)-direction are extended a

even functions in thex1
(1)-direction and without modification in

thex2
(1)-direction. The functionsh(k1 ,k2)

(1,2) andj(k1 ,k2)
(1,2) are extended

as even functions in thex2
(1)-direction and without modification in

the x1
(1)-direction. The prescribed functionf(3)(x1

(1) ,x2
(1)) is suit-

ably extended. We multiply~8!1 corresponding tos53 by
exp@i(k̃1 px1

(1)/l11k̃2px2
(1)/l2# and integrate the result with respect

x1
(1) andx2

(1) over the interval@2 l 1 ,l 1#3@2 l 2 ,l 2# to obtain

E
2 l 2

l 2 E
2 l 1

l 1 H Iuf
~3!F u~1!

f~1!G1IsD
~3!F s3

~1!

D3
~1!G2f~3!J

3expF i S k̃1px1
~1!

l 1
1

k̃2px2
~1!

l 2
D Gdx1

~1!dx2
~1!50 at x3

~1!50,

(27)

for all ( k̃1 ,k̃2)P($0%,$0%)ø(Z13$0%)ø($0%3Z1)ø(Z1

3Z1)ø(Z13Z2), whereZ1 andZ2 denote the sets of positiv
and negative integers, respectively. The same procedure is
Journal of Applied Mechanics
x-

lec-

od,
n-

e

e

o

re-

peated for the boundary condition~8!2 on the top surface of the
Nth lamina withs53 and the interface continuity conditions~10!
or ~11! between the various laminae.

On the side surfacesx1
(n)50,l 1 the functions are extended ove

the interval @2 l 2 ,l 2#3@2 l 3
(n) ,l 3

(n)# in the x2
(n)2x3

(n) plane. We
then multiply ~8! corresponding tos51 by exp@i(k̃2px2

(n)/l2
1k̃3px3

(n)/l3
(n))# and integrate the result with respect tox2

(n) andx3
(n)

over @2 l 2 ,l 2#3@2 l 3
(n) ,l 3

(n)#. A similar procedure is used to sa
isfy the boundary conditions~8! corresponding tos52 on the
surfacesx2

(n)50,l 2 .
Substitution from~26! into ~27! and the other equations tha

enforce the boundary conditions on the top surface, the interfa
between adjoining laminae and the side surfaces leads to an
nite set of linear algebraic equations for the infinitely many u
known coefficientsc(k1 ,k2)

(n,s) andd(k1 ,k2)
(n,s) . A general theory for the

solution of the resulting infinite system of equations does not
ist. However, reasonably accurate results can be obtained by
cating k1 and k2 in ~24! to K1 and K2 terms, respectively. The
series involving summations overk1 andk2 in the expression for
@u(n,1),f (n,1)# are truncated toK2 and K3

(n) while those for
@u(n,2),f (n,2)# are truncated toK3

(n) andK1 terms. In general, we
try to maintain approximately the same period of the largest h
monic on all interfaces and boundaries by choosingK3

(n)

5Ceil(K1l 3
(n)/ l 1) and K25Ceil(K1l 2 / l 1), where Ceil(y) equals

the smallest integer greater than or equal toy. Thus, the size of the
truncated matrix will depend solely on the choice ofK1 .

6 Results and Discussion
Problems studied by Heyliger@20# and Heyliger et al.@10# were

analyzed by the present method withK15200, and the two sets o
results matched very well. As shown below, satisfactory res
can be computed even withK1550.

We present results for laminated plates with each lamina m
of either graphite-epoxy~@22#!, PVDF ~@10,32#! or PZT-5A ~@22#!
with nonzero values of material variables listed in Table 1. W
treat the graphite-epoxy layer as a piezoelectric material with
piezoelectric moduli set equal to zero, and solve for the elec
field in the graphite-epoxy layer which is uncoupled from t
elastic field. In this section we denote the thickness of the la
nate byH(5L3).

Although our solution is applicable to laminates with gene
boundary conditions on all four edges, here we consider lamina
piezoelectric plates that are simply supported and electric
grounded on the opposite edgesx250 andL2 , i.e., u15u350,
s2250, f50, and the other two edges subjected to vario
boundary conditions. The reason for this choice is that if ea

Table 1 Nonvanishing material properties of the graphite-
epoxy, PVDF, and PZT-5A
SEPTEMBER 2000, Vol. 67 Õ 561
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Table 2 Convergence study for a †0 deg PVDF Õ90 deg PVDF ‡ square laminate
subjected to mechanical load, L 1 ÕHÄ5
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lamina is made of a monoclinic material of crystal class m~see
@33#!, then the boundary conditions at the edgesx250,L2 are
identically satisfied by the following mechanical displacement a
electric potential distributions:

u5@ f 1~x1 ,x3!sin~lpx2 /L2!, f 2~x1 ,x3!

3cos~lpx2 /L2!, f 3~x1 ,x3!sin~lpx2 /L2!#T

f5 f 4~x1 ,x3!sin~lpx2 /L2!. (28)

The equilibrium and charge equations will yield coupled par
differential equations forf a(x1 ,x3), (a51, . . . ,4). Thus, we
need only one term, namelyk25l, in the x2-direction in the
double Fourier series expansion and the size of the truncated
trix is greatly reduced. PVDF and graphite-epoxy are orthorho
bic materials of crystal class mm2 and PZT-5A is a hexago
material of crystal class 6mm, all of which belong to the group
monoclinic materials of crystal class m.

The edgesx150,L1 may be either clamped~C! with u15u2
5u350, or free of traction~F! with s115s125s1350 or simply
supported~S! with u15u350, s1150. We append P when th
edge is electrically grounded (f50) or D when the normal com
ponent of the electric displacement is set to zero, i.e.,D150. For
example, FP-FP denotes a laminated plate that is traction-free
electrically grounded on the edgesx150 andL1 . In this notation,
all analytical three-dimensional solutions available to date~@18–
21#! are for piezoelectric laminates that have all four edges s
jected to SP boundary conditions.

6.1 PVDF Cross-Ply Laminate. Consider a two-ply square
laminate with the bottom and top layers made of 0 deg PVDF
90 deg PVDF, respectively. The material properties of the 90
PVDF may be inferred from those of the 0 deg PVDF given
Table 1. Both layers are of equal thickness,L1 /H55 and L1
51.0 m. The interface is electroded and conditions~11! are en-
forced with f (x1 ,x2)50 on x35H/2. The following two electro-
mechanical loading cases are considered:
~i! Mechanical load:

s3~x1 ,x2 ,H !5@0,0,q0/2#T sin~px1 /L1!sin~px2 /L2!
(29)
MBER 2000
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s3~x1 ,x2,0!5@0,0,2q0/2#T sin~px1 /L1!sin~px2 /L2!

f~x1 ,x2 ,H !5f~x1 ,x2,0!50;

~ii ! Electrical load:

f~x1 ,x2 ,H !5f~x1 ,x2,0!50.5f0 sin~px1 /L1!sin~px2 /L2!,

s3~x1 ,x2 ,H !5s3~x1 ,x2,0!50. (30)

Results for combined mechanical and electrical loads can
obtained by superposition of the solutions corresponding to lo
~i! and ~ii !.

The effect of truncation of the series on the accuracy of
solution is investigated for the two-ply laminated plate with tw
opposite edges simply supported and grounded and the other
edges subjected to FD-FD boundary conditions. Computed res
for various quantities at specific points in the laminate are listed
Table 2 for the case of the mechanical loading. The followi
nondimensionalization has been used:

@ ũ1~x3!,ũ3~x3!#5
C0

L1q0
Fu1S L1

4
,
L2

2
,x3D ,u3S L1

2
,
L2

2
,x3D G ,

@s̃11~x3!,s̃13~x3!#5
1

q0
Fs11S L1

2
,
L2

2
,x3D ,s13S L1

8
,
L2

2
,x3D G ,

@s̃23~x3!,s̃33~x3!#5
1

q0
Fs23S L1

8
,0,x3D ,s33S L1

2
,
L2

2
,x3D G ,

f̃~x3!5
1000e0

L1q0
fS L1

2
,
L2

2
,x3D , (31)

D̃3~x3!5
C0

e0q0
D3S L1

2
,
L2

2
,x3D ,

Ũ5
UC0

q0
2L1

3 ,

where C0523.60 GPa ande0520.145 Cm22 are representative
values of the elastic and piezoelectric moduli for a PVDF~Table
Table 3 Convergence study for a †0 deg PVDF Õ90 deg PVDF ‡ square laminate
subjected to electrical load, L 1 ÕHÄ5
Transactions of the ASME
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1!. These results show that the mechanical displacementsũ1 and
ũ3 , transverse shear stresss̃13 and electric potentialf̃ converge
rapidly, but the axial stresss̃11 and transverse componentD̃3 of
the electric displacement converge slowly. The upper and lo
values of the transverse displacementũ3 and transverse shea
stresss̃13 are at corresponding points on the two sides of
interface between the laminae. As is evident, the interface co
nuity conditions are also satisfied very well with increasingK1 .
The difference in the values ofs̃11(H) and s̃13(H

1/2) for K1
5150 and 200 is 0.15 percent and 0.16 percent, respectively.
total stored energyŨ exhibits monotonic convergence from abo
and has converged to four decimal places forK1550. Whilek0 in
~24! was chosen to be 0.5 for this study, a similar converge
behavior was observed for other values ofk0 . Table 3 presents a
convergence study for the case of electric loading wherein
nondimensional variables are defined as

@ û1~x3!,û3~x3!#5
C0

e0f0
Fu1S L1

4
,
L2

2
,x3D ,u3S L1

2
,
L2

2
,x3D G ,

@ŝ11~x3!,ŝ13~x3!#5
L1

e0f0
Fs11S L1

2
,
L2

2
,x3D ,s13S L1

8
,
L2

2
,x3D G ,

@ŝ23~x3!,ŝ33~x3!#5
L1

e0f0
Fs23S L1

8
,0,x3D ,s33S L1

8
,
L2

2
,x3D G ,

f̂~x3!5
1

f0
fS L1

2
,
L2

2
,x3D , (32)

D̂3~x3!5
L1C0

100e0
2f0

D3S L1

2
,
L2

2
,x3D , Û5

U

f0
2e0L1

.

Heree051.0607310210 F/m is the typical magnitude of the elec
tric permittivity of a PVDF. In this case too, the mechanical d
placements, electric potential, and transverse shear stress
verge faster than the longitudinal stress and transverse compo
of the electric displacement. The total stored energy for the e
trical loading converges monotonically from below, in contrast
the case of the mechanical loading where the convergence is
Journal of Applied Mechanics
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above. Thus for the combined mechanical and electrical load
the total stored energy may not converge monotonically. Res
presented below are forK15200.

Electric potential is induced in the laminate due to the appli
tion of the mechanical load. The through-thickness distribution
the electric potential at the midspan is shown in Fig. 2 correspo
ing to three different boundary conditions. The electric poten
distribution within each layer is parabolic and the magnitude
pends on the boundary condition at the edge. Figure 3 depicts
the mechanical and electric loading the through-thickness di
bution of the transverse displacement, longitudinal stress,
transverse shear stress for three different sets of boundary co
tions at the edgesx150,L1 . The transverse displacement esse
tially remains independent of the thickness coordinate for m
chanical loading, as is usually assumed in the theory of lamina
elastic plates. When subjected to an electric load, the top
bottom surfaces exhibit larger transverse displacement than
midplane. The longitudinal stresss11 is discontinuous across th

Fig. 2 Influence of the boundary conditions on the through-
thickness distribution of the potential due to a mechanical load
for the †0 deg PVDF Õ90 deg PVDF ‡ laminate
Fig. 3 Influence of the boundary conditions on the through-thickness distribution of the trans-
verse displacement, longitudinal stress, and transverse shear stress for the †0 deg PVDF Õ90 deg
PVDF‡ laminate subjected to „a… mechanical load and „b… electrical load
SEPTEMBER 2000, Vol. 67 Õ 563
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of a
interface due to the change in material properties between
laminae. The longitudinal stress is largest in magnitude on
bottom surface for the mechanical loading and on the 0 deg PV
side of the interface for the electrical loading. The maximu
transverse shear stresss13 occurs at aboutx3.0.3H for the case

Fig. 4 Axial variation on the interface of the †0 deg PVDF Õ90
deg PVDF ‡ laminate „a… transverse electric displacement for the
mechanical load and „b… transverse shear stress for the electric
load
564 Õ Vol. 67, SEPTEMBER 2000
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of the mechanical loading and is largest when the edges
clamped. When subjected to the electrical load, the maxim
transverse shear stress occurs on the interface when the edg
simply supported or traction-free and atx3.0.3H when the edges
are clamped.

The axial variation of the induced electric displacement co
ponentD3 on the 0 deg PVDF side of the interface is shown
Fig. 4~a! for the mechanical loading. The result is plotted ov
only half the span since it is symmetric about the midspan. W
the edges are simply supported and grounded, i.e., SP boun
conditions,D3 is largest at the midspan and vanishes at the ed
x150,L1 . In the case of SD and CD boundary conditions,D3 is
essentially uniform over the middle eight-tenth of the span
varies from219 atx150 to 21 atx150.1L1 . This rapid change
in D3 near the edges has not been investigated in detail. The l
electric displacements could lead to dielectric failure at the ed
when the laminate is subjected to only a moderate mechan
load. The shear stresss13 on the interface due to an electric loa
is antisymmetric about the midspan and is shown in Fig. 4~b!. A
thorough study of this rapid change ins13 at the edges excep
when they are simply supported and grounded, necessitate
use of special functions and has not been pursued here. The
stress at the edges seems to be singular for SD and CD boun
conditions and could lead to delamination failure at the ed
even for moderate electrical loads. Such large stresses were
observed at the edges of piezoelectric layers by Batra et al.@34#
and Robbins and Reddy@8#.

Figures 5~a! and~b! show the transverse deflection of the mi
plane for the case of the mechanical and electrical load, res
tively, when two of the edges are clamped or traction-free. T
transverse deflection of a laminate that is simply supported
electrically grounded on all four edges has the double-sinuso
shape of the applied mechanical~29! or the electrical load~30!,
and is not depicted. This is not true when two of the edges
clamped or traction-free. The transverse deflection at the cente
the plate is largest when two edges are traction-free and sma
when they are clamped. The transverse deflection near
clamped edges is opposite in direction to that at the center
Fig. 5 Influence of the boundary conditions on the midplane transverse dis-
placement of the †0 deg PVDF Õ90 deg PVDF ‡ laminate for „a… mechanical load and
„b… electrical load
Transactions of the ASME
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CD-CD laminate when subjected to the electric load.
The present method can also analyze laminated plates whe

edges of each lamina are subjected to boundary conditions di
ent from those on the corresponding edge of the adjoining la
nae. As an example, consider the configuration denoted by~CD,
FD!-~CD,FD! wherein the bottom lamina of the two-ply laminate
plate is clamped atx150 andL1 and the corresponding edges
the top lamina are traction-free with the normal component of
electric displacement set equal to zero for both laminae. Figu
depicts the through-thickness distribution of the transverse s
stresss13 on three sections when the laminate is subjected to
electric load. As we approach the edge, the point of the maxim
transverse shear stress in the 0 deg PVDF lamina shifts clos
the interface and it is accompanied by large gradients. Nume
results at specific points in the laminate for four sets of bound
conditions given in Table 4 can be used to compare predict
from various plate theories and finite element solutions.

Fig. 6 Through-thickness variation of the transverse shear
stress on three sections of a †0 deg PVDF Õ90 deg PVDF ‡ lami-
nate with layerwise variation of boundary conditions
Journal of Applied Mechanics
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6.2 Graphite-Epoxy and PZT-5A Hybrid Laminate.
Consider a three-ply square laminate with the bottom and mid
layers made of graphite-epoxy with fibers parallel to thex1 andx2
directions, respectively, and the topmost layer made of PZT-
i.e., @0 deg GE/90 deg GE/PZT-5A#. The graphite-epoxy layers
are of thickness 0.4H, the PZT-5A layer is of thickness 0.2H,
L1 /H55 andL151.0 m. Interface conditions~10! are assumed
between the graphite-epoxy laminae. The interface between
PZT-5A and its neighboring graphite-epoxy lamina is electrod
and grounded. The bottom surface of the laminate is traction-
and the following two electromechanical loadings are conside
for the top surface:

~i! Mechanical load: s3(x1 ,x2 ,H)5@0,0,q0#T sin(px1 /L1)
3sin(px2 /L2),f(x1,x2,H)50,

~ii ! Electrical load:f(x1 ,x2 ,H)5f0 sin(px1 /L1)3sin(px2 /L2),
s3(x1 ,x2 ,H)50.

Table 4 Mechanical displacement, stresses, electric potential,
and electric displacement at specific locations of a square †0
deg PVDF Õ90 deg PVDF ‡ laminate for various boundary condi-
tions, L 1 ÕHÄ5
Fig. 7 Influence of the boundary conditions on the through-thickness distribution of the
stresses for the †0 deg GE Õ90 deg GE ÕPZT-5A‡ laminate, „a… mechanical load and „b… electrical
load
SEPTEMBER 2000, Vol. 67 Õ 565
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The nondimensionalizations~31! and ~32! are used withC0

599.201 GPa ande0527.209 Cm22; they are representative va
ues of the elastic and piezoelectric moduli of a PZT-5A. Figu
7~a! depicts the through-thickness distribution of stresses for
mechanical loading. The longitudinal stress is approximat
piecewise affine. The transverse shear stresss13 is larger when
the edges are clamped than when they are simply supporte
traction-free. The shear stresss23 attains the maximum value in
the 90 deg GE lamina and is largest when the edges are trac
free. The corresponding through-thickness variation of the stre
for the electric loading is shown in Fig. 7~b!. The longitudinal
stresss11 on the PZT-5A side of the interface is larger than that
other points. The maximum value of the transverse shear s
s13 is at the interface between the PZT and the substrate
simply supported and traction-free boundary conditions and
curs in the 0 deg GE lamina for the clamped boundary condit
The maximum value of the transverse shear stresss23 is at the
interface between the PZT and the substrate for all three boun
conditions. Figures 8~a! and ~b! show the axial variation of the
transverse shear stresss13 on the mid-surface of the PZT-5A laye
for three different boundary conditions. They exhibit rapid var
tions at the edges except when the edges are simply supporte
electrically grounded. Further results at specific points are gi
in Table 5 for the three sets of boundary conditions.

7 Conclusions
We have extended the Eshelby-Stroh formalism to study

three-dimensional deformations of thick piezoelectric lamina
subjected to arbitrary boundary conditions at the edges. The e
tions of static, linear, piezoelectricity are satisfied at every poin
the body. The analytical solution is in terms of an infinite seri
the boundary conditions and the continuity conditions at the in
faces between the laminae are used to determine the unkn

Fig. 8 Axial variation of the transverse shear stress on the
midsurface of the PZT-5A lamina of the †0 deg GE Õ90 deg GE Õ
PZT-5A‡ laminate for „a… mechanical load and „b… electrical load
566 Õ Vol. 67, SEPTEMBER 2000
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coefficients. By keeping a large number of terms in the se
solution, the mechanical displacements, stresses, electric pote
and electric displacement can be computed to any desired de
of accuracy.

We have computed results for a two-ply@0 deg PVDF/90 deg
PVDF# laminate and a three ply@0 deg GE/90 deg GE/PZT-5A#
hybrid laminate that is simply supported and electrically ground
on two opposite edges and subjected to various mechanical
electrical boundary conditions at the remaining two edges. T
effect of either mechanically clamping the edges, simply supp
ing them or leaving them traction free and prescribing either
electric potential or the normal component of the electric displa
ment to vanish, has been delineated. It is observed that the s
tion, valid for thick plates, exhibits sharp variations near the ed
except when they are simply supported and electrically ground

It is found that for the two-ply laminate, the total stored ener
converges monotonically from above for the mechanical load
and from below for the electric loading. When the normal co
ponent of the electric displacement is prescribed to be zero a
edges, the longitudinal distribution of the component of the el
tric displacement in the thickness direction exhibits, near
edges, rapid variations in a region of width 0.1L whereL equals
the span of the square plate. However, the width of such a la
equals 0.02L for the longitudinal distribution of the transvers
shear stress. For a sinusoidal loading on the top surface, the
flected shape of the midsurface is sinusoidal only when all f
edges are simply supported. When the two opposite edges o
upper PZT layer are free but that of the lower one are clamp
most severe deformations occur at points on the interface w
the free edge meets it.

For the three-ply hybrid laminate, the axial variation of th
transverse shear stress on the midsurface of the PZT layer exh
sharp variations in a region of width 0.1L near the clamped and
traction free edges. The maximum value of the transverse s
stress occurs at a point on the interface between the PZT and
substrate when the edges are either simply supported or trac
free but at a point within the 0 deg graphite-epoxy lamina wh
the edges are clamped. The tabulated results presented h
should help establish the validity of various approximate theor
Finally we note that edge singularities, if any, have not been
lineated by using special functions. The present technique se
to capture adequately the sharp variations in the fields near
clamped and traction-free edges but neither gives the order o
singularity nor its precise width. The interested reader should c
sult Ting @26#; Vel and Batra@27# have commented on this for
generalized plane-strain problem.

Table 5 Mechanical displacement, stresses, electric potential,
and electric displacement at specific locations of a square †0
deg GE Õ90 deg GE ÕPZT-5A‡ laminate for various boundary con-
ditions, L 1 ÕHÄ5
Transactions of the ASME
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