
Crack shielding and material deterioration in damaged
materials: an antiplane shear fracture problem

Z. H. Jin, R. C. Batra

Summary A simple damage evolution model is proposed for a quasibrittle material in the
framework of continuum damage mechanics. The model is used to obtain a closed form
solution for a mode-III stationary crack under small scale damage conditions. It is found that
the crack tip stress intensity factor is reduced, i.e., the crack is shielded by the damage.
However, this shielding effect is completely offset by the material deterioration caused by the
damage. It also holds for steady state crack growth. When the most effective shielding is
reached for the stationary crack, the zone dominated by the stress intensity factor shrinks to
the crack tip. The results for the antiplane shear problem should shed some light on the in-
plane fracture problem.
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1
Introduction
Quasibrittle materials such as concrete and ceramics do not deform as ideal elastic materials.
For example, they are damaged by severe loads, which leads to their nonlinear constitutive
behaviour. For a polycrystalline material, it has been assumed [1] that the material is not
damaged and the classical Hooke's law applies until an effective stress reaches a threshold
value. Beyond the threshold stress, the material is progressively damaged by microcracking,
and when the effective stress reaches a critical value, the saturation stress, the material damage
saturates and the stress±strain curve is again a straight line with a lower modulus, or the
saturation modulus. This was also assumed in subsequent studies [2±4] on crack shielding by
microcracking in ceramics. Based on the aforestated assumptions, phenomenological models
have been developed and applied to crack problems. It has been found that the stress intensity
factor at a mode-I crack tip is signi®cantly reduced [2±4]. Several other constitutive models
have also been proposed for quasibrittle materials [5±7]. Though damage around a crack tip
may reduce the stress intensity factor, it also deteriorates the material. Based on the estimates
of the elastic moduli of a microcracked solid, the microcrack density and the fraction of
microcracked facets, and micromechanical analyses it has been shown [1] that the damage, in
the form of microcracking, mainly distributed ahead of the crack tip does not contribute to the
toughness of the material. By assuming an array of coplanar microcracks ahead of a macro-
crack, using a cohesive model, and estimating the microcrack density near the main crack tip,
the crack shielding is shown to be nearly counterbalanced by the toughness degradation [9].

Antiplane shear ®elds around a stationary crack and around a steadily growing crack in a
damaged material are studied herein, and a simple damage evolution model is proposed in the
framework of continuum damage mechanics [10, 11]. Closed form solutions for stresses and
strains in the damaged material are obtained, and the effect of damage on both crack shielding
and material deterioration is delineated.
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2
Basic equations of a damaged material under antiplane shear
Consider antiplane shear (mode III) deformations around a stationary crack in a damaged
material, and neglect its permanent deformations. We also neglect the anisotropic effects
induced by damage since this is less signi®cant for crack shielding than the effect of the
reduction in the modulus. The consideration of material anisotropy will generally exclude
antiplane shear deformations. With these assumptions, the constitutive equation of brittle
damaged materials is [10, 11]

eij � 1� m0

E0�1ÿ x� rij ÿ m0

E0�1ÿ x� rkkdij �1�

where eij are in®nitesimal strains, rij stresses, E0 and m0 Young's modulus and Poisson's ratio of
the undamaged material, and x is a scalar internal variable that characterizes damage. The
variable x is zero for undamaged materials, and can not be greater than one for fully damaged
materials.

Following the damage evolution criterion for a quasibrittle concrete [12], we assume that

_x � 0; when either f � 0 and _f < 0; or f < 0;
k�~r�h~ri�; when f � 0 and _f � 0 ;

�
�2a�

f �~r;x� � ~rÿ K�x�; K�0� � rc ; �2b�
where a superimposed dot denotes the material time derivative, ~r is an equivalent stress given
by

~r � hr1i2� � hr2i2� � hr3i2�
ÿ �1=2

; �3�

ri �i � 1; 2; 3� are the principal stresses, and the symbol h i� is de®ned by

hrii� �
0; ri < 0 ;
ri; ri � 0 .

�
�4�

In Eq. (2), rc is the threshold stress and k�~r� can be determined from a simple uniaxial test. For
proportional loading, Eq. (2) can be integrated to obtain the following equation for damage.

x � K�~r�; K�~r� �
Z ~r

rc

k�r�dr : �5�

A typical uniaxial stress±strain curve [1±4] of a damaged material is shown in Fig. 1 where rs is
the saturation stress, i.e., for r > rs, the damage is saturated and no further damage occurs. It
can be seen from Fig. 1 and Eqs. (1) and (5) that in the initial elastic stage

Fig. 1. Uniaxial stress±strain curve of a damaged material
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K�~r� � 0 �~r � r0� ;
and in the saturation stage

K�~r� � 1ÿ Es

E0
�~r � rs� :

Here, Es is the modulus in the saturation stage and Es < E0.
We now deduce equations for antiplane shear deformations. Antiplane shear models may

not be very appropriate for brittle materials. However, their mathematical simplicity allows
closed form solutions which may help understand the in-plane fracture problems. For antiplane
shear deformations, the nonvanishing unknowns are the longitudinal displacement w, shear
stresses sx � r13 and sy � r23, shear strains cx � 2e13 and cy � 2e23 and the damage x. They
satisfy the equilibrium equation,

osx

ox
� osy

oy
� 0 ; �6�

the strain-displacement relations,

�cx; cy� �
ow

ox
;
ow

oy

� �
; �7�

and the constitutive equations reduced from Eq. (1)

�cx; cy� �
1

l0�1ÿ x� �sx; sy� ; �8�

where l0 is the shear modulus of the undamaged material. The displacement, w, can be
eliminated from Eq. (7) to obtain the compatibility condition,

ocy

ox
ÿ ocx

oy
� 0 : �9�

For antiplane shear, the principal stresses ri are

r1 � s; r2 � 0; r3 � ÿs;

s � s2
x � s2

y

� �1=2
:

�10�

Substitution from Eq. (10) into de®nition (3) yields

~r � s �11�
Equations (5), (8) and (11) imply that

�cx; cy� �
1

l0�1ÿ K�s�� �sx; sy� ; �12a�

and, consequently

c � s
l0�1ÿ K�s�� ; �12b�

where

c � c2
x � c2

y

� �1=2
: �13�
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We write Eq. (12) in the alternative form as

�sx; sy� � s�c�
c
�cx; cy� �14�

where

s�c�
sc
�

c
cc
; 0 � c � cc ;

f
ÿ c

cc

�
; cc � c � cs ;

ls

l0

c
cc
; c � cs ;

8><>: �15�

in which sc � rc; ss � rs; cc � sc=l0; cs � ss=ls, and ls is the shear modulus in the saturation
stage. We assume that

f
c
cc

� �
� c

cc

� �N

�16�

with power N determined by

cs

cc

� �N

� ss

sc

� �
�17�

which results from the continuity requirement of the stress±strain curve.
The damage x�s� can be obtained from Eqs. (5), (11), (12b) and (15)

x�s� �
0; 0 � s � sc ;

1ÿ ÿ s
sc

�Nÿ1
N ; sc � s � ss ;

1ÿ ls

l0
; s � ss :

8><>: �18�

3
A solution of the small-scale damage problem
We seek solutions of a crack problem involving small-scale damage; we thus consider a semi-
in®nite crack in an in®nite body as shown in Fig. 2. The boundary conditions for the crack
problem are

w � 0; 0 <
x

r0
<1; y � 0 ; �19�

sy � 0; ÿ1 <
x

r0
< 0; y � 0 ; �20�

and the matching conditions are

Fig. 2. A semi-in®nite crack in an in®-
nite body for a small scale damage
problem
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x! 0; w! 2
Ko

III

l0

�����
r

2p

r
sin

h
2
; �sx; sy� ! Ko

III�������
2pr
p ÿsin

h
2
; cos

h
2

� �
as

r

r0
!1; 0 � h � p :

�21�

Here, Ko
III is the applied mode-III stress intensity factor. In Eqs. (19)±(21), r0 is a reference

length of the crack tip damage zone, and is given by

r0 � �K
o
III�2

2ps2
c

: �22�

By using the hodograph transformation method [13, 14], the basic equations in the strain
plane are

o2w
oc2
� 1

c
ow
oc
� 1

c2

o2w

o/2 � 0; either 0 < c < 1 or c > b; 0 < / <
p
2
; �23�

in the undamaged and damage saturated regions, and

1

N

o2w
oc2
� 1

c
ow
oc
� 1

c2

o2w

o/2 � 0; 1 < c < b; 0 < / <
p
2
; �24�

in the progressively damaged region. In Eqs. (23) and (24), w is a function of strains de®ned by

xÿ iy � ÿei/ 1

c
ow
o/
� i

ow
oc

� �
�25�

and c and / are related to cx and cy by

�cx; cy� � c�ÿ sin /; cos /� : �26�

We note that w; c; cx and cy in Eqs. (23)±(26) have been normalized by cc, and hence b in
Eqs. (23) and (24) is given by

b � cs

cc

�27�

The boundary conditions on w are

w � 0; / � 0; c > 0 ; �28a�
ow
o/
� 0; / � p

2
; c > 0 ; �28b�

and

w! ÿr0
sin /

c
; c! 0 ; �29a�

ow
oc
! 0;

1

c
ow
o/
! 0; c!1 : �29b�

In addition to conditions (28) and (29), we also have the following continuity requirements on
the boundaries between different regions

�w�c�1 �
ow
oc

� �
c�1

� 0 ; �30�
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�w�c�b �
ow
oc

� �
c�b
� 0 ; �31�

where �w�C represents the jump of w across the curve C.
The solutions of Eqs. (23) and (24) subject to conditions (28)±(31) is

w � r0
1ÿ N

1� N
�bÿ�1�N� ÿ 1�cÿ 1

c

� �
sin / �32�

in the undamaged region �c < 1�,

w � r0

1� N
��1ÿ N�bÿ�1�N�cÿ 2cÿN � sin / �33�

in the progressively damaged region �1 < c < b�, and

w � ÿr0b
1ÿN sin /

c
�34�

in the damage saturation region �c > b�.
By substituting solutions (32)±(34) into de®nition (25), and using Eqs. (26) and (14)±(17),

we obtain the following explicit solutions for strain and stress ®elds:

c � Ko
III

sc

���������
2pr1

p ; / � 1

2
h1 ; �35a,b�

�cx; cy� �
Ko

III

sc

���������
2pr1

p ÿ sin
h1

2
; cos

h1

2

� �
; �35c�

�sx; sy� � Ko
III���������

2pr1

p ÿ sin
h1

2
; cos

h1

2

� �
; �35d�

in the undamaged region �cO1�,

c � 1� N

4N

�������������������������������������������������������������������������������������
�1� N� x

r0
� �1ÿ N�bÿ�1�N�

� �2

�4N
y

r0

� �2
s8<:

ÿ 1ÿ N2

4N

x

r0
ÿ �1ÿ N�2

4N
bÿ�1�N�

) ÿ1
1�N

;

�36a�

/ � 1

2
tanÿ1 y

xÿ 1ÿN
1�N r0 cÿ�1�N� ÿ bÿ�1�N�

h i
8<:

9=; ; �36b�

�cx; cy� � c�ÿ sin /; cos /� ; �36c�

�sx; sy� � scc
N�ÿ sin /; cos /� ; �36d�

in the progressively damaged region �1 < c < b�, and

c � l0

ls

Ktip

sc

�������
2pr
p ; / � 1

2
h ; �37a,b�

�cx; cy� �
l0

ls

Ktip

sc

�������
2pr
p ÿ sin

h
2
; cos

h
2

� �
; �37c�
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�sx; sy� � Ktip�������
2pr
p ÿ sin

h
2
; cos

h
2

� �
; �37d�

in the damage saturation region �c � b�. In Eqs. (35)±(37), r1 and h1 are polar coordinates
de®ned by (see Fig. 2)

r1 cos h1 � xÿ xe; r1 sin h1 � y ; �38�
where

xe � 1ÿ N

1� N
r0 1ÿ bÿ�1�N�
h i

; �39�

and Ktip is the crack tip mode-III stress intensity factor given by

Ktip �
�����
ls

l0

r
Ko

III : �40�

Since ls < l0 (the material is weakened by damage), the stress intensity factor at the crack tip
is reduced, i.e., the crack is shielded by the crack tip damage effect. Equation (40) agrees
qualitatively with the result for the mode-I crack problem [2, 3].

Several remarks can be made for solutions (35)±(40). First, lines of constant strain magni-
tude �c � const.� are circles in all regions. Hence, boundaries separating different regions are
circles. The boundary Cd, between the damaged region and the progressively damaged region is
obtained by setting c � 1 in either Eq. (35a) or (36a)

Cd: �xÿ xe�2 � y2 � r2
0 ; �41�

The boundary, Cs, separating the progressively damaged and saturated damaged zones is
described by

Cs: x2 � y2 � r2
0b
ÿ2�1�N� � r2

s

ls

l0

� �2

; �42a�

where

rs � �K
o
III�2

2ps2
s

: �42b�

It can be easily shown that r2
0b
ÿ2�1�N� < minfr2

0; �r0 ÿ xe�2g when ss > sc. Hence, the damage
saturation zone is completely encompassed by the progressively damaged zone. Figure 3 shows
the geometry of damage around the crack tip. Second, the square root singular solution (37)
holds in the entire saturation region. But this is generally not true for in-plane crack problems
for which the singular solution is only an asymptotic solution in the saturation region. Third,
the constitutive equation (14) with (13) and (15) is valid for proportional deformations. We can
see from Eq. (37) that the proportional deformation condition is ful®lled in the damage sat-
uration region where / is independent of the applied load Ko

III. While the fracture behavior is
controlled by the process in the crack tip saturation zone, we can expect that the constitutive
equation (14) is adequate for stationary crack problems. Finally, though the crack tip stress
intensity factor decreases with a decrease in ls=l0, the radius of the damage saturation zone
dominated by the stress intensity factor also decreases with a decrease in ls=l0. In fact, the
radius becomes vanishingly small when ls=l0 goes to zero as indicated by Eq. (42).

We have seen that the crack is shielded by damage. However, damage also degrades the
material and may reduce its resistance to crack growth. In continuum damage mechanics,
material failure is described by x � 1. In the present damage model, however, damage satu-
rates at x � 1ÿ ls=l0 for large values of stress s. Hence, the material failure may still be
described by the conventional fracture mechanics approach. Since the isotropic damage x can
be regarded as the reduction in the internal material surface [10, 11], an adequate fracture
criterion is
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Gtip � fudGc : �43�

Here Gtip is the crack tip energy release rate,

Gtip � 1

ls

K2
tip ; �44�

and Gc is the critical energy release rate of the undamaged material related to the critical stress
intensity factor of the virgin material by

Gc � 1

l0

K2
c ; �45�

and fud is the area fraction of the undamaged material given by

fud � 1ÿ x : �46�
In the damage saturation region immediately surrounding the crack tip, x � 1ÿ ls=l0. Hence,

fud � ls=l0 : �47�
By substituting Eqs. (44±47) into Eq. (43), we obtain the crack initiation condition

Ktip � ls

l0

Kc : �48�

Recalling Eq. (40), the fracture criterion in terms of the applied stress intensity factor Ko
III is

Ko
III �

�����
ls

l0

r
Kc : �49�

Equation (49) shows that the toughness of the material is lowered by the damage. That is, the
shielding effect of the damage is offset by the deterioration effect. The same holds for the
mode-I crack problem.

Based on the estimates of elastic moduli of a microcracked solid, the microcrack density and
the fraction of microcracked facets, it has been shown [8] from micromechanical analyses that
when the damage in the form of microcracking is mainly distributed ahead of the crack tip, it
does not contribute to the toughness of the material. Furthermore, the increase in toughness
due to crack shielding is essentially counterbalanced by the decrease in toughness due to
microcracking [9]. In the framework of continuum damage mechanics it is shown here that
damage around a crack tip reduced the toughness of materials. Unlike the approximate esti-
mate [1, 9] an exact expression for the decrease in toughness is given here. The toughness

Fig. 3. Geometry of damage around a
crack tip

254



reduction may be exaggerated by Eq. (44) since the material may not be as severely damaged as
that implied by the Kachanov-Lemaitre type damage theory [10, 11]. Of course, additional work
is needed to account for the anisotropic damage.

4
Steady-state crack growth
Evans and Fu [1] have shown that a microcracked material exhibits R-curve behavior. They
calculated the fracture resistance for a steadily growing crack and found that the fracture
toughness is higher than that for a stationary crack. They estimated microcrack density, height
of the damage zone wake and the peak stresses in the damage zone during crack growth, and
attributed the toughness increase to the energy dissipation due to the hysteresis effect (cf. Fig. 1).

We consider the fracture toughness for a steadily slow growing crack under antiplane shear
conditions. The energy balance for the crack growth under small scale damage conditions is
[1, 15]

1

l0

�Ko
III�2 �

1

ls

K2
tip � 2

Z hs

0

U��g�dg� 2

Z h0

hs

U��g�dg ; �50�

where Ko
III is the applied mode-III stress intensity factor (SIF), Ktip is the SIF at the crack tip, hs

and h0 are half the heights of the wakes of saturation and progressive damage zones as shown
in Fig. 4, and U��g� is the residual energy density far behind the growing crack tip

U��g� � lim
n!ÿ1

U�n; g� �51a�

U�n; g� �
Z ca

0

sadca �51b�

In Eqs. (50) and (51), n and g are the moving Cartesian coordinates at the crack tip

n � xÿ a�t�; g � y �52�
where �x; y� are ®xed coordinates at the stationary crack tip and a�t� is the crack growth length.
We note that U��g� and U�n; g� depend on the strain history.

To evaluate integrals in Eq. (50), we need values of hs; h0 and the distribution of U��g� in the
wake. We assume that the heights hs and h0 equal the damage zone radii for a stationary crack
at crack initiation given in Eqs. (22), (41), (42) and (49), i.e.,

hs � ls

l0

rs � 1

2p
Kc

ss

� �2 ls

l0

� �2

; �53a�

hs � r0 � 1

2p
Kc

sc

� �2ls

l0

: �53b�

The ®nite element study of crack growth in a microcrack damaged ceramic [4] showed that hs

changes little and the severity of the damage in¯uences h0. Though h0 for a steadily growing

Fig. 4. A steadily growing crack and
the associated damage zones
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crack in a severely damaged ceramic (approximately corresponding to a 90% reduction in
Young's modulus) may equal twice of its value at crack initiation, the increase in h0 for
moderately damaged ceramics is only moderate. Hence, Eqs. (53) give reasonable values of
steady state wake zone heights and will result in conservative predictions of the residual energy.

The residual energy density U��g� in the wake of saturation zone is the shaded area OABO in
Fig. 5a [1]

U��g� � s2
c

2l0

ÿ s2
s

2ls

� s2
c

�1� N�l0

�bN�1 ÿ 1� ; �54�

and U��g� in the wake of progressive damage zone is shaded area OACO in Fig. 5b

U��g� � 1ÿ N

1� N

s2
c

2l0

spk�g�
sc

� �N�1
N

ÿ1

( )
; �55�

where spk�g� is the peak stress at height g�� y� in the damage zone during crack growth. It is
assumed that spk�g� � maxxfs�x; y�g � s�xe; y�, where s�x; y� is the stress for the stationary
crack. The assumed peak stress will result in a conservative prediction of the residual energy
density. Thus the residual energy density in the wake of progressive damage zone can be
evaluated by using Eqs. (15), (16) and (36)

U��g� � 1ÿ N

1� N

s2
c

2l0

1� N

4N

�������������������������������������������
�1ÿ N�2 � 4N

g
h0

� �2
s

ÿ �1ÿ N�2
4N

24 35ÿ1

ÿ1

8<:
9=; : �56�

Substitution of Eqs. (54) and (56) into Eq. (50) and use of Eq. (53) yield the following rela-
tionship between Ktip and Ko

III

Ko
III �

l0

ls

K2
tip �

ls

l0

FK2
c �57�

where

F � 1

p
1ÿ N

1� N
� I ; �58�

I �
Z 1

ls
l0
= ss

sc� �2
�1� N�

���������������������������������
4Nz2 � �1ÿ N�2

q
� �1ÿ N�2

2�1� N�2z2 � 2�1ÿ N�2 dz �59�

Fig. 5a,b. The residual energy density interpreted as the shaded area. a In the wake of the saturation
zone; b in the wake of the progressive damage zone
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Since the crack tip damage is given by x � 1ÿ ls=l0 for a quasi-statically growing crack, the
crack growth condition is still given by Eq. (48). It follows from Eqs. (48) and (57) that

Ko
III

Kc
�

��������������������
�1� F� ls

l0

r
�60�

and

Ktip

Ko
III

�
�����������������

1

1� F

ls

l0

s
�61�

Figure 6 shows the crack tip SIF, Ktip, normalized by the applied SIF, Ko
III, versus the shear

modulus ratio ls=l0. Since Ktip=Ko
III is insensitive to the stress ratio ss=sc, the result is shown

only for ss=sc � 1:3. It is clear that Ktip=Ko
III decreases with a decrease in ls=l0. The reduction

in the SIF is quite pronounced for smaller values of ls=l0. The shielding effect is thus very
signi®cant. However, from Fig. 7, where the normalized applied SIF Ko

III=Kc, is depicted, we
conclude that the applied SIF also decreases with a decrease in ls=l0, and the reduction in
Ko

III=Kc is as signi®cant as that in Ktip=Ko
III. Hence, the crack shielding effect of damage is

Fig. 6. Crack tip stress intensity factor
versus shear modulus reduction

Fig. 7. Applied stress intensity factor
versus shear modulus reduction
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completely offset by the material degradation for a steadily growing crack. We stated earlier
that the residual energy is conservatively evaluated. Consequently, the fracture toughness
shown in Fig. 7 may be regarded as a lower bound. Recalling that h0 in Eq. (53b) may be
undervalued by half for severely damaged ceramics, an approximate value of the upper bound
of the toughness is obtained when F in Eq. (60) is replaced by 2F. The ®nal result deviates from
Fig. 7 a little. By using a ®nite element method fracture resistance of a microcrack damaged
solid was calculated [4]. However, the weakening effect of microcracks was not considered and
only an R-curve behavior referring to the toughness at crack initiation for the microcracking
material was predicted. A toughness increase for a steadily growing crack was predicted in [1].
A permanent strain induced by microcracking was assumed in the model, but is neglected
herein. Hence, permanent strains may play a key role in microcrack toughening of ceramics. As
for stationary cracks, the toughness reduction may be exaggerated by Eq. (60).

5
Concluding remarks
Crack shielding and material degradation in a quasibrittle material have been studied by using
a continuum damage model under small-scale damage and antiplane shear conditions. When
permanent strains are neglected, a closed form solution for a stationary crack shows that
though the crack tip stress intensity is relaxed by the damage, the fracture toughness is actually
reduced due to the material degradation, especially when the damage is severe. The same holds
for steady crack growth. These results suggest that the damage decreases the fracture resistance
of quasibrittle materials when permanent strains are neglected.
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