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WE DERIVE FIELD EQUATIONS for a functionally graded plate whose deformations are
governed by either the first-order shear deformation theory or the third-order shear-
deformation theory. These equations are further simplified for a simply supported
polygonal plate. An exact relationship is established between the deflection of the
functionally graded plate and that of an equivalent homogeneous Kirchhoff plate.
This relationship is used to explicitly express the displacements of a plate particle
according to the first-order shear deformation theory in terms of the deflection of
a homogeneous Kirchhoff plate. These relationships can readily be used to obtain
similar correspondences between the deflections of a transversely isotropic laminated
plate and a homogeneous Kirchhoff plate.
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1. Introduction

LAMINATED COMPOSITE MATERIALS are commonly used in engineering structures.
A sudden change in material properties at the interfaces can result in locally large
deformations which may trigger the initiation and propagation of a micro crack
in a lamina. One way to overcome this is to use functionally graded materials
in which material properties vary continuously. This is achieved by gradually
changing the volume fr.action of the constituent materials usually only in one
(the thickness) direction to obtain a smooth variation of material properties and
an optimum response to external thermomechanicalloads (REDDY and CHIN [12],
PRAVEEN and REDDY [9]).

..
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An interesting issue for plates made of functionally gradient materials is
the determination of relationships between their deflections predicted by vari-
ous shear deformation plate theories and that given by the classical Kirchhoff
plate theory. Such relationships have been found for sandwich plates (Hu [2],
LIU and CHENG [7], WANG [13]).. single-layer homogeneous plates (WANG and
ALWIS [15], REDDY and WANG [13] and laminated plates materially and geo-
metrically symmetric about the midplane (CHENG and KITIPORNCHAI [1]). For
plates symmetric about the midsurface, the stretching and bending deformation
modes are uncoupled and hence can be separately analyzed. This, however, is
not the case for functionally graded plates whose material properties are gener-
ally not symmetric about the midsurface. Here we study deformations of a thin
plate made of a functionally graded material and seek relationships between its
deflections predicted by two shear deformation theories and that given by the
classical Kirchhoff plate theory.

2. Field equations

Consider an undeformed plate of uniform thickness h. We use a rectangular
Cartesian coordinate system {xi}(i = 1,2,3), with the plane xa = 0 coincident
with the mid-surface of the plate. Hereafter, a comma followed by a subscript
i denotes the partial derivative with respect to Xi, and a repeated index implies
summation over the range of the index with Latin indices ranging from 1 to 3
and Greek indices from 1 to 2.

The displacement field in the third-order plate theory (HSDT) proposed by
REDDY [10], the first-order shear deformation plate theory (FSDT) and the clas-
sicallaminated plate theory (CLT) can be written as

(2.1) Va (Xi) = 'Ua - Xa'Ua,a + gCPa, Va (Xi) = 'Ua,

where Ua, Ua and CPa are independent of xa and

( 4x2)(2.2) g(xa) = xa 1 - ~ .

Note that the hypothesis (2.1) is a special case of that proposed by Ki\CZKOWSKI
[4]; the reader is also referred to the survey article by JEMIELITA [3]. Substitution
from (2.2) into (2.1) gives the displacement field for the HSDT and the choices
g(xa) = xa and g(xa) = 0 give, respectively, the displacement fields for the FSDT

and the CLT.
For the linear bending" problem of a functionally graded plate subjected to

an arbitrary distributed normal load q(xa) on its surface, the field equations are

(2.3) Na{J,{J = 0, Map,a{J + q = 0, Pap,{J - Ra = 0,
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where

h/2 h/2

(2.4) [NafJ'i MafJ, PafJ] = / O"afJ[l, X3, g]dX3, Ra = / O"a3g,3dx3,

~h/2 -h/2

(2.5) O"afJ = HafJwpewp, O"a3 = 2Ea3w3ew3,

1(2.6) eij = 2(Vi,j + Vj,i).

Here 0"33 is assumed to be negligible. For an isotropic material (LIBRESCU [5])

liE E(2.7) HafJwp = ~6afJ6wp + 2"(l~(6aw6fJP + 6ap6fJw), Ea3w3 = P,6aw,

where 6ij is the Kronecker delta, E, II and p, denote respectively, Young's mod-
ulus, Poisson's ratio, and the shear modulus. Here we have purposely not set
j:L = E/2(1 + II) so that the results may be applicable to a transversely isotropic
plate. For the functionally graded plate, the material properties are assumed to
vary in the thickness direction only,

(2.8) E = E(X3), II = II(X3), j:L = j:L(X3)'

For a plate made of different isotropic laminae, the material moduli are piece-
wise constant functions of X3. Using Eqs. (2.1), (2.5) and (2.6), Eq. (2.4) may
alternatively be written as

[ NafJ ] [ uw,w ] [ !(ua,fJ+ufJ,a) ](2.9) MafJ = (a - b) -U3,ww 6afJ + b 1 -U3,afJ ,

PafJ 'Pw,w 2('Pa,fJ + 'PfJ,a)

Ra = ccpa,

where

h/2 h/2 h/2

a = / F~dx3' b = / F~dx3' C = / (g,3)2j:Ldx3,

-h/2 -h/2 -h/2

[ aD a4 as] [ bO b4 b5] [ 1 X3 g

](2.10) a = a4 al a2 , b = b4 b1 b2 , F = X3 x~ x3g .

a5 a2 a3 b5 b2 b3 9 X3g g2
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Note that a4, a5, b4 and b5 vanish for a plate materially and geometrically sym-
metric about its midsurface. Substitution from (2.9) into (2.3) results in the fol-
lowing field equations in terms of the five displacement functions Uo, Ua and CPo: .

1 1 1(2.11) 2bouo,/3/3 + (ao - 2bo)u/3,/30 - a4Ua,0/3/3 + 2b5CPo,/3/3

+ ( a5 - ~b5 ) CP/3,/3o = 0,

(2.12) a4uo,0/3/3 - al ua,oo/3/3 + a2CPo,0/3/3 + q = 0,

1 1 1
(2.13) 2b5Uo,/3/3 + (a5 - 2b5)U/3,/3o - a2Ua,0/3/3 + 2bacpo,/3/3

1+(aa - 2ba)cp/3,{30 - ccpo = O.

furthermore, substitution for uo,/3/3 from (2.11) into (2.12) and (2.13) yields

(2.14) (a~ - aoal)Ua,oo/3/3 + (aoa2 - a4a5)cpo,0/3/3 + aoq = 0,

1 2(2.15) (a5bo - aob5)u/3,/3o + (a4b5 - a2bo)ua,0/3/3 + 2(boba - b5)CPo,/3/3

1 2 1+(aabo - a5b5 + 2b5 - 2boba)cp/3,/30 - boccpo = O.

To simplify the field equations, two new potential functions, w and I, are
introduced such that
(2.16) CPo = (ua + w),o + Eowl,w, i

where Eow is the two-dimensional permutation tensor. Even though Eq. (2.16)
uniquely defines CPo, however, wand I are not uniquely determined from it. This

is because the Cauchy-Riemann equation

(2.17) (U3 + w*),o + Eowl,: = 0

always has a solution [1*+i(u3+w*)] which is an analytic function of the complex
variable (Xl +iX2)' The expression (2.16) for CPo remains unchanged when (ua+w)
and I are simultaneously incremented by (u3 + w*) and 1* respectively.

Substituting for CPo from Eq. (2.16) into Eqs. (2.11), (2.14) and (2.15) we
obtain "-

1 . 1
(2.18) 2bouo,/3/3 + (ao - 2bo)u/3,/30 - a4Ua,0/3/3 + a5(Ua + w),o/3/3

1+2b5Eowl,w/3/3 = 0,
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(2.19) [(a~ - aOal + aOa2 - a4as)u3 + (aoa2 - a4as)w],oo.B.B + aoq = 0,

(2.20) [(asbo - aobs)u.B,.B + (a4bs - a2bo)u3,.B.B + (a3bo - asbs)(u3 + w),.B.B

-bOC(U3 + w)],o + Eow[~(bOb3 - b~)f,.B.B - bocf],w = O.

Equation (2.20) is the Cauchy-Riemann equation, which can equivalently be writ-
ten as
(2.21) ~(bob3 - b~)f,.B.B - bocf + i[(asbo - aobs)u.B,.B

+(a4bs - a2bo+ a3bo - asbs)u3,.B.B - bOCU3

+(a3bo - asbs)w,.B.B - bocw] = H(XI + iX2),

where H(XI + iX2) is an analytic function. furthermore, viewing Eq. (2.21) as a
nonhomogeneous partial differential equation for unknowns (uo, U3, w, f), its
solution is the sum of a homogeneous general solution and a particular solution.
Since both the real and imaginary parts of H(XI + iX2) are harmonic functions,
the particular solution (u~, uj, w*, j*) can be taken as

" ,

(2.22) u~ = 0, U3 = 0, -boc(f* + iw*) = H(XI + iX2),

which satisfies the Cauchy-Riemann condition (2.17). We note that the particular
solution makes trivial contributions to uo, U3 and <Po, and hence to displacements
and stresses of the functionally graded plate. Consequently, it is discarded. The
homogeneous part of Eq. (2.21) gives

(2.23) (asbo - aobs)u.B,.B + (a4bs - a2bo +a3bo - aSbS)u3,.B.B

-bOCU3 + (a3bo - asbs)w,.B.B - bocw = 0,

1 2(2.24) 2(bob3 - bs)f,.B.B - bocf = O.

Let
1 bs(2.25) Uo = Uo + - [(as - a4)u3 + asw] 0 + -b Eowf,w,ao ' 0

and using it to eliminat,e Uo from Eqs. (2.18) and (2.23), we rewrite Eqs. (2.18),
(2.19), (2.23) and (2.24) as

(2.26) ~bOUo,.B.B + (ao - ~bo)u.B'.BO = 0,

I



148 Z.-Q. CHENG ANp R.C. BATRA
>

(2.27) {(a2 - al)u3 + a2w],aaf,'f,' + q = 0,

(2.28) (as - ~ )uf,',f,' + (0,3 - a2)u3,f,'f,' - CU3 + a3w,f,'f,' - cw = 0,

1-(2.29) 2b3f,f,'f,' - cf = 0,

where
2 2 b2- a4 - a4aS ~ as - s

(2.30) al = al - -, a2 = a2 - -, a3 = a3 - -, b3 = b3 - -b .
ao ao ao 0

It follows from Eqs. (2..10) and the usual assumptions, E > 0, -1 < 1/ < ~ that

ao > 0, bo > O. This form of field equations is convenient for seeking fundamental
solutions. Note that the unknown function f has been uncoupled from the other
four unknowns ua, U3 and w in the field Eqs. (2.26) - (2.29), but is still coupled
with them in Eq. (2.25) and hence in most of boundary conditions. However,
as shown below, for simply supported functionally graded polygonal plates, the
unknown f can be totally decoupled and hence separately determined.

3. Simply supported rectilinear edges

We now consider a simply supported polygonal plate, and express boundary
conditions as
(3.1) NNN = 0, MNN = 0, PNN = 0, !

I(3.2) U3 = 0, UT = 0, CPT = 0, ;
where the upper case subscripts Nand T denote, respectively, the normal and

jtangential directions on the boundary. No implicit summation applies to the :
repeated upper case subscripts. Also, note that U3 = 0 implies U3,T = 0, and \

(3.3) [ ~:: ] = [ ~ ] => a [ -::::N] = [ ~ ] . (

PNN 0 CPN,N 0 t
j

We recall Gram's inequality (MITRINOYIC and V ASIC [8]) !

(3.4) det(G) ?:: 0, 1

where G = (Gij) is a n x. n matrix with elements defined by j
b i

(3.5) Gij = !fifjdX3, I

a
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and the equality in (3.4) holds if and only if the real and integrable functions
;;:..~ fi(X3) (X3 E [a, b]; i = 1,..., n) are linearly dependent. The Gram theorem
c;'~,~"~ implies that~~.I (3.6) det(a) > 0,

",r

,;;t~ for the HSDT. Therefore, Eq. (3.3) gives

(3.7) UN,N =0, U3,NN = 0, CPN,N = O.

Using Eqs. (2.16) and (2.23), Eqs. (3.1) and (3.7) can be written as

(3.8) U3 = 0, U3,NN = 0, w = 0, W,NN = 0, f,N = 0, UT = 0,

UN,N = 0,

where only three of the first four and the last three of Eqs. (3.8) are necessary
for finding a solution of the bending problem. Note that the unknowns Ua, U3, W
and f are uncoupled in the boundary condition for a simply supported polygonal
plate.

I

4. Deflection relations between different theories ~

~

The solution of Eq. (2.29) under the boundary condition (3.8)s is ~

(4.1) f = O.

Note that Eq. (2.29) has the null solution (3.9) only when the polygonal plate
is simply supported. Thus for the bending problem of a simply supported func-
tionally graded polygonal plate, only four functions Ua, U3 and W need to be
determined.

Recalling Eqs. (2.5) and (3.8), the boundary conditions associated with the
field Eq. (2.6) for a simply supported polygonal plate are

(4.2) UT =0, UN,N =0,

and the solution of this boundary value problem is ua = 0, i.e.,

(4.3) Ua = -[(as - a4)u3 + asw],a/ao.

The field equations for U3 and W are the biharmonic Eq. (2.27) and the second-
order Eq. (2.28). Equa~ion (2.28) upon using ua = 0 yields

f
: (4.4) (0.3 - 0.2)U3,/3/3 - CU3 + 0.3W,/3/3 - cw = OJ

and the associated boundary conditions are three of the Eqs. (3.8)1-4.



PT' -~

'I I,C I

I

150 Z.-Q. CHENG AND R.C. BATRA

Note that the field Eqs. (2.27) and (4.4) have the same forms as those for a
plate (CHENG and KITIPORNCHAI [1]) symmetric about its mid-plane and thus
can be regarded as equations for such an equivalent plate with parameters given
by Eq. (2.30). The over-barred quantities aI, a2 and a3 defined by (2.30) are
the constants of a functionally graded plate equivalent to those of a plate sym-
metric about the midsurface because a4 = as = 0 for such a plate. This implies
that a solution of the bending problem for a simply supported and polygonal
functionally graded plate can be equivalently obtained from the solution of the
corresponding problem for an identical plate symmetric about the midsurface.
The in-plane displacements are then obtained from Eq. (4.3).

We now consider the classical Kirchhoff theory for functionally graded plates.
Setting g(X3) = 0 in Eq. (2.10) yields

(4.5) a2 = a3 = as = c = 0,

or
(4.6) a2 = a3 = c = 0,

and Eq. (4.4) is trivially satisfied. We conclude from Eq. (4.3) that the in-plane
displacements are given by
( K a4 K4.7) Uo = -u30'ao '

and Eq. (2.27) reduces to
(4.8) -aIUroo(3(3 + q = O.

This is the Kirchhoff field equation for the bending deformation of the functionally
graded plate with simply supported rectilinear edges. The superscript K on a
variable signifies its value for the Kirchhoff plate theory. The boundary conditions
on simply supported rectilinear edges are

(4.9) uf = 0, UrNN = O.

Based on the uniqueness of the solution of the boundary-value problem de-
fined by Eqs. (4.8) and (4.9), and the analogy between the field Eqs. (2.27) and
(4.8) and between the boundary conditions (3.8)1-4 and (4.9), it can be concluded

that
(4.10) (a2 - al)u3 + a2w = -aluf.

Eliminating the function w from Eqs. (4.4) and (4.10), we obtain ,
j(4.11) (ala3':'- a~)u3,OO - calu3 = a.).a3Uroo - caluf. I

This is an exact relationship between the deflections of the HSDT and the Kirch-
hoff theories for simply supported polygonal plates made of functionally graded
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I
materials. If the deflection uf for the Kirchhoff theory is known, the deflec-

tion U3 of the HSDT can be computed from the second-order Eq. (4.11) and the

boundary condition (3.8)1, Other unknown functions wand Ua are then simply

obtained from Eqs. (4.10) and (4.3).

Furthermore, it is seen that the form of Eq. (4.8) is precisely the same as that

of the equation governing the bending deformations of a homogeneous Kirchhoff

thin plate with bending rigidity a1 and subjected to the normal pressure q. Thus

the deflection of the functionally graded plate using the HSDT has been connected

with the deflection of a homogeneous Kirchhoff thin plate. As there are solutions

available for a classical homogeneous thin plate, the calculation of the deflection

of the functionally graded plate using the relatively more sophisticated HSDT

reduces to solving the second-order differential Eq. (4.11), which is a much easier

task than solving the original problem.

The aforestated calculation is even further simplified if one uses the FSDT

for the functionally graded plate. In this case, taking g(X3) = X3 in Eq. (2.10)

we get

(4.12) a1 = a2 = a3, a4 = a5,

or

(4.13) a1 = a2 = a3.
rExplicit expressions for uf, wF and u~ in terms of the Kirchhoff deflection uf '

obtained from Eqs. (4.11), (4.10) and (4.3) are

(4 14) F - K a1 K F K F a4 K. u3 - u3 - - F u3 aa' W = -u3' ua = -u3 a'
C ' ao '

where

h/2

(4.15) cF = K, J [Ldx3,

-h/2

and K, is the shear correction factor. Therefore, once the deflection of the ho-

mogeneous Kirchhoff plate of rigidity a1 is known, the solution of the FSDT is

readily obtained through simple algebraic and differential manipulations of the

deflection of the Kirchhoff plate. It should be noted that unless q = 0, Eq. (3.8)2

is not an essential boundary condition for simply supported edges in the FSDT

for which det(a) = O. The proof of this statement is omitted.

Our results also apply to a plate made of a transversely isotropic material

because we have not required that [L = E/2(1 + v). For a transversely isotropic

plate with its plane of isotropy parallel to the mid-plane, E and v are designated,

respectively, as Young's modulus and Poisson's ratio in the plane of isotropy and

[L as the transverse shear modulus. A typical example is a laminated composite
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I
plate with transversely isotropic laminae. Such composite laminates are widely r
used in missiles and re-entry vehicles because their special thermomechanical i
properties provide thermal protection and high flexibility in transverse shear
(LIBRESCU and STEIN [6]).

For laminated plates made of transversely isotropic materials and symmetric i
about their midsurfaces, CHENG and KITIPORNCHAI [1] have established rela- [
tionships between the deflections of a plate according to the HSDT, FSDT and l
the classical plate theory. Equations (4.11), (4.10), (4.3) and (4.14) represent 1
generalizations of such relationships to a plate that is not symmetric about its i
mid-plane. t

5. An example

Consider a functionally graded rectangular plate simply supported at edges 1
Xl = 0, a and X2 = 0, b. Under the action of the normal pressure

( ) Q . 7rXI . 7rX2
5.1 q= sln~sln~,

the deflection due to the bending deformations of the functionally graded plate
according to the HSDT and the Kirchhoff plate theory is assumed to be given by

K K . 7rXI . 7rX2
(5.2) [U3 U3] = [U3 U3 ]sm~sm~,

where U3 and uf are respectively, the central deflections of the plate in the
HSDT and classical theory. In view of the relation (4.11) between the deflections
of the two theories, we have

( ) ( fJ)UK. 7rXI . 7rX25.3 U3 = 1 + 3 sm~sm~,

where
a2(a2 + b2)7r2(5.4) fJ = 2

(ala3 - a~)(a2 + b2)7r2 + cala2b2

characterizes the difference in the two deflections. This parameter depends only
on the geometry and the material properties of the functionally graded plate.
The through-thickness in-plane displacements of the HSDT are given by

'-y7r K 7rXI. 7rX2 '-y7r K . 7rXI 7rX2
(5.5) 'O1=-;;U3 cos~sm~, v2=TU3 sm~cos~,

, I
where - r
(5.6) '-y(X3) = (~ - X3)(1 + /3) + (9 - ~

) ~fJ i
ao ao a2

1"

~
:
:
:;
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is a function of X3 and characterizes the through-thickness variation of the in-

plane displacements. For the FSDT parameters f3 and 'Y are given by

) F al7r2 (1 1) F a4(5.7 ,8 = -r 2 + -b2 ' 'Y (X3) = - - X3.
C a ao

It can be shown that 'Y for the Kirchhoff plate theory is the same as that for

the FSDT. Since there is no interlayer between two different materials in a func-

tionally graded plate, computation of the out-of-plane shear stresses 0"03 and
the normal stress 0"33 is not important which, compared with the longitudinal

stresses, are of small orders of magnitude. The longitudinal stresses are given by

'Y E7r2 ( IV ) K. 7rXl . 7rX2

0"11 = - - + - U3 sm-sm-

1 - v2 a2 b2 a b '

E 2 ()'Y 7r V 1 K. 7rXl . 7rX2(5.8) 0"22 = - - + - U3 sm-sm-,
1- v2 a2 b2 a b

'YE!T2 K 7rXl 7rX20"12 = ~~U3 cos -;;:- cos T'

The functionally graded materials are usually made by mixing two distinct

material phases, such as a metal and a ceramic. The effective material properties

can be obtained from the "rule of mixture"

(5.9) PeffV = Pm Vm + PcVc, Vm + Vc = 1,

where P stands for the material property, V for the volume fraction, and sub-

scripts m, c and eff stand, respectively, for the metal, ceramic and the effective.
A more accurate determination of the macroscopic material properties requires a

better understanding of the microstructure and deformation of the constituents.

The relation (5.9)1 is exact for the mass density.

The volume fraction of the ceramic phase is assumed to be given by

(5.10) Vc = (~)n.
Figure 1 shows the through-thickness variation of the volume fraction of the
ceramic for n = 0.2, 0.5, 1, 2, 5. Note that the bottom surface of the plate is

metal-rich and the top surface ceramic-rich.

The dimensionless through-thickness in-plane displacement and the longitu-

dinal stress are defined by

(5 11) - _v1(0,b/2,X3) - _aO"ll(a/2,b/2,X3). VI - UK ' 0"11 - E*UK '
3 3
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FIG. 1. Through-the-thickness distribution of the volume fraction of the ceramic phase
in the functionally gradient plate.

where E* is set equal to 1 GPa. We take the shear correction factor K, = 5/6 in
the FSDT. Note that the value 5/6 of the shear correction factor was proposed
for a homogeneous and isotropic plate; its use in a functionally graded plate may
not be very realistic. The functionally graded material is a mixture of aluminum
and zirconia (PRAVEEN and REDDY [9]), and we take

(5.12) Em = 70GPa, Ec = 151GPa, Vm = Vc = 0.3, a = b = 10h.

For simplicity, Poisson's ratio for both aluminum and zirconia is assigned the
same value; it is equivalent to the assumption that the effective value of the
shear modulus is also derived from Eq. (5.9).

Table 1 lists values of u3/uf and uf /uf for n = 0, 0.2, 0.5, 1, 2 and 5. Here
u{ -equals the central deflection according to the FSDT. Figures 2 and 3 show
the through-thickness distributions of the non-dimensional in-plane displacement
VI and the longitudinal stress 0-11 obtained by using (a) the HSDT and (b) the
FSDT. These variables are nondimensionalized (e.g. see Eq. (5.11)) so once the
central deflection of the effective homogeneous Kirchhoff plate is known, the
displacements and stresses of the functionally graded plate can be determined.
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and (b) the first-order plate theory.
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Table 1. Central deflection of a functionally gradient square plate according to the three the-
ories.

n 0 0.2 0.5 1 2 5

U3/ut 1.056360 1.054326 1.053157 1.053836 1.057850 1.064430

U[ jut 1.056398 1.054802 1.053711 1.053872 1.056260 1.060650

It is clear from the values listed in Table 1 that for each value of n, the
classical Kirchhoff plate theory underestimates the central deflection of the plate
by about 5.5% as Gompared to that given by either one of the other two plate
theories studied herein. Results plotted in Figs. 2 and 3 reveal that the in-plane
displacement VI and the stress 0"11 calculated from the two theories essentially
coincide with each other. Thus for the problem studied herein results predicted
by the FSDT are accurate enough for all practical purposes. This is because
the through-thickness distribution of the in-plane displacement for the HSDT is
nearly affine and agrees with that assumed in the FSDT. The FSDT obviates the
need to solve the second-order differential Eq. (4.11).

The curves depicting the through-thickness distributions of the in-plane dis-
placement VI are parallel to each other for all values of the volume fraction Vc
of the ceramic. The largest deviation between the values of VI for an equivalent
homogeneous plate and a functionally gradient plate occurs for n = 2. The max-
imum value of 10"111 depends upon Vc. For n = 0.2 and 0.5, the magnitude of
the compressive 0"11 is maximum at a point a little above the lower surface of the
plate. However, for other values of n, the magnitude of 0"11 is maximum at a point
on the top and bottom surfaces of the plate, as is the case for a homogeneous
plate.

6. Conclusions

Two potential functions have been used to derive a set of equations that gov-
ern the deformations of a functionally graded plate. The deflections of a simply
supported functionally graded polygonal plate given by the first-order shear de-
formation theory (FSDT) and the higher-order shear deformation theory (HSDT)
have been related to that of an equivalent homogeneous Kirchhoff plate. These

r relatio~ship~ are valid for a laminated plate that is not necessarily .symmetric
about Its mIdsurface, and have been used to compute results for a sImply sup-
ported square metal-ceramic plate.
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