Arch. Mech., 53, 2, pp. 167-192, Warszawa 2001

Instability analysis and shear band spacing in

gradient-dependent thermoviscoplastic materials with finite
speeds of thermal waves

R.C. BATRA and L. CHEN

Department of Engineering Science and Mechanics (MC 0219)
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061, USA

WE ANALYZE THE STABILITY of a homogeneous solution of coupled nonlinear equa-
tions governing simple shearing deformations of a strain-rate gradient-dependent
thermoviscoplastic body in which thermal disturbances propagate at a finite
speed. The homogeneous solution is perturbed by an infinitesimal amount and
equations linear in the perturbation variables are derived. Conditions for these
perturbations to grow are deduced. The shear band spacing, L,, is defined as
L, = tion>f0(21r/§m (to)) where &, is the wave number of the perturbation introduced

at time fo that has the maximum growth rate at time to. It is found that the
thermal relaxation time (i.e. the ratio of the coefficient of the second time-derivative
of the temperature in the heat equation to that of the first time-derivative) signifi-
cantly affects the shear band spacing and the value of to for which &m (fo) is maximum.

Key words: Material characteristic length, strain-rate gradient, thermal relaxation
time, dominant growth rate.

1. Introduction

ADIABATIC SHEAR BANDS are narrow regions, usually a few microns wide, of in-
tense plastic deformation that form during high strain-rate plastic deformation
of most metals and some polymers. Their study is important since they pre-
cede ductile fractures. Even though TRESCA [25] observed these a long time
ago, their study has attracted considerable attention since 1944 when ZENER
and HOLLOMON [30] observed 32 um wide shear bands during the punching of
a hole in a low-carbon steel plate. Subsequent experimental studies (e.g. see
MARCHAND and DUFFY [19]) have focussed on delineating conditions for the ini-
tiation of a shear band and the evolution of the temperature and plastic strain
within a band. Recently, NESTERENKO et al. [21] observed a series of parallel,
nearly 1 mm apart, shear bands during the radial collapse of titanium and stain-
less steel hollow cylinders deformed due to explosive loads applied on their outer



168 R. C. BATRA AND L. CHEN

surfaces. The average strain-rate within the shear-banded region was estimated
to be 10%/s.

CLIFTON [15] used the perturbation method to study the stability of qua-
sistatic simple shearing deformations of a thermoviscoplastic body. BAI [2] em-
ployed the perturbation method to analyze the stability of the time-dependent ho-
mogeneous solution of equations governing the dynamic deformations of a strain-
hardening thermoviscoplastic body. He derived the conditions necessary for the
homogeneous solution to become unstable, and also computed the characteristic
length and the characteristic time of the deformation mode with the dominant
growth rate at time ¢y when the homogeneous solution is perturbed. Linear per-
turbation analysis has also been employed to study the initiation of the instability
by BURNS [10] among others; some of these works are summarized in the book
by Bal and DopD {3]. The reader is referred to TOMITA [24], ZBIB et al. [29],
ARMSTRONG et al. [1}, PERZYNA [22], BATRA [7] and BATRA et al. [9] for the
pertinent literature on adiabatic shear bands.

WRIGHT and OCKENDON [28] also studied the growth of infinitesimal per-
turbations superimposed on a homogeneous solution of the equations governing
simple shearing deformations of a thermoviscoplastic body and postulated that,
in an infinite body, perturbations growing at different sites will not merge and
result in multiple shear bands. Thus the wavelength of the dominant instabil-
ity mode with the maximum initial growth rate will determine the shear band
spacing. Wright and Ockendon’s definition of the shear band spacing seems to
differ by 2r from Bai’s definition of the characteristic length. MOLINARI [20]
has extended Wright and Ockendon’s work to strain-hardening materials, and
has estimated the effect of the finite thickness of the plate upon the shear band
spacing, Lg, defined as L; = tir;fo 2m/€m(to). Here &, is the wavelength of the

perturbation introduced at time tp that has the maximum growth rate at to.

Note that Wright and Ockendon and Bai did not find the infimum of 27 /&, (to).

Molinari presumed that tir;f;) 21 [€m (to) ~ 27 [Em (t§), where t] corresponds to the
0

time when the superimposed infinitesimal perturbation has the maximum growth
rate. If £§ denotes the time when 2mw/€n,(t0) is infimum, BATRA and CHEN [8]
found that for the titanium modeled by a power-law thermal softening, § corre-
sponds to the time when the shear stress has dropped a little below its maximum
value, but for the SAE 4340 and the S-7 tool steels modeled by an affine ther-
mal softening, £§ equals the time when the shear stress has significantly dropped
from the peak value. Batra and Chen did not consider work-hardening of the
materials. CHEN and BATRA’S [13] work for work-hardening strain-rate gradient-
dependent materials indicates that the shear band spacing rapidly increases with
an increase in the work-hardening exponent, the material characteristic length,
the thermal conductivity and the strain-rate hardening exponent.
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In contrast to the perturbation method used in the above-mentioned studies,
GRADY and KIPP [17] determined the shear band spacing by accounting for the
momentum diffusion due to unloading within a shear band. They analyzed simple
shearing deformations of a thermally softening rigid plastic material.

In all of the aforestated numerical and analytical studies, thermal waves were
assumed to propagate at an infinite speed. However, in real materials, thermal
disturbances like mechanical discontinuities are ezpected to propagate at a finite
speed. Here we analyze the effect of the finite speed of thermal waves on the shear
band spacing in strain-rate gradient-dependent thermoviscoplastic materials de-
formed in simple shear. SAAD and CHA [23] found that in heat transfer problems
involving very short time intervals and/or very high heat fluxes, the hyperbolic
heat equation gives significantly different results than the parabolic heat equa-
tion. It has been suggested (e.g. see the review paper by CHANDRASEKHARIAH
[12]) that the hyperbolic heat equation should be considered when the dura-
tion of the loading pulse is less than 10 ps or when the heat flux equals about
10> W/cm?. We note that temperature gradients across a shear band are ex-
tremely large resulting in high values of the heat flux, and times involved are of
the order of a few microseconds. BATRA [4] considered higher-order spatial and
temporal gradients of temperature, and for rigid heat conductors he found con-
stitutive relations compatible with the Clausius-Duhem inequality. He showed
that thermal disturbances can propagate with finite speed in such materials.

The present work shows that the shear band spacing in titanium deformed
at a nominal strain-rate of 10%/s decreases rapidly from 48 um to 22 um as the
thermal relaxation time is reduced from 108 s to 10~8 s.

2. Formulation of the problem

We study overall adiabatic simple shearing deformations of a work-hardening,
strain-rate hardening, strain-rate gradient hardening, thermally softening,
isotropic and homogeneous body in which thermal disturbances propagate at
a finite speed. In terms of non-dimensional variables, equations governing the
thermomechanical deformations of the body are

(2.1) pv = (8 —Loy)y,
(2.2) 0+718 = kByy + svy + Lov gy,
vy = As, Vyy = %’

. r¢ B
) (1 + %) = 3vy + Lovy,,

I'= [(v)%+ (t0)2]"* = f(5,0,0,9)
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Here the effect of material elasticity has been neglected, and all of the plastic
working is assumed to be converted into heating. This is justified since our
interest is in studying large plastic deformations of the body bounded by the
planes y = £1 and sheared in the z-direction. Other investigators (e.g. BAI {2],
WRIGHT and OCKENDON [28]) have also ignored the effects of material elasticity.
In Egs. (2.1) - (2.5), p is the mass density, v the velocity of a material particle
in the z-direction, s the shear stress, o the dipolar stress, 8 the present temper-
ature, 7 the thermal relaxation time, k the thermal conductivity, ¢ the material
characteristic length, A a plastic multiplier, and 1 the work-hardening param-
eter. Furthermore, a superimposed dot indicates the material time-derivative,
and a comma followed by y signifies partial differentiation with respect to y.
Equations (2.1) and (2.2) express, respectively, the balance of linear momentum
and the balance of internal energy, Eq. (2.3) is the flow rule, (2.4) an evolution
equation for the work-hardening parameter, and (2.5) characterizes the thermo-
viscoplastic material of the body. WRIGHT and BATRA [27] generalized GREEN
et al. [18] theory of elastic-plastic materials to elastic-viscoplastic materials and
proposed the afore-stated equations except that here Eq. (2.2) has been modified
to account for the finite speed of thermal disturbances. For quasistatic deforma-
tions, a continuity argument for neutral loading discussed by GREEN et al. [18]
requires that the plastic multiplier, A, in Egs.(2.3); and (2.3)2 be the same. Here
we have assumed that the plastic multiplier in these equations is the same even
for transient deformations. As pointed out by WRIGHT and BATRA [27], the
material characteristic length in each of the four Egs. (2.1) — (2.4) could be dif-
ferent. However, not knowing how to estimate these lengths from microscopic
considerations, and to simplify the work, we have set them equal to each other.
CHANDRASHEKHARAIH [12] has discussed different forms of the balance of in-
ternal energy that give finite speeds of thermal waves; the form adopted here is
due to CATTANEO [11] and VERNOTTE [26]. The thermal relaxation time 7 in
Eq. (2.2) represents the time required to establish a steady state of heat conduc-
tion'in an element suddenly exposed to a temperature gradient. CHESTER [14]
has estimated that :

# = 3k/ (peV2)

where f/;, is the speed of an elastic wave, and a superimposed hat over a quan-
tity denotes the dimensional value of that quantity. The dimensional and non-
dimensional variables are related as follows:

= Hy, ¢

HY, 1,@=1/), 8 = sgs, & = sola, ©=vHY
t/vn, 6=0.0, p=pso/(HY), k="k(pevH>),
T/%, 0 = s0/(pé), o =Vo/H.

&~ D
Il

~3»
i
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Here 2H equals the thickness of the layer, Vy the shearing speed prescribed on
the top and bottom surfaces of the layer, so the yield stress at room temperature
6o of the material of the layer in a quasistatic simple shear test, and ¢ is the
specific heat. FRANCIS [16] has experimentally determined the value of 7 for
some materials; these range from 10710 s for gases to 10~ s for metals.

If ¢ is interpreted as the effective plastic strain, and o, = (8% + 02)1/2 as
the effective stress, then g = (1 +%/%0)" describes the effective stress vs. the
effective plastic strain curve for quasistatic deformations of the body. Equation
(2.4) implies that the rate of evolution of ¥ is proportional to the plastic working
due to the shear stress s and the dipolar stress o. For a strain-hardening, strain-
rate hardening and thermally softening material,

603 30'6 aae
5 >0, a1 >0 30 <0.
When constitutive relation (2.5) is written as I = f(0e,0,%), we require that
of of of
81/)<0’ 603>0’ 80>0'

The constitutive relation (4.1) used herein satisfies inequalities (2.8) and (2.9).
In order to complete the formulation of the problem we also need initial and
boundary conditions. The boundary conditions considered are

vl’u::l:l = =1, e,y‘y=il =0

That is, the shear speed is prescribed on the top and bottom surfaces of the plate
and these two bounding surfaces are thermally insulated. The time ¢ is measured
from the instant when the steady state has reached. Thus v(0) =y, 0(0) =0,
and 9(0), 6(0) and 6(0) need to be prescribed.

3. Instability analysis

The approach used to study the stability of a homogeneous solution of
Egs. (2.1) - (2.5) and (2.10) is similar to that of Bal [2]. Let § = [4,5,5,0, |7
be a homogeneous solution of these equations; clearly ¥ =y and & = 0. Values
of 5(t), 6(t) and 4(t) are obtained by simultaneously solving

n

ves f1+1p_)
Y N %

We assume that the homogeneous solution 8 at time t = to is perturbed by an
infinitesimal amount

s = eNt=10)ei¥ s ¢ > to.
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where 880 = [6v0, 650, 600, 66°, 64°)T, ¢ is a wave number and 7 its growth rate at
time ¢ = ¢p. It is tacitly assumed here that all perturbations are admissible which
is the case only if the block is of infinite thickness. Substitution of s(y,t,tp) =
5(y,t) + ds(y, t, o) into Eqgs. (2.1), (2.2), (2.4), (2.5) and

oVy = Esvyy

obtained by eliminating A from (2.3); and (2.3), and linearization of these equa-
tions with respect to ds?, gives

A(tO, m E)dso =0,

em —if —4g? 0 0

-is% -1 0 TP4+n+ke2 0

A(tg,n, &) = | 4% 0 -1 0 0
—is%¢ -1 0 0 ¥in
€ —fS 0 -9 -f5

R
80 = §(t0), fg = 8f/68|s=so etc., 'I,[)(I) = (1 + %)

and we have set § =y and & = 0. Thus f% =0.
In order for Eq. (3.4) to have a nontrivial solution, det A = 0, which yields
the following quartic equation for the initial growth rate #:

an* +bp® +en +dn+e 0,
where
ato) = pTY1 13,
b€, t0) = prfy + pydfS + Tfe? + L2rypds0 fOet,
c(6:to) = pfy +pify + (7 + pkylfS — 7°£3,)€2
+ 25%(7 Y, + P F)EY,

d(&,t0) = (pkfpy — $f3y — YR FR)E% + (Es° (£ + 41 £9)

+ k)€t + k209 1548,

e(é,t0) = —ksf9,(1 — 2¢2)¢t
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Note that p, 7, k, £, s, 99, f0 and f are positive, and f(r)i) is negative. For
7 =0, Eq. (3.6) reduces to the cubic Eq. (17) of CHEN and BATRA [13].

If the spectral Eq. (3.6) has a root with a positive real part, then the homo-
geneous solution s® = §(ty) will be unstable. Clearly, roots of (3.6) depend upon
the wave number ¢ and the time 3 when the perturbation is introduced.

For large wavelengths, £ — 0, the solutions of the spectral Eq. (3.6) are

n=0,0, (—boi,/bg—mo) /2

(3.9)  bo=0b(0,t0) = p(rf3 +¥fS), co=c(0,20) = p(£Y + ¥1 %)

Assuming that by > 0, the solution will be unstable if ¢y < 0, and stable for
¢o > 0. The assumption by > 0 appears reasonable since for 7 = 0, by > 0. Thus
bo > 0 as long as 7 < ~40f$/f which is likely to be true for 7 < 1. When
T equals 0, Eq. (3.6) reduces to a cubic equation which for long wavelengths

has roots 0,0, — (% f’% + f%) / fg, and the solution will be unstable only if
1

(fgp +9¥7f%) < 0since 9§ ~1> 0.

For short wavelengths, £ — oo, the finite solution of (3.6) is (—f ) /(@9 f )
which in view of inequalities (2.9) is always positive. Therefore, the shear defor-
mation is always unstable for short wavelengths. Note that for a simple material
(ie. € = 0) with 7 = 0, BAI [2] has found that the homogeneous shear defor-
mation is stable with respect to perturbations of short wavelengths For =0
and 7 > 0, the finite root of Eq. (3.6) for short wavelengths is s° f /1/11 which
is negative implying thereby that the shear deformation is stable. For 7=0
but £ # 0, the finite solution of Eq. (3.6) is (— 2/,/ (¥9£%)) which is positive.
Thus for a strain-rate gradient-dependent thermouviscoplastic material, perturba-
tions of infinitesimal wavelengths will always destabilize the homogeneous shear
deformation. This is counter-intuitive to the common belief that the consider-
ation of higher-order gradients always has a stabilizing influence. However, the
growth-rate of these perturbations need not be large as compared to that of the
underlying homogeneous shear deformation.

Henceforth we assume that the root of Eq. (3.6) corresponding to the max-
imum growth rate is real which is usually the case if the homogeneous solution
is perturbed after the shear stress has attained its peak value; this was verified
through numerical experiments. For a fixed value of ¢y, we are interested in seek-
ing the wave number &, for which the growth rate 7,, at time tp is maximum.

Thus (nm, &m) satisfy (3.6) and dn = 0 which gives
(=nm §=Em)

(3.10) 0 (1 + 202 £462 )3, + [ (1 + pk %) — 7s° 19,
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(3.10)

[cont.]

+ 282 (rfy + Y o) emlnm + [(ok — $) 3 = "1

+ 2(2°(F% + ¥ %) + kyd)eZ, + 3ke2s090 fO8t Inm
— ks® (2 - 3€%€2 )% =0

Substituting = 9, and € = &, into (3.6) and solving it with (3.10), we obtain
the wave number &, corresponding to the maximum growth rate 7, at time .
Note that both &, and 7, depend upon t3. We now consider two special cases:
simple or nonpolar materials for which £ = 0, and strain-rate gradient- dependent
materials with 7 = 0.

3.1. Simple materials

For simple materials, £ = 0, and Eq. (3.10) yields
(311) & = —nmlrinn + (PR + pkf3) = 78°FY)m

pkf% — 2% + ¥/ k(I nm — s°F5))

For locally adiabatic conditions, k = 0 and Eq. (3.11) gives either 7,, = 0 or &, =
oo. The second alternative implies that 7,, is a monotonically nondecreasing
function of &, and takes on a maximum value at &, = co. As discussed earlier,
the simple shearing deformation of simple materlals is stable with respect to
perturbatlons of short wavelength.

We now consider heat- conducting simple materlals Assummg that 9, > 0
the condition £2, > 0 gives

(3.12)  Tein + (1 + pkfS) — Ts° £ ) + ok £y — SO (£ + 90 fG) <0

Since the first two terms on the left-hand side of (3.12) are positive, therefore,
the condition for the instability to occur is that

(3.13) A= (pkfy, —s°f% — s"pl %) < 0.

Recalling that ¢2 > 0, we obtain the following limits for the value of 9,

_ 2 _
(3.14) 0<n, < —BHVB —4r¢i4

27'1/)1 v

where B = ) + pky{ fg — 750 fgb. -Whenever condition (3.13) for instability is
satisfied, the spectral Eq. (3.6) with £ = 0 has a solution that lies between 0




INSTABILITY ANALYSIS AND SHEAR BAND SPACING. 175

and 7y,. Note that the inequality (3.13) does not involve 7, but does contain
the thermal conductivity & and the mass density p. So the instability criterion
for simple materials is the same, whether or not thermal disturbances propagate
at a finite speed. For a typical hard steel and 4o = 103/s, p = O(107%), k =
0(10‘3), O(1), ¢! = O(1), thus the instability criterion (3.13) reduces to
(f0 + 9 ) > 0. From (2.7)g and (27)10 we conclude that pk o %o, so the
ﬁrst term in the expression for A will make a negligible contribution even when
Yo = 108/s.

For heat-conducting non-work-hardening simple materials, £ = 0, f¢ = 0,
the spectral Eq. (3.6) reduces to

(815)  Tpfan’ + (pf s + TE)M? + [ofy + (L + pk£5)E%n

+(ke? - ' f9)¢* =
and the instability condition becomes
(3.16) s°f9 > ke?

A comparison of Egs. (3.13) and (3.16) suggests that the product of the thermal
conductivity and the square of the wave number now plays the role of the work-
hardening of the material. The expression (3.14) for n}, simplifies to

Mo = [~ (1 + 9k S0) + /(L + phf3)2 4 475015 | /27
ForOo<r<1, o, = sof o/ (L+pkfS) —7(s 0f0)2/(1 + pk£9)? implying thereby

that the thermal relazation time decreases the upper limit for the growth rate of
the perturbations for non-work-hardening simple materials.

3.2, Strain-rate gradient-dependent materials with 7 = 0

In materials with 7 = 0, thermal disturbances propagate at infinite speed.
The spectral Egs. (3.6) and (3.10) for the growth rate at tlme to to be maximum
take the forms :

(3.18) S0 + (£ + Y319 + (1 + pk£0)E2 + 29pYs® fO84]n?
+ [((ok = $°) £ — SPY2£9)E% + (k) +€2s°(f% + 99 £9)) ¢
+ k€290 £O€%n + ks® £ (—1 + £2¢6%)¢* = 0,

3kE2SP(F9, + ¥D fomm ) Eh + [2€25%40 fOn2,
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(3.19)

[cont.]

2(k9) + 25 (£2, + 90 £9))1m — 26507162

+ [Y2(1 + pkfo)n2, + (o — s°)£% — %0 fS)nm] = 0.

Equation (3.18) with £ = &m, % = fm, and Eq. (3.19) determine &, and 7,,. For
locally adiabatic deformations of simple materials, k = £ = 0, Eqgs. (3.18) and
(3.19) give

(3-20) m = s"(fo + F/99),
(3.21) ém = o,

which implies that perturbations of infinitesimal wavelength grow the fastest
provided that ( f0 + f /1/)1) > 0. This agrees with the result of BATRA and
CHEN [8] who studied shear band spacing in three non-work-hardening strain-
rate gradient-dependent materials.

We denote the value (3.20) of nm, by mmo. For k = 0, Eqgs. (3.18) with

£ =&m, 1 ="m, and (3.19) give

(3.22) fsnm [P"'Imo/'s + fm(l +£%s Of §m)]7lm + §m(e2€m 1)%mo = 0,
(3-23) fm = (Nmo — nm)/2€2( Of sTm + Mmo)-

Since €2, > 0, therefore 7y, < fmo. Thus positive values of ¢ decrease the growth
rate of perturbations, and the decrease in the growth rate is proportional to £2.
Also, the wavelength of the perturbation corresponding to the maximum growth
rate is finite.

For locally adiabatic deformations of non-work-hardening gradient-dependent
viscoplastic materials, 7 = k = f = 0, and Eq. (3.18) evaluated at £ = &, 7 =
nm and Eq. (3.10) reduce to the following two equations:

(324) fsnm [pf0 + €m(1 + £2 Of §m)]nm + Sofe( 1+ ezfm)gm - O
$°f9(1 — 20%¢%)
T T4 2B,

/9 a)

ém < = ém,
‘\/ie

and only perturbations with wavelength greater than (2v/27) times the material
characteristic length can have the positive maximum growth rate at time ¢y. The
requirement £€2, > 0 and (3.25) yield

0<m <s°fh=nt.



INSTABILITY ANALYSIS AND SHEAR BAND SPACING. 177

Thus the maximum growth rate at time ¢, of the perturbations is set by the
present value of the shear stress and the thermal softening characteristics of the
material.

4. Shear band spacing

We consider materials for which

L, ~m
fls.o8. ) =u.mf"m <1+l/)_) (o2 L A2\5m
0/
where g is a strength parameter, m describes the strain-rate hardening of the
material and v < 0 its thermal softening. The relation between nondimensional
to and dimensional fig is

e -1

(4.2) to = Gy e

For f given by (4.1), a homogeneous solution of Egs. (2.1) - (2.5) under boundary
conditions (2.10) is

]

=1y, =0,

5 = pob*[bo(6+8 - A,
B = [§ b+ 8- e 1]

where

Yo 1+n

and 0 is found by numerically solving

A =70(0) +6(0) - 957,

] + 6= #01;39”(7‘5 +0- fi)ﬁ

Furthermore.
nf‘ o'f
f,s - m(32+0.2)”>0, f,d— m(s2,+02)‘
: o f

mo ’ iz R ( ifi )
LE e

Thus inequalities (2.9) are satisfied
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In computing numerical results, we assigned the following values to the ma-
terial and geometric parameters:

p = 4510 kg/m®, m=0.033, v=-17, fo=6.0x 102,
%o =001, 4 =10%/s, &=528J/kgK, k=19W/mK,
sp = 405 MPa, 6(0) = 1.441, £=0.001, n = 0.15,
H=25mm, 9%(0)=0, 6(0)=300K, #=10"0g

These values, except possibly those of £ and 7, are for titanium. We will inves-
tigate the effect of different values of £ and 7 upon the shear band spacing. For
an aluminum alloy, FRANCIS [16] has experimentally determined  to be 1Q‘11 s
The value of H is used to nondimensionalize the variables. The value of 8(0) is
estimated from Eq. (4.3) by setting 7 = 0, 4o = 10%/s, and numerically solving
the equations. The results presented below are for a layer of infinite thickness.
Thus the effect of boundary conditions has been neglected.

Figure 1 shows, for homogeneous deformations of the body at nominal stra.m-
rates of 10°/s and 106 /s, the shear stress (or the effective stress) vs. the average
shear strain curves for 7 =0, 10~7 and 10~!! s; these represent solutions of the

775

725 A

imtma

675 {

Shear stress, s (MPa)
(<]
N
v

—— relaxation time = 0.0, strain rate=1E5 1/s
— - relaxation time = 1.0E-11 s, strain rate=1E5 1/s
= - = -relaxation time = 1.0E-7 s, strain rate=1E5 1/s
------ relaxation time = 0.0, strain rate=1E6 1/s

— --—relaxation time = 1.0E-11 s, strain rate=1E6 1/s
~———— relaxation time = 1.0E-7 s, strain rate=1E6 1/s

575 1

525 T T r v T r r T r
0.00 0.05 0.10 0.1 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Average shear strain, ¥,

FIG. 1. Shear stress vs. shear strain curves at nominal strain-rates of 10%/s and 108/s
for three different values of the relaxation time 7. Shear stress vs. shear strain curves
for thermal relaxation time » = N and 10~11 g ecnincide with each athar
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initial-value problem represented by Eqs. (4.3) — (4.5). For homogeneous defor-
mations, both mechanical and thermal waves have died out. These equations
were integrated by the Runge-Kutta method. The algorithm was validated by
comparing analytical and numerical solutions of Eq. (4.5) for v = 0. It is clear
that at a nominal strain-rate of 10%/s, the stress-strain curves for homogeneous
deformations of the body are essentially unaffected by the value of #. However,
for 49 = 108/s, the values of 7 influence the shear stress vs. the average shear
strain curves. Because of the strain-rate semsitivity of the material, at a given
value of the shear strain, the shear stress for 49 = 10%/s is higher than that for
4o = 10%/s. For 4y = 10°/s, values of 9 and 8 are virtually the same for the three
values of 7 which span over a wide range.
The integration of Eq. (4.3)3 yields

_ - 1 ¢ 1/; n+1 N
o(t) = 8(0)e /" + ~ / (1 + 1/1—) e =0/Tde + A(1 - e "
. 0

Thus for ¢ > 7, values of the temperature and hence of the stress depend upon
7 through the dependence of the second and third terms upon 7. Since 9(t) may
depend upon 7, it is difficult to characterize how #(t) should vary with 7. We
note that the computed results also depend upon the value of 0(0) through the
dependence of A upon 0(0)

For assigned values of the time #y and the wave number £, Eq. (3.6) is solved
for the growth rate . Figure 2 depicts, for 4o = 10%/s and £ = 0, the initial
dominant growth rate 7 (i.e. the growth rate at time ¢y with the largest positive
real part) vs. the wave number ¢ for four different values of the average strain 7y
or the time ¢y when the homogeneous solution is perturbed. For each value of ~p,
the initial dominant growth rate 7 first increases, reaches a maximum value and
subsequently decreases with an increase in £. We call the maximum value of 1 the
initial critical growth rate and denote it and the corresponding value of £ by 7,
and &, respectively; clearly n, and &, depend upon %3 or equivalently 7y, and
Nm is not a monotonically increasing function of #y. According to WRIGHT and
OCKENDON'’S [28] postulate, i.e., the wavelength of the dominant instability mode
with the maximum growth rate at time ¢y determines the shear band spacing Ly,
we have

L; = 27"/€m(t(s))‘
However, the definition
(4.8) L=

[ P
inf ———
t0>0 &m(to) ’
will give the least possible spacing between adjacent shear bands. We note that
for thermal softening described by an affine function of the temperature, defini-
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tions (4.7) and (4.8) of the shear band spacing give quite different results, e.g.
see BATRA and CHEN [8]. MOLINARI [20] pointed out that for the CRS1018 steel
modeled by a power-law type relation, the two definitions give essentially the
same value of the shear band spacing.

18
16 e ah]:jofs )

/ =107 s — =01
14 / [=0.0 T Wl

! T e =1.0
f —~-—e 1=20

—_
N

-
o

Initial dominant growth rate, /7,

60 80 100 120

Wave number, £ (mm™)

F1G. 2. Initial dominant growth rate vs. the wave number for four different values of the
average shear strain, 7o, when the homogeneous solution corresponding to 4o = 10%/s is
perturbed.

Equations (3.11) and (3.21) and either one of the two definitions of the shear
band spacing imply that the shear band spacing equals zero in locally adiabatic
deformations of simple materials whether or not thermal waves propagate at a fi-
nite speed in these materials. This generalizes earlier similar result of BATRA and
CHEN (8] for non-work-hardening to work-hardening simple materials. Equation
(3.23) implies that the shear band spacing in strain-rate gradient-dependent mate-
rials is proportional to the material characteristic length £. However, &, and 1,
depend upon the time t; when the homogeneous solution is perturbed. Taking
into account this dependence, CHEN and BATRA [13] derived an approximate ex-
pression for the shear band spacing in locally adiabatic deformations of gradient-
dependent materials. They found that the shear band spacing is proportional to
the square root of the material characteristic length. Numerical experiments of
BATRA and KIM [5] gave strong dependence of the shear band width upon £.

Figures 3a and 3b exhibit, for 49 = 10°/s, £ = 0 and six different values of the
thermal relaxation time 7, the dependence of 7, and the corresponding critical
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wavelength, L,, = 2/, upon the average shear strain «y. Recall that the
coefficients a, b and ¢ in (3.6) depend upon 7. For each value of 7, 7, is
maximum at -y§ = Yot§ and Ly, is minimum at 5§ = 4otJ; the difference between
4§ and 743 increases as 7 decreases. Even though the thermal relaxation time 7 has
a negligible effect on the homogeneous solution (cf. Fig. 1), it affects noticeably
the initial critical growth rate 7, and the critical wave number &,,. However, the
results computed with 7+ < 10~% essentially coincide with those for # = 0, i.e.,
a parabolic heat equation. For 7 = 0, Figs. 4a and 4b illustrate the dependence
of 7§, 7§ and the shear band spacing upon the average strain rate 4¢. It is clear
that both 7§ and 4§ depend rather weakly upon 4p, and 4§ > 73. However,
the shear band spacings computed with definitions (4.7) and (4.8) are nearly the
same. The shear band spacing, L,, noticeably decreases with an increase in the
average strain-rate p. For 49 = 10%/s, our computed value 0.65 mm of the shear
band spacing, compares favorably with the 0.75 mm obtained by MOLINARI [20];
the difference between the two is attributed to the different ways of modeling the
hardening of the material caused by its plastic deformations. For the CRS1018
steel deformed at an average strain-rate of 10*/s, CHEN and BATRA [13] and
MOLINARI [20] computed the shear band spacings to be 1.05 mm and 1.4 mm,
respectively. NESTERENKO et al. [21] measured L; = 1 and 0.85 mm in the
CRS1018 steel and titanium respectively, and estimated the strain-rate in the
band to be 10%/s. For the titanium studied here, WRIGHT and OCKENDON’S [28]
and GRADY and KIPP’s [17] models give L; = 0.3 and 1.8 mm, respectively. We
note that a decrease in 4 from 10%/s to 6850/s gives the experimental value of
0.85 mm for the shear band spacing in titanium.

For 49 = 10%/s, the shear band spacing, Ls = 2m/£,(£), and the average
shear strain ¥§ as a function of the thermal relaxation time 7 are plotted in
Figs. 5a and 5b, respectively. Both L, and 4§ drop rapidly as 7 is decreased from
107 to 108 s and then are relatively unchanged for further decrease in the value
of 7. The shear band spacing decreases from 0.16 mm for # = 107% s t0 0.114 mm
for # = 1078 s; the corresponding values of 4§ are 0.76 and 0.41. BATRA and
KiM [6] studied the initiation and development of shear bands in twelve materials
and proposed that a shear band initiates when the shear stress has dropped to
90% of its peak value. CHEN and BATRA [13] studied the shear band spacing in a
CRS1018 steel modeled as a work-hardening strain-rate gradient-dependent ma-
terial. They found that corresponding to the times when perturbations of the
homogeneous solution resulted in the shear band spacing, s/smax equalled about
0.95. Here s/smax varies from 0.64 to 0.82 as the relaxation time 7 is decreased
from 107%s to 10~1%, and stays at 0.82 for smaller values of #. The difference in
the two sets of values is primarily due to the fact the nominal strain-rate in the
present problem is ten times that considered by Chen and Batra, and to a less ex-
tent due to the difference in the thermomechanical response of the two materials.
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Figures 6a through 6d exhibit for 49 = 10%/s the results corresponding to
those plotted in Figs. 2, 3 and 5 for 49 = 10%/s. The influence of the relaxation
time 7 on the initial critical growth rate, the critical wavelength of the dominant
instability mode, the shear band spacing and the average strain corresponding to
the shear band spacing is more pronounced for ¥y = 10° /s as compared to that
for 49 = 105 /s. For every value of #, the initial critical growth rate as a multiple
of 4o is about the same for the two values of g, but the critical wavelength of the
dominant instability mode is about one order of magnitude lower for 4y = 10° /s
as compared to that for 49 = 10%/s. The two sets of results are in qualitative
agreement with each other. The average shear strain corresponding to the shear
band spacing for 49 = 10°/s is approximately twice that for 49 = 108 /s, and
the corresponding value of s/spmax increases from 0.5 to 0.815 as 7 is decreased
from 1076 to 10710 5. Thus the influence of the finiteness of the speed of thermal
disturbances on the shear band spacing and the initial critical growth rate is more
pronounced for higher values of p.

We have plotted in Figs. 7a - 7d, for 49 = 108/s and material characteristic
length £ = 0.001, the critical growth rate and the corresponding wavelength
vs. the average shear strain, and the shear band spacing and the corresponding
average strain vs. log(7). A comparison of the results plotted in Figs. 6 and 7
reveals that when £ is changed from 0 to 0.001 and 7 = 1079 s, the initial critical
growth rate is approximately halved and the corresponding wavelength is nearly
tripled. The corresponding value of s/smax increases from 0.32 for # = 1076 s to
0.8 for + < 10~9 s. For £ = 0.001 the shear band spacing is essentially increased
by a factor of 2.5 and the average shear strain corresponding to the shear band
spacing is almost 2.25 times that for £ = 0.0. However, for ¢ = 0.001 and
7 <107° s, the shear band spacing for the gradient-dependent material is nearly
five times that for a simple material. These results are in qualitative agreement
with those obtained by CHEN and BATRA [13] for thermoviscoplastic materials
in which thermal disturbances propagate at an infinite speed.

5. Conclusions

We have studied the stability of the infinitesimal perturbations superimposed
on a homogeneous solution of the coupled nonlinear equations governing the ther-
momechanical simple shearing deformations of a strain-rate gradient-dependent
viscoplastic body in which thermal waves propagate at a finite speed, and we have
derived conditions for these perturbations to grow. For simple materials, the in-
stability criterion (3.13) is independent of the thermal relaxation time. However,
the growth rate of the perturbations is influenced by the thermal relaxation time
7. For non-heat-conducting simple materials, the growth rate of perturbations
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at time %y is ‘a monotonically increasing function of the wavelength implying
thereby that the shear band spacing in these materials equals zero. This general-
izes a similar result of BATRA and CHEN [8] for non-work-hardening materials to
work-hardening materials. In strain-rate gradient-dependent materials, pertur-
bations of infinitesimal wavelength will always grow implying thereby that the
homogeneous shear deformation is always unstable. However, the wavelength of
perturbations with the maximum growth rate is about 16um for an average shear
strain-rate of 106 /s and material characteristic length equal to 2.5 um. For £ = 0,
i.e., in simple materials, the homogeneous simple shear is stable in the limiting
case of perturbations of infinitesimal wavelength. In non-work-hardening simple
materials, the thermal relaxation time decreases the maximum growth rate of the
perturbations. : : : '

For the titanium alloy modeled as a simple material, the shea,r band spacing
decreases rapidly from 160 um to 114 pm as 7 is varied from 10~ to 1078 s
and the nominal strain-rate 4o equals 10%/s.. For 49 = 10%/s, the shear band
spacing decreases from 48 um to 21 pm when 7 decreases from 1076 to 1078
When the same alloy is modeled by a strain-rate gradient-dependent theory with
material characteristic length £ = 2.5 ps, the shear band spacing drops from
122 um to 108.5 um as 7 decreases from 107 to 10~8s. It follows from Eq. (3.23)
that the shear band spacing is proportional to £, and that the growth rate of the
perturbations for £ > Q is smaller than that for £ = 0. CHEN and BATRA [13] have
shown that the shear band spacing varies as the square-root of £. NESTERENKO
et al. [21] estimated the average strain-rate in the shear banded material to be

10*/s, and measured the shear band spacing to be 0.85 mm. The computed
shear-band spacing equals 3.65, 0.65 and 0.113 mm for 4y = 103, 104 and 10%/s
respectively, and equals 0.85 mm for j9 = 6850/s.
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