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a b s t r a c t 

Converging and diverging nozzles and skyscrapers are examples of hollow structures with 

curved bounding surfaces. We study torsional deformations of such structures, namely, 

truncated conical cylinders with curved inner and outer bounding surfaces and made of 

linearly elastic and orthotropic functionally graded materials (FGMs). Simplifying assump- 

tions include a plane section remains plane, deformations are axisymmetric about the 

cylinder axis, and a power-law relation between the radial and the axial coordinates de- 

scribes the curved mantle. For four spatial variations of the two shear moduli, we analyti- 

cally solve governing equations for the two non-zero shear stresses and the tangential dis- 

placement. For a general variation of the shear moduli we employ the weighted residuals 

approach to find an approximate solution and establish its convergence and accuracy. We 

also analyze the material tailoring problem to attain a desired shear stress distribution on 

a cross-section. We include numerical examples to illustrate spatial distributions of shear 

stresses for prescribed shear moduli variations, and of the shear moduli for achieving de- 

sired shear stress distributions. The analytical solutions provided herein should serve as 

benchmarks to verify numerical solutions of similar problems. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Functionally graded materials (FGMs) are inhomogeneous and have continuously varying material properties in one or

more space dimensions usually obtained by continuously varying volume fractions of constituents. Thus, one can effectively

reduce interlaminar delaminations, stress concentrations at interfaces between two distinct materials, and exploit advanta-

geous properties of constituents. For example, alumina/metal FGMs take advantage of high thermal resistance of alumina

and superior tensile strength of the metal. Whereas researchers have been analyzing deformations and stresses in linearly

elastic inhomogeneous materials since 1960s, there has been accelerated activity during the last two decades as evidenced

by the number of papers published in the open literature ( Birman & Byrd, 2007; Gupta & Talha, 2015; Jamshidi & Argha-

vani, 2018; Lieu & Lee, 2017; Nedin, Vatulyan, & Bogachev, 2018; Roque & Martins, 2015; Swaminathan & Sangeetha, 2017;

Wetherhold, Seelman, & Wang, 1996 ). We note that a nonlinear problem for an inhomogeneous cylinder was numerically

analyzed by Batra in 1980 ( Batra, 1980 ). 
∗ Corresponding author. 
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Initial-boundary-value problems for structures composed of linearly elastic FGMs are challenging because coefficients

in governing equations depend upon the spatial coordinates, except when all properties vary exponentially with the same

exponent. Even though mathematically attractive, it is nearly impossible to achieve the same spatial variation for all material

moduli and the mass density. Solutions for several static problems involving linearly elastic FGMs are given in Lekhnitskii’s

book ( Lekhnitskii, 1981 ). In order to limit the article length, we do not cite all FGM related works. 

Chen (1964), Rooney and Ferrari (1995) , and Horgan and Chan (1999) , among others, have provided analytical solutions

for torsional deformations of circular cylindrical FGM bars by assuming the shear modulus to vary smoothly in a cross-

section. They found that the maximum shear stress does not, in general, occur on the rod boundary, in contrast to that for

a homogeneous material bar. For torsional deformations of FGM tubes of arbitrary cross-section, Arghavan and Hematiyan

(20 09), Ecsedi (20 09, 2013 ), and Chen (2011) have provided analytical solutions under the assumption of the shear modulus

continuously varying in the radial direction. 

Considering that the analytical solutions are possible under special circumstances, some researchers, e.g., Jog and Mokashi

(2014), Katsikadelis and Tsiatas (2016) , numerically solved torsional problems for anisotropic FGM non-circular prismatic

bars, respectively, by the finite element and the boundary element methods (FEM/BEM). 

Lekhnitskii (1981) has analytically analyzed torsional deformations of a truncated conical cylinder with straight sides and

the shear moduli varying along both the radial and the axial directions according to either power-law functions of r and z

or power-law functions of r/z . Here ( r, θ , z ) denote coordinates of a point in the cylindrical coordinate system with the

origin at the cone vertex. Nie, Pydah, and Batra (2018) have provided analytical solutions for a few spatial variations of the

shear modulus, and have numerically solved problems by using the Weighted Residuals Approach (WRA). Here we extend

the work to conical orthotropic FGM cylinders with lateral surfaces described by a power-law relation between r and z , and

material moduli varying in the axial and the radial directions. We provide analytical solutions for a few spatial variations

of the shear moduli, and numerical solutions for other cases. In general, in the FEM, one replaces a curved boundary by a

polygonal one that can have stress concentrations at vertices/corners. The WRA overcomes this at the cost of using non-

simple basis functions that require either analytical integrations or a large number of quadrature points to numerically

evaluate the integrals. The WRA is simpler than the traditional FEM. 

Material tailoring problems, i.e., finding spatial variations of the material moduli to achieve a prescribed stress state, are

more challenging than the stress analysis problems. Lekhnitskii (1962) has derived conditions that Young’s modulus and

Poisson’s ratio must satisfy to achieve a desired radial distribution of stresses in a wedge and a half-plane. For plane strain

axisymmetric deformations of an orthotropic FGM cylinder, Leissa and Vagins (1978) assumed that all material moduli are

proportional to each other and found their spatial variation to make either the hoop stress or the maximum in-plane shear

stress uniform in the cylinder. By assuming that the volume fraction of phases to change only radially, Tanaka, Watanabe,

Sugano, and Poterasuc (1996) investigated material tailoring of a FGM hollow cylinder to globally reduce thermal stresses

by using the direct sensitivity analysis, multi-objective optimization and the incremental FEM. Similarly, Ootao, Kawamura,

Tanigawa, and Imamura (1999), Ootao, Tanigawa, and Ishimaru (20 0 0) , and Cho and Ha (20 02a, 20 02b ) optimized material

composition of FGM plates and hollow spheres to minimize thermal stresses by using either a genetic algorithm, or an arti-

ficial neural network, or an interior penalty-function method. Na and Kim (20 09a, 20 09b, 2010 ) assumed material properties

to be temperature dependent, and numerically optimized volume fractions of constituents for FGM panels to reduce stresses

and improve thermo-mechanical buckling behavior. Liaghat, Hematiyan, and Khosravifard (2014) have numerically tailored

volume fractions of constituents in torsional deformations of FGM hollow rods to achieve either an arbitrary distribution

of the shear stress over a rod cross section or the maximum torsional rigidity for a constant mass. Shabana, Elsawaf, Kha-

laf, and Khalil (2017) and Wang, Dong, and Atluri (2018) employed the particle swarm optimization technique to minimize

stresses in FGM cylinders. Batra (2006) has shown that the angle of twist per unit length can be controlled by smoothly

varying the shear modulus in the axial direction in a FGM circular cylinder. 

Multi-objective optimization of FGM structures has been studied by Goupee and Vel (2007), Huang, Fadel, Blouin, and

Grujicic (2002), Vel and Pelletier (2007) and Correia, Madeira, Araújo, and Soares (2018) . We note that optimal designs

are problem-dependent as should be evident from the closed-form solutions provided by Batra (2011, 2015), Dryden and

Batra (2013a, 2013b), Nie and Batra (2010a, 2010b, 2010c) and Nie, Zhong, and Batra (2011) . As far as we can ascertain, the

material tailoring problem for a hollow conical cylinder with curved lateral surfaces has not been studied. 

Here we first formulate the boundary-value problem for a linearly elastic and orthotropic FGM hollow truncated conical

cylinder with curved lateral surfaces. We then analytically analyze stresses and displacements for a few spatial variations

of the two shear moduli in a cylinder with straight lateral surfaces. Subsequently, we use the WRA to numerically solve

boundary-value problems for a cylinder with curved lateral surfaces. Finally, we tailor the shear moduli to attain a pre-

specified variation of two shear stresses in a cylinder. 

The analytical results should serve as benchmarks for verifying numerical solutions of problems similar to those studied

herein. 

2. Problem formulation 

As schematically shown in Fig. 1 , we analyze static deformations of a linearly elastic FGM hollow truncated conical

cylinder with curved inner and outer lateral surfaces defined by the power-law relations 

R 

i 
z = β1 z 

p , (1a)
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Fig. 1. Schematic sketch of a FGM hollow truncated conical cylinder with curved lateral surfaces. 

 

 

 

 

 

 

 

 

 

 

 

R 

o 
z = β2 z 

p (1b) 

where R i z and R o z , respectively, denote the inner and the outer radii of a cross-section z = c, a constant. Constants β1 , β2 and

p define the lateral surfaces. For p = 1 , the two lateral surfaces are straight, and β1 = tan αi and β2 = tan αo , where αi and

αo , respectively, equal the half opening angles of the inner and the outer surfaces of the cylinder. 

The cylinder is deformed by applying equal and opposite torques at the end faces, z = z 0 and L 0 . The two lateral surfaces

of the cylinder are traction free, and the resultant axial force on end faces, z = z 0 , L 0 equals zero. We assume that the

variation of material properties in the r- and the z- directions is such that the cylinder deformations are axisymmetric and

a plane section z = constant remains plane. Thus, only tangential or circumferential displacement, u θ , is non-zero and it

depends upon r and z . 

For infinitesimal deformations, strains ɛ r , ɛ θ , ɛ z , γ θz , γ zr , and γ r θ are related as follows to u θ . 

ε r = 0 , ε θ = 0 , ε z = 0 , γθz = 

∂ u θ

∂z 
, γzr = 0 , γrθ = 

∂ u θ

∂r 
− u θ

r 
(2)

We assume that the FGM is linearly elastic and orthotropic with the material principal axes coincident with the cylin-

drical coordinate axes, ( r, θ , z ). Thus stresses at a point are related to strains and hence displacements as 

σr = σθ = σz = τzr = 0 , τθz = G θz (r, z) 
∂ u θ

∂z 
, τrθ = G rθ (r, z) 

(
∂ u θ

∂r 
− u θ

r 

)
(3)

where the shear moduli G θz ( r, z ) and G r θ ( r, z ) are assumed to have positive values at every point of the cylinder. 

Substituting from Eq. (3) into the three equilibrium equations shows that two of them are identically satisfied, and the

third, in the absence of body forces, is 

∂ τrθ

∂r 
+ 

∂ τθz 

∂z 
+ 

2 τrθ

r 
= 0 (4) 

The boundary conditions of null tractions on the cylinder lateral surfaces require that 

−τθz 

dr 

ds 
+ τrθ

dz 

ds 
= 0 (5) 

where ds is the arc length shown in Fig. 1 (a). Recalling Eqs. (1a) and (1b) , boundary conditions (5) on the inner and the

outer lateral surfaces, respectively, can be written as 

τrθ = β1 p z 
p−1 τθz , (6a) 

τrθ = β2 p z 
p−1 τθz (6b) 

The boundary conditions on the end faces, z = z 0 and L 0 , are ∫ R o z 

R i z 

τθz r 
2 dr = 

M t 

2 π
, 

∫ R o z 

R i z 

τθz rdr = 0 (7) 

where M t is the applied twisting moment. We note that the tangential traction, τ θz , is not point-wise prescribed. 
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Airy stress function 

In terms of the Airy stress function, φ( r, z ), non-zero stress components in Eq. (3) can be expressed as 

τθz = 

1 

r 2 
∂φ(r, z) 

∂r 
, τrθ = − 1 

r 2 
∂φ(r, z) 

∂z 
(8)

The equilibrium Eq. (4) is identically satisfied, and using Eqs. (3) and (8) , we get 

∂ 

∂r 

(
u θ

r 

)
= − 1 

G rθ (r, z) r 3 
∂φ(r, z) 

∂z 
, 

∂ 

∂z 

(
u θ

r 

)
= 

1 

G θz (r, z) r 3 
∂φ(r, z) 

∂r 
(9)

Thus, functions G r θ ( r, z ), G θz ( r, z ) and φ( r, z ) must satisfy the following compatibility condition 

∂ 

∂r 

[
1 

r 3 G θz (r, z) 

∂φ

∂r 

]
+ 

1 

r 3 
∂ 

∂z 

[
1 

G rθ (r, z) 

∂φ

∂z 

]
= 0 (10)

For a given variation of the two shear moduli the Airy stress function can be obtained by solving Eq. (10) . Conversely, for

prescribed (or desired) spatial distributions of τ r θ and τ θz satisfying Eqs. (4) , (5) and (7) , we can find the two shear moduli,

not necessarily uniquely, satisfying Eq. (10) for the material tailoring problem. For an isotropic material, G θz (r, z) = G rθ (r, z)

can be determined from Eq. (10) . 

Introducing the following non-dimensional parameters, 

R = 

r 

L 0 
, Z = 

z 

L 0 
(11)

where L 0 = L + z 0 , Eq. (10) becomes 

∂ 

∂R 

[
1 

R 

3 G θz (R, Z) 

∂φ

∂R 

]
+ 

1 

R 

3 

∂ 

∂Z 

[
1 

G rθ (R, Z) 

∂φ

∂Z 

]
= 0 (12)

Substitution from Eq. (8) into Eqs. (6a) and (6b) motivates the assumption that φ( r, z ) be a function of s = r/ z p . The non-

dimensional variable t = r/z = R/Z facilitates solving the problem especially for p = 1, i.e., a conical cylinder with straight

lateral surfaces. 

When the stress function and the two shear moduli depend upon R and Z through t , the compatibility Eq. (12) becomes

[
t 2 G θz (t) + G rθ (t) 

]∂ 2 φ

∂ t 2 
−

[
t 2 G θz (t) 

G rθ (t) 

∂ G rθ (t) 

∂t 
+ 

G rθ (t) 

G θz (t) 

∂ G θz (t) 

∂t 
+ 

3 G rθ (t) 

t 
− 2 t G θz (t) 

]
∂φ

∂t 
= 0 (13)

Eq. (13) when written using the variable, s , involves the exponent, p , describing the lateral surfaces and is not written

here. 

3. Solutions for stresses and the displacement 

In this Section, we first find exact solutions for a FGM conical cylinder with straight lateral surfaces and the shear moduli

having four specific variations with R and Z . Subsequently, problems for a cylinder with curved lateral surfaces and the shear

moduli arbitrary functions of R and Z are numerically solved by using the WRA method. 

3.1. Exact solutions for FGM conical cylinders with straight lateral surfaces 

We assume that the two shear moduli are special functions of coordinates, R and Z . Following Lekhnitskii (1981) , we give

solutions for the shear moduli variations 1 and 2, and provide exact solutions for new variations 3 and 4 not investigated by

Lekhnitskii (1981) and Nie et al. (2018) . For each one of the four variations considered, G θz (R, Z) / G rθ (R, Z) = constant, i.e.,

the ratio of the two shear moduli at every point equals the same constant. 

Variation 1: G θz (R, Z) = g 0 
θz 

t n , G rθ (R, Z) = g 0 
rθ

t n 

The shear moduli are assumed to have the variations, 

G θz (R, Z) = g 0 θz t 
n , G rθ (R, Z) = g 0 rθ t n (14)

where n is an integer, and g 0 
θz 

and g 0 
rθ

are reference values of the shear moduli at t = 1 . Substitution from Eq. (14) into

Eq. (13) we find the solution of the resulting equation as 

φ = 

C 0 t 
n +2 

n + 2 

[
2 F 1 

(
3 

2 

, 1 + 

n 

2 

; 2 + 

n 

2 

;−g 0 
θz 

t 2 

g 0 
rθ

)
− 2 F 1 

(
5 

2 

, 1 + 

n 

2 

; 2 + 

n 

2 

;−g 0 
θz 

t 2 

g 0 
rθ

)]
for n � = −2 (15a)

φ = 

C 0 

(g 0 
rθ

+ g 0 
θz 

t 2 ) 
3 / 2 

for n = −2 (15b)
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where 2 F 1 (a, b; c; z) = 

∞ ∑ 

k =0 

(a ) k (b) k / (c) k z 
k /k ! is a hypergeometric function, (a ) k = �(a + k ) / �(a ) is the Pochhammer param-

eter, and �( a ) is the Gamma function. The constant C 0 , found from Eq. (7) , has a long expression that is omitted. Eqs. (15a),

(15b) , (8) and (9) give the following expressions for stresses and the tangential displacement. 

For n � = −2 

τθz = 

1 

L 3 
0 
R 

3 

C 0 g 
0 
θz 

(g 0 
rθ

) 
3 / 2 

t n +4 

(g 0 
rθ

+ g 0 
θz 

t 2 ) 
5 / 2 

, τrθ = τθz t, (16a) 

u θ = −C 0 
√ 

g 0 
rθ

t 

3 L 2 
0 
Z 2 

[ 

1 

(g 0 
rθ

+ g 0 
θz 

t 2 ) 
3 / 2 

− 1 

(g 0 
rθ

(Z 
0 
/Z) 

2 + g 0 
θz 

t 2 ) 
3 / 2 

] 

, (16b) 

and for n = −2 , 

τθz = − 1 

L 3 
0 
R 

3 

3 C 0 g 
0 
θz 

t 2 

(g 0 
rθ

+ g 0 
θz 

t 2 ) 
5 / 2 

, τrθ = τθz t, (17a) 

u θ = 

C 0 t 

g 0 
rθ

L 2 
0 
Z 2 

[ 

1 

(g 0 
rθ

+ g 0 
θz 

t 2 ) 
3 / 2 

− 1 

(g 0 
rθ

(Z 
0 
/Z) 

2 + g 0 
θz 

t 2 ) 
3 / 2 

] 

. (17b) 

In deriving expressions ( 16b ) and ( 17b ), we have eliminated the rigid body motion of the cylinder by setting u θ (R, Z 0 ) =
0 , i.e., the shorter end face is rigidly clamped. 

Variation 2: G θz (R, Z) = g 0 
θz 

R k 1 Z k 2 , G rθ (R, Z) = g 0 
rθ

R k 1 Z k 2 

The shear moduli are assumed to be given by 

G θz (R, Z) = g 0 θz R 

k 1 Z k 2 , G rθ (R, Z) = g 0 rθ R 

k 1 Z k 2 , (18) 

where k 1 � = 6 and k 2 are integers. Eqs. (12) and (18) have the solution 

φ = C 0 t 
k 1 +4 (g 0 rθ + g 0 θz t 

2 ) −
1 
2 ( k 1 + k 2 +3) 

2 F 1 

(
1 , 

1 − k 2 
2 

; k 1 + 6 

2 

;−g 0 
θz 

t 2 

g 0 
rθ

)
, (19) 

where constant C 0 can be found from Eq. (7) . Proceeding as in the previous case, we obtain expressions for stresses and the

displacement as, 

τθz = 

C 0 

L 3 
0 
R 

3 
t k 1 +4 (g 0 rθ + g 0 θz t 

2 ) −
1 
2 ( k 1 + k 2 +3) [ F 1 (t) + F 2 (t) ] , τrθ = τθz t, (20) 

u θ = 

1 

g 0 
θz 

L 2 
0 
R 

k 1 +2 

∫ (
1 

Z k 2 +1 

dφ

dt 

)
dZ + C 1 (R ) , (21) 

where 

F 1 (t) = 

g 0 
rθ

( k 1 + 4) − g 0 
θz 

( k 2 − 1) t 2 

g 0 
rθ

+ g 0 
θz 

t 2 
2 F 1 

(
1 , 

1 − k 2 
2 

; k 1 + 6 

2 

;−g 0 
θz 

t 2 

g 0 
rθ

)
, 

F 2 (t) = 

2 g 0 
θz 

( k 2 − 1) t 2 

g 0 
rθ

( k 1 + 6) 
2 F 1 

(
2 , 

3 − k 2 
2 

; k 1 + 8 

2 

;−g 0 
θz 

t 2 

g 0 
rθ

)
, (22) 

and C 1 ( R ) can be found by requiring that u θ (R, Z 0 ) = 0 . The integral in Eq. (21) can be evaluated for a known value of the

integer k 2 . 

Variation 3: G θz (R, Z) = g 0 
θz 

( R 
k −2 

Z k +1 
+ 

R k −4 

Z k −1 
) , G rθ (R, Z) = g 0 

rθ
( R 

k −2 

Z k +1 
+ 

R k −4 

Z k −1 
) 

For the shear moduli given by 

G θz (R, Z) = g 0 θz 

(
R 

k −2 

Z k +1 
+ 

R 

k −4 

Z k −1 

)
, G rθ (R, Z) = g 0 rθ

(
R 

k −2 

Z k +1 
+ 

R 

k −4 

Z k −1 

)
, (23) 

where k is an integer, we obtain from Eq. (12) for φ the following 

φ = C 0 t 
k 

[
g 0 rθ (k + 2) + k (g 0 rθ − g 0 θz ) t 

2 
2 F 1 

(
1 , 

k + 2 

2 

; k + 4 

2 

;−g 0 
θz 

t 2 

g 0 
rθ

)]
(24) 

where constant C 0 is determined by using Eq. (7) . The corresponding stresses and the displacement are 

τθz = 

C 0 k (k + 2) (g 0 
rθ

) 
2 
t k ( t 2 + 1) 

L 3 R 

3 (g 0 + g 0 t 2 ) 
, τrθ = τθz t, (25) 
0 rθ θz 
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u θ = 

C 0 g 
0 
rθ

k (k + 2) R 

2 g 0 
θz 

L 3 
0 

ln 

( 

g 0 
θz 

t 2 + g 0 
rθ

g 0 
θz 

t 2 + g 0 
rθ

(Z 
0 
/Z) 

2 

) 

. (26)

We note that for k ( k + 2) = 0, the two shear stresses and the tangential displaceement identically vanish. 

Variation 4: G θz (R, Z) = g 0 
θz 

exp (ηt 2 ) , G rθ (R, Z) = g 0 
rθ

exp (ηt 2 ) 

For 

G θz (R, Z) = g 0 θz exp (ηt 2 ) , G rθ (R, Z) = g 0 rθ exp (ηt 2 ) (27)

where η is a constant, we solve Eq. (13) to get 

φ = 

C 0 

T 1 
3 / 2 

[ 
η exp (−T 2 )(2 ηg 0 rθ g 0 θz t 

2 − 3 (g 0 θz ) 
2 
t 2 + 2 η(g 0 rθ ) 

2 − 2 g 0 θz g 
0 
rθ ) 

+ ηc 1 T 1 
√ 

πT 2 + c 1 g 
0 
θz 

√ 

πT 2 
3 / 2 erf 

(√ 

T 2 

)] 
(28)

where T 1 = g 0 
rθ

+ g 0 
θz 

t 2 , T 2 = − ηT 1 
g 0 
θz 

, c 1 = 3 g 0 
θz 

− 2 g 0 
rθ

η, erf (z) = 

2 √ 

π

∫ z 
0 e 

−t 2 dt is the error function, and constant C 0 is deter-

mined from Eq. (7) . The corresponding stresses and the displacement are 

τθz = 

3 ηC 0 (g 0 
θz 

) 
3 
t 4 exp ( T 1 η/g 0 

θz 
) 

L 3 
0 
R 

3 ( T 1 ) 
5 / 2 

, τrθ = τθz t, (29)

u θ = 

ηC 0 (g 0 
θz 

) 
2 

exp (ηg 0 
rθ

/g 0 
θz 

) 

g 0 
rθ

L 2 
0 
Z 2 

[ 

− t 

(g 0 
rθ

+ g 0 
θz 

t 2 ) 
3 / 2 

+ 

t 

(g 0 
rθ

(Z 
0 
/Z) 

2 + g 0 
θz 

t 2 ) 
3 / 2 

] 

. (30)

We observe from Eqs. (21) , (26) and (30) that the circumferential displacement u θ depends upon the gradation indexes

of the shear moduli, is a non-linear function of R and Z , and u θ / R does not equal a constant. Thus the angle of twist of a

circle of radius R on a cross-section z = constant can be controlled by tuning the shear moduli variations. 

3.2. Solutions for FGM conical cylinder with curved lateral surfaces 

For arbitrarily prescribed spatial variations of G θz ( R, Z ) > 0 and G r θ ( R, Z ) > 0, we cannot analytically solve the problem

when the cylinder mantle is bounded by curved surfaces. Here, we use the WRA to numerically solve the problem by taking

φ(R, Z) = 

N ∑ 

i =1 

b i (s ) 
i 
, (31)

for the stress function. In Eq. (31) , the N coefficients b i (i = 1 , 2 , · · · , N) are to be determined, and s = R/ Z p is not non-

dimensional. Substitution from Eq. (31) into Eq. (8) gives 

τθz (R, Z) = 

1 

L 3 
0 
R 

3 

N ∑ 

i =1 

i b i (s ) 
i 
, τrθ (R, Z) = 

p 

L 3 
0 
R 

2 Z 

N ∑ 

i =1 

i b i (s ) 
i = pt τθz (R, Z) (32)

We note that boundary conditions (6a) and (6b) are exactly satisfied, and boundary condition (7) requires that 

N ∑ 

i =1 

b i 

[ 
( β2 ) 

i − ( β1 ) 
i 
] 

= 

M t 

2 π
(33)

In order to deduce ( N − 1 ) linearly independent equations, we substitute for φ from Eq. (31) into differential Eq. (12) and

get 

N ∑ 

i =1 

ψ i (s ) 
i 
b i = 0 (34)

where 

ψ i = G rθ (R, Z) 
i (i − 4) 

R 

2 
+ G θz ( R, Z) 

ip( ip + 1) 

Z 2 
+ 

G θz ( R, Z) 

G rθ ( R, Z) 

∂ G rθ ( R, Z) 

∂Z 

(
ip 

Z 

)
− G rθ ( R, Z) 

G θz ( R, Z) 

∂ G θz ( R, Z) 

∂R 

(
i 

R 

)
(35)

We multiply both sides of Eq. (34) by the weight function (s ) j ( j = 0 , 1 , 2 , ..., N − 2) , and integrate the resulting equation

over the cylinder domain to get the following (N − 1) algebraic equations 

N ∑ 

i =1 

( X ji b i ) = 0 , j = 0 , 1 , 2 , ...N − 2 , (36)
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where X ji = 

∫ L 0 
z 0 

∫ R o z 

R i z 
ψ i s 

i + j dRdZ . For known expressions of G θz ( R, Z ) and G r θ ( R, Z ), this integral is analytically evaluated by

using the Mathematical Software. It can also be numerically evaluated by using a Gauss quadrature rule. 

The solution of Eqs. (33) and (36) substituted into Eq. (31) gives the Airy stress function φ from which stresses and the

displacement are computed. 

4. Material tailoring 

The material tailoring problem involves finding the shear moduli G θz ( R, Z ) > 0 and G r θ ( R, Z ) > 0 from the following equa-

tion 

∂ G θz (R, Z) 

∂R 

G rθ (R, Z) 

G θz (R, Z) 
τθz −

∂ G rθ (R, Z) 

∂Z 

G θz (R, Z) 

G rθ (R, Z) 
τrθ + G θz (R, Z) 

∂ τrθ

∂Z 
+ G rθ (R, Z) 

(
τθz 

R 

− ∂ τθz 

∂R 

)
= 0 (37) 

for prescribed spatial variations of the shear stresses τ θz and τ r θ . As there are two unknown functions in Eq. (37) , we

assume that the two shear moduli depend upon R and Z through t = R/Z as 

G rθ (t) = g(t ) G θz (t ) (38) 

where g ( t ) > 0 is an arbitrary function of t . 

For a FGM conical cylinder with the curved (power-law) lateral surfaces we assume 

τθz (R, Z) = 

C i 
R 

3 
( s ) 

i (39) 

where i is an integer, and 

C i = 

i M t 

2 π(β i 
2 

− β i 
1 
) 

(40) 

is determined from boundary condition (7) . Substituting from Eq. (39) into equilibrium Eq. (4) , and considering boundary

conditions (6a) and (6b) on the mantle, we get 

τrθ (R, Z) = 

p C i 
R 

2 Z 
( s ) 

i (41) 

We note that for i = 2 and 3, one of the two non-zero shear stresses is constant on a cross-section Z = constant. 

Substituting Eqs. (39) and (41) into Eq. (37) , we get 

t G rθ (t) 

G θz (t) 

∂ G θz (t) 

∂t 
+ 

p t 3 G θz (t) 

G rθ (t) 

∂ G rθ (t) 

∂t 
− p(ip + 1) t 2 G θz (t) − (i − 4) G rθ (t) = 0 (42) 

that has the solution (recall Eq. (38) ) 

G θz (t) = G θz0 exp 

[∫ t 

t 0 

H(x ) dx 

]
(43) 

where 

H(x ) = 

(i − 4) [ g(x ) ] 
2 + p(ip + 1) x 2 g(x ) − p x 3 g ′ (x ) 

x [ p x 2 + g( x ) ] g( x ) 
, 

and G θz 0 equals the value of G θz at the point, t = t 0 . For an isotropic FGM, we have 

G θz (t) = G θz0 (p t 2 + 1) 
ip−i +5 

2 t i −4 (44) 

Expressions (43) and (44) for the shear modulus G θz do not depend upon geometric parameters, β1 , β2 , z 0 , L of the

cylinder. 

5. Example problems 

5.1. Accuracy and convergence of the WRA solution for a curved mantle cylinder 

Consider an isotropic FGM hollow truncated conical cylinder with parabolic lateral surfaces corresponding to p = 2 in

Eqs. (1a) and (1b) . Values assigned to other geometric parameters and the twisting moment are: z 0 = 0 . 5 m , L = 0 . 5 m ,

β1 = 0 . 5 , β2 = 1 . 0 and M t = 2 π × 10 3 KNm . We assume that 

G (R, Z) = G 0 exp (t) (45) 

where G 0 is a reference value of the shear modulus. 

For different number of terms in the trial solution values of the shear stress τ θz (in MPa) at the point (0.64, 0.8) are

presented in Table 1 . It is clear that the stress τ θz has converged for N = 9. Henceforth, we take N = 11. 
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Fig. 2. For G ( R, Z ) given by Eq. (46) , and different values of k 1 and m 1 , variations of the two shear stresses with R on the cross-section Z = 1 . 0 . 

Table 1 

Stress τ θz (0.64, 0.8) for different number of terms in the trial 

function. 

Number of terms N 7 9 11 13 

τ θz 8.4906 8.4914 8.4914 8.4914 

Table 2 

Comparison of the WRA computed τ θz ( R , 0.5) (in MPa) with the exact solu- 

tion. 

R 0.25 0.30 0.35 0.40 0.45 0.50 

WRA 8.1736 13.7267 20.2412 27.1681 34.0081 40.3863 

Exact 8.1736 13.7267 20.2412 27.1681 34.0081 40.3863 

Table 3 

Comparison of the WRA computed τ θz (0.5, Z ) (in MPa) with 

the exact solution. 

Z 0.60 0.70 0.80 0.90 1.00 

WRA 17.0597 7.7326 3.7320 1.9048 1.0217 

Exact 17.0597 7.7326 3.7320 1.9048 1.0217 
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Fig. 3. For G ( R, Z ) given by Eq. (47) and different values of k 2 and m 2 , variations of the two shear stresses with R on the cross-section Z = 1 . 0 . 

 

 

 

 

 

 

 

 

 

 

In order to verify accuracy of the numerical solution, we calculate stresses in the cylinder with p = 1 (thus s = t), and

the shear modulus given by Eq. (14) with g 0 
θz 

= g 0 
rθ

and n = 3 . We compare the WRA computed stresses in Tables 2 and 3

with their exact values found from Eq. (16a) . The two sets of results exactly agree with each other implying that the WRA

with N = 11 gives an accurate approximate solution. It is due to the fact that basis functions ( t ) m , m = 1, 2,…,11, provide

good approximations of t 7 

R 3 g 0 
rθ

(1+ t 2 ) 5 / 2 
appearing in Eq. (16a) for n = 3. 

5.2. Stress distribution 

We consider an isotropic FGM hollow cylinder of Section 5.1 and the shear modulus given by 

G (R, Z) = G 0 R 

k 1 Z m 1 (46) 

G (R, Z) = G 0 

[
1 + k 2 ( t ) 

m 2 
]

(47) 

where G 0 is a reference value of the shear modulus, and k 1 , m 1 , k 2 and m 2 are constants such that G ( R, Z ) > 0 everywhere in

the cylinder domain. We have exhibited in Figs. 2 and 3 the two shear stresses on the cross-section, Z = 1 . 0 , for different

values of k 1 , m 1 and k 2 , m 2 . 

It is observed from Figs. 2 and 3 that the maxima of the shear stresses τ θz occur on the inner surface rather than on the

outer surface as is the case for a homogeneous circular cylinder. However, the maxima of τ r θ is at a point in the cylinder

interior for Eq. (46) describing G ( R, Z ) and ( ( k 1 , m 1 ) = (1 , 1) and (1,0)). For G ( R, Z ) given by Eq. (47) , changing the value of k 2
( m 2 ) from −0.5 to + 0.5 (1 to 2) greatly (slightly) influences the stress distribution on a cross-section. Thus, one can adjust

the maximum shear stress by appropriately varying the shear modulus in the cylinder. 
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Fig. 4. For G ( R, Z ) given by Eq. (48) , and different values of k 1 and m 1 , variations of the two shear stresses with R on the cross-section Z = 1 . 0 . 
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In order to delineate effects of the curvature of the cylinder mantle, we take 

p = 1 / 2 , and 

G θz (R, Z) = G θz0 R 

k 1 Z m 1 , G rθ (R, Z) = 1 . 2 G θz (R, Z) (48)

for the cylinder studied above. We have displayed in Fig. 4 distributions of the two shear stresses on the cross-section,

Z = 1 . 0 , for different values of k 1 and m 1 . It is clear that the maximum of the shear stress τ θz occurs on the inner surface

for k 1 = m 1 = −1 and on the outer surface for other values of k 1 and m 1 . However, the maximum of the shear stress τ r θ is

always on the outer surface for the values of k 1 and m 1 considered here. Comparing plots in Figs. 4 and 2 , we find that the

stress distribution strongly depends upon the mantle geometry, and stresses at a point in the cylinder with p = 1 / 2 are less

than those in the cylinder with p = 2 . 

5.3. Material tailoring 

5.3.1. Isotropic material 

For i = 2 and i = 3 , respectively, in Eqs. (39) and (41) , we see that one of the two non-zero shear stresses in the cylinder

is constant on a cross-section Z = constant. It holds for all values of p . In the following example problems, we set L = 0 . 8 m ,

z 0 = 0 . 2 m , and αi = 

π
10 , and αo = 

π
4 for the cylinder with p = 1. 

a) Straight lateral surfaces, i.e. , p = 1 

The required variation of the shear modulus G θz = G rθ deduced from Eq. (44) is 

G (R, Z) = G ( t 2 + 1) 5 / 2 t −2 for i = 2 , (49)
θz θz0 
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Fig. 5. On the cross-section, Z = 1 . 0 , the radial variation of the shear modulus to achieve uniform shear stresses τ r θ (for i = 2 , p = 1 ) and τ θz (for i = 

3 , p = 1 ). 

Fig. 6. The required spatial variation of the shear modulus in the cylinder to achieve uniform shear stress (a) τ r θ (for i = 2 , p = 1 ), and (b) τ θz (for 

i = 3 , p = 1 ). 
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Fig. 7. For p = 1, 2 and 1/2, the required variation of the shear modulus with R to achieve uniform shear stress (a) τ r θ (for i = 2 ), and (b) τ θz (for i = 3 ). 
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G θz (R, Z) = G θz0 ( t 
2 + 1) 5 / 2 t −1 for i = 3 (50)

Variations with the R- coordinate on the cross-section, Z = 1 . 0 , of the shear moduli (49) and (50) are exhibited in Fig. 5 .

We observe that the shear modulus decreases gradually from the inner to the outer surfaces in order to achieve the uniform

shear stress τ r θ . However, the shear modulus first slowly decreases with an increase in R and then increases to achieve the

uniform shear stress τ θz on the cross-section, Z = 1 . 0 . For i = 2 and i = 3 , the spatial variations of G θz in the cylinder are

exhibited in Fig. 6 . 

b) Curved lateral surfaces with p = 2 and 1/2 

Taking z 0 = 0 . 75 m, L = 0 . 25 m, β1 = 0 . 8 , β2 = 1 . 0 , the results displayed in Fig. 7 for p = 1 , 2 and 1/2 suggest that the

shear modulus increases (decreases) gradually from the inner to the outer surface to achieve either τ r θ or τ θz uniform on a

cross-section for p = 1 and 2 (1/2). 

5.3.2. Orthotropic material 

a) Straight lateral surfaces, i.e. , p = 1 

In order to investigate the effect of material anisotropy, we have plotted in Fig. 8 for g(t) = 0 . 8 , 1 . 0 and 1.2, the variation

of the shear modulus G θz with R and Z to achieve the desired shear stress distributions given by Eqs. (39) and (41) . We see

that the degree of anisotropy signified by the three values assigned to g ( t ) does not qualitatively affect the spatial variation

of the shear moduli but the ratio of their values on the inner and the outer surfaces is noticeably affected. For achieving

the uniform shear stress τ r θ on a cross-section (see Fig. 8 (a)), the ratio of the shear modulus on the outer and the inner

surfaces equals 0.65, 0.5 and 0.4, respectively, for g(t) = 0 . 8 , 1 and 1.2. However, to achieve the uniform shear stress τ θz on

a cross-section (see Fig. 8 (b)), this ratio equals 1.8, 1.3 and 1.0, respectively, for g(t) = 0 . 8 , 1 and 1.2. 
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Fig. 8. For g(t) = 0.8, 1 and 1.2, required variations of the shear modulus G θz with R to achieve the specified distribution of the stress (a) τ r θ (i.e., for 

i = 2 , p = 1 ), and (b) τ θz (i.e., for i = 3 , p = 1 ). 

Fig. 9. For g(t) = t , t 2 and 1 + t , required variations of the shear modulus G θz with R to achieve uniform shear stress τ θz (i.e., for i = 3 , p = 1 ) on the 

cross-section, Z = 1. 
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Fig. 10. For g ( t ) = 0.8, 1 and 1.2, required variations of the shear modulus G θz with R to achieve uniform shear stress (a) τ r θ (i.e., for i = 2 , p = 2 ), and (b) 

τ θz (i.e., for i = 3 , p = 2 ). 
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We now study the problem for g(t) = t , t 2 and ( 1 + t). The required variations of the shear moduli to achieve the uniform

stress τ θz on a cross-section, Z = 1 . 0 are exhibited in Fig. 9 . It is clear that for g(t) = 1 + t , the required variation of the shear

modulus G θz ( R, Z ) decreases from the inner to the outer surfaces but that from the other two expressions it increases with

the curvature of the curve depending upon the expression for g ( t ). 

b) Curved lateral surfaces with p = 2 

We now investigate the effect of material anisotropy on the required variations of the shear moduli to achieve uniform

shear stress τ θz or τ r θ on a cross-section of the FGM hollow cylinder with curved lateral surfaces described by Eqs. (1a) and

(1b) with p = 2 . Taking z 0 = 0 . 75 m , L = 0 . 25 m , β1 = 0 . 8 , β2 = 1 . 0 , we have plotted in Fig. 10 for g(t) = 0 . 8 , 1 . 0 and 1.2, the

variation of the shear modulus G θz with R on a cross-section Z = 1 . 0 . Comparing plots in Figs. 10 and 8 , we find that the

effect of the material anisotropy on results of material tailoring for cylinders with straight and curved lateral surfaces are

qualitatively similar to each other. The ratio of the shear moduli on the inner and the outer surfaces increases with a

decrease in the value of g ( t ). 

For g(t) = 0 . 8 , t and 1 + t , and p = 1 / 2 , L = 0 . 8 m , z 0 = 0 . 2 m , β1 = 0 . 325 and β2 = 1 . 0 , the required variations of the

shear modulus, G θz ( R, Z ), to achieve the uniform stress τ θz on cross-section, Z = 1 . 0 are depicted in Fig. 11 . We see that

G θz ( R, Z ) gradually decreases from the inner to the outer surfaces, and the curve for g(t) = 0.8 is qualitatively different from

those for g ( t ) = t and 1 + t . 

6. Remarks 

We note that equations describing the lateral surfaces strongly influence the form of expressions for the two shear mod-

uli for which the shear stress distributions can be analytically found. The traction-free boundary conditions on the lateral
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Fig. 11. For g(t) = 0.8, t and 1 + t , required variations of the shear modulus G θz with R to achieve the uniform shear stress, τ θz (i.e., for i = 3 , p = 1 / 2 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

surfaces (or the mantle) require that the two non-zero shear stresses satisfy the relation (6a, b) on the cylinder mantle. As

pointed out by Lekhnitskii (1962) , even for a cone with straight lateral surfaces, the problem has an exact solution only for

some specific variations of the two shear moduli. 

Recalling the uniqueness theorem for solutions of the linear elasticity equations for the strain energy density positive

for non-trivial deformations, the exact solutions derived here are the only ones possible provided that surface tractions and

or displacements on the lateral surfaces are exactly satisfied point-wise. However, when only resultant moments and the

resultant forces on the end faces equal the prescribed values, as will most likely be the case in test configurations, then

according to the St.-Venant principle (e.g., see Batra, 1978; Toupin, 1965 ), the present solutions are valid at points away

from the end faces. In experiments, tangential tractions will very likely be applied on the lateral surfaces near the end

faces, as is often the case for the torsion of a straight circular bar. Thus, boundary conditions used here as well as in most

continuum problems are somewhat ideal. 

We could not find a paper in the open literature listing test results for the torsion of a conical cylinder. 

One practical application of a conical cylinder is in coupling two circular shafts of different diameters to transmit torque

(or power) between them. 

We note that a FGM cylinder can be fabricated by 3-D printing to achieve the desired spatial variation of the two shear

moduli. 

7. Conclusions 

For four variations of the two shear moduli in both the radial and the axial directions, we have derived exact closed-form

solutions for the two non-zero shear stresses and the tangential displacement for torsional axisymmetric deformations of an

orthotropic FGM hollow truncated conical cylinder with straight lateral surfaces. For a continuous bi-directional variation of

the two shear moduli and curved cylinder mantles, we have numerically solved the boundary value problems by using the

Weighted Residuals Approach (WRA) whose convergence and accuracy have been established by comparing the numerical

and the analytical solutions. We have shown that only 11 terms in the WRA provide a converged and accurate solution of

the problems studied. We have also ascertained spatial variation of the two shear moduli for one of two shear stresses to

be a constant on a cross-section. The effects of the ratio of the two shear moduli and of the curvature of the lateral surfaces

have been illustrated through numerical solutions of example problems. 

The analytical solutions provided herein should serve as benchmarks for verifying the convergence and accuracy of nu-

merical solutions. The work can be extended for other spatial variations of the shear moduli and loading scenarios. 
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