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Abstract

We analyze electrostatic deformations of rectangular, annular circular, solid circular, and elliptic micro-electromechanical systems

(MEMS) by modeling them as elastic membranes. The nonlinear Poisson equation governing their deformations is solved numerically by

the meshless local Petrov–Galerkin (MLPG) method. A local symmetric augmented weak formulation of the problem is introduced, and

essential boundary conditions are enforced by introducing a set of Lagrange multipliers. The trial functions are constructed by using the

moving least-squares approximation, and the test functions are chosen from a space of functions different from the space of trial

solutions. The resulting nonlinear system of equations is solved by using the pseudoarclength continuation method. Presently computed

values of the pull-in voltage and the maximum pull-in deflection for the rectangular and the circular MEMS are found to agree very well

with those available in the literature; results for the elliptic MEMS are new.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent technological developments and increasing mar-
ket demand have opened promising research opportunities
and engineering priorities in the field of micro-mechanics.
The study of electrostatically actuated micro-electrome-
chanical systems (MEMS) is a special branch of micro-
mechanics. These MEMS are widely used in switches,
micro-mirrors and micro-resonators. At the microscopic
scale, high-energy densities and large forces are available,
and the electrostatic actuation may dominate over other
kinds of actuation.

Most of the electrostatically actuated MEMS consist of
an elastic plate suspended over a stationary rigid plate. The
plates are conductive and a dielectric material fills the gap
between them. An applied electric voltage between the two
plates results in the deflection of the elastic plate, and a
consequent change in the MEMS capacitance. The applied
e front matter r 2006 Elsevier Ltd. All rights reserved.
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electrostatic voltage has an upper limit, beyond which the
electrostatic Coulomb force is not balanced by the elastic
restoring force in the deformable plate, the two plates snap
together and the MEMS collapses. This phenomenon,
called pull-in instability, was simultaneously observed
experimentally by Taylor [1], and Nathanson et al. [2].
The accurate estimation of the pull-in voltage is crucial in
the design of electrostatically actuated MEMS device. In
particular, in micro-mirrors [3] and micro-resonators [4]
the designer avoids this instability in order to achieve stable
motions; on the other hand in switching applications [5] the
designer exploits this effect to optimize the performance of
the device.
A simple model for estimating the pull-in parameters

proposed in [2] is based on a lumped mass–spring system.
This model qualitatively describes the pull-in phenomenon
but it overestimates the pull-in voltages for many applica-
tions [6]. A possible extension of the lumped model consists
of modeling the suspended plate as a membrane, and
discarding the fringing electric fields. As discussed in [7],
the membrane approximation is accurate and reliable for
many MEMS devices such as micro-pumps made of thin
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glassy polymers, and grating light valves comprised of
stretched thin ribbons. More refined linear and nonlinear
models have been studied in [8,9].

Solutions by the shooting method (see e.g. [10, Chapter
7] for a discussion, and a list of references) can be obtained
only for particular MEMS geometries that exhibit specific
symmetries [11], that allow for the reduction of two-
dimensional (2-D) to 1-D problems. However, it has been
found in [12] that these simplifications may miss some
unstable branches. Indeed, for an annular circular mem-
brane the solution after the pull-in instability may break
the symmetry inherited by the domain shape, loading, and
boundary conditions. Therefore, it is crucial to develop
accurate and reliable numerical methods for determining
the pull-in instability parameters, and study, for arbitrary
geometries, the MEMS behavior beyond the pull-in
instability. Bao and Mukherjee [13] and Chyuan et al.
[14] have employed the boundary element method to
analyze MEMS.

Recently, considerable research in computational me-
chanics has been devoted to the development of meshless
methods. One objective of these methods is to eliminate, or
at least alleviate the difficulty of meshing and remeshing
the entire structure, by only adding nodes at or deleting
nodes from desired locations in the structure. Meshless
methods may also alleviate some other problems associated
with the finite element method, such as locking and element
distortion. In many applications, they provide smooth and
accurate approximate solutions with a reduced number of
nodes. Therefore, only a few variables are needed in
numerical models.

Meshless methods include the element-free Galerkin [15],
hp-clouds [16], the reproducing kernel particle (RPK) [17],
the smoothed particle hydrodynamics [18], the diffuse
element [19], the partition of unity finite element [20], the
natural element [21], meshless Galerkin using radial basis
functions [22], the meshless local Petrov–Galerkin (MLPG)
[23], and the modified smoothed particle hydrodynamics
(MSPH) [24]. All of these methods, except for the MLPG,
the MSPH, and the collocation, use shadow elements for
evaluating integrals in the governing weak formulations
[25].

The MLPG method has been successfully applied to
several linear problems in mechanics: static linear plane
elasticity [23]; vibrations of elastic planar bodies [26]; static
analysis of thin plates [27]; static analysis of beams [28];
vibrations of cracked beams [41]; static analysis of
functionally graded materials [29]; analysis of dynamic
thermomechanical deformations of functionally graded
materials [30]; analysis of axisymmetric transient heat
conduction in a bimaterial disk [31]; and wave propagation
in a segmented linear elastic bar [32]. Nonlinear problems
analyzed with the MLPG method include adiabatic shear
banding in thermoviscoelastoplastic materials [33], and the
analysis of pull-in instability in micro-beams [34].

In order to completely eliminate a background mesh, the
MLPG method is based on a local weak formulation of the
governing equations and employs meshless interpolations
for both the trial and the test functions. The trial functions
are constructed by using the moving least squares (MLS)
[35] approximation which relies on the location of scattered
points in the body. In the Petrov–Galerkin formulation,
test functions may be chosen from a different space than
the space of trial solutions. Thus, several variations of the
method may be obtained (see e.g. [25] for details).
Here we use the MLPG method to investigate the

behavior of electrostatically actuated MEMS modeled as
elastic membranes, and the method of Lagrange multipliers
to impose displacement-type boundary conditions. Hence,
a local symmetric augmented weak formulation (LSAWF)
of the problem is introduced. Trial functions in the weak
formulation are constructed using the MLS approxima-
tion, and weight functions in the MLS framework are
chosen as test functions (MLPG1, [25]). In order to find the
MEMS deformations beyond the pull-in instability the
pseudoarclength continuation method (see e.g. [36,37]) is
employed for solving the system of nonlinear equations
resulting from the MLPG formulation. The method is
applied to four distinct geometries: a rectangle, a circular
disk, an annular disk, and an elliptic disk. In the first case,
the effect of partial electrodes is studied, and computed
results are compared with those obtained with the shooting
method applied to the problem derived by generalizing the
approach of [7] to partially electroded plates. In the second
case, the computed results are validated by comparing
them with those of [38]. For the annular circular disk, when
symmetry breaking occurs, and no solution by the shooting
method is available, the computed solution is compared
with the finite-difference solution of [12]. To the authors’
knowledge, the elliptic geometry has not been studied thus
far. Here, the effect of the ellipse aspect ratio on the pull-in
instability of the MEMS is investigated, and MLPG results
are compared with those obtained by solving the 2-D
boundary-value problem by the finite-difference method.
The rest of the paper is organized as follows. In Section 2

we present governing equations of the electrostatically
actuated MEMS. In Section 3 we describe the MLPG
method, including the LSWAF, the resulting set of
nonlinear equations for the fictitious nodal deflections,
and the pseudoarclength method. Computed solutions are
presented in Section 4, and comparisons are made with
available results. Conclusions are summarized in Section 5.
In Appendix A we review the MLS approximation for
constructing basis functions, and in Appendix B we give a
brief description of confocal elliptic coordinates.

2. Governing equations

A schematic sketch of the problem studied is shown in
Fig. 1. We assume that (i) both plates are perfect
conductors, and are separated by a dielectric layer of
permittivity 2, (ii) the bottom plate is rigid, and the top
one is flexible, and can be modeled as a membrane,
(iii) the membrane is either clamped or free on the
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Fig. 1. Geometry of the Micro-electromechanical system.
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Fig. 2. Sketch of the domain, subdomains and different boundaries.
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boundary, (iv) a potential difference V exists between the
two plates, (v) electric fringing fields are negligible (see e.g.
[7]), and (vi) the uniform initial gap, h, between the two
plates is much smaller than a typical linear dimension of
the membrane. Under these assumptions the governing
equation for the deflection u of the membrane becomes

T 4 uðxÞ ¼ f EðuðxÞ;xÞ; x 2 O. (1)

Here O is the membrane domain, x a generic point, T the
tension in the membrane, 4 the Laplacian operator, and f E

the electrostatic force on the top plate. The electrostatic
load is given by

f EðuðxÞ;xÞ ¼
2 V 2

2h2

dðxÞ

ð1þ uðxÞ=hÞ2
,

where

dðxÞ ¼
1; x 2 OE;

0; xeOE

(

and OE is the membrane part where the electric force is
effective.

We nondimensionalize the deflection by the initial gap h,
the space coordinates by the characteristic domain length
L, and obtain

4u ¼ l
d

ð1þ uÞ2
; l ¼

2 V 2L2

2h3T
, (2)

where we have used the same symbols to indicate
nondimensional quantities as were used earlier for dimen-
sional quantities. Because of the term ð1þ uÞ2 the problem
is nonlinear.

3. Meshless method

3.1. Local symmetric augmented weak formulation

We rewrite the nonlinear Poisson equation (2) as

4u ¼ lgðu;xÞ, (3)
where

gðu; xÞ ¼
dðxÞ

ð1þ uÞ2
.

The boundary of the domain O is partitioned into two
disjoint parts:

qO ¼ Gu [ Gn; G
�

u \ G
�

n ¼ ;.

On Gu essential homogeneous boundary conditions are
prescribed, that is

uðxÞ ¼ 0; x 2 Gu,

while on Gn natural homogeneous boundary conditions are
imposed, that is

ruðxÞ � nðxÞ ¼ 0; x 2 Gn,

where n is the outward unit normal.
We partition the boundary Gu into s connected parts,

say Gð1Þu ; . . . ;G
ðsÞ
u . In order to enforce the essential boundary

conditions we introduce s Lagrange multipliers fields
gð1Þ; . . . ; gðsÞ, each of them being defined on the correspond-
ing part GðaÞu of Gu.
We introduce a LSAWF of the problem on a subdomain

OS of the domain O:

�

Z
OS

ru � r ~udO�
Z
OS\OE

lgðu;xÞ ~udOþ
Z

LS

ru � n ~u dG

þ
Xs
a¼1

Z
GðaÞ
Su

u ~gðaÞdGþ
Z
GðaÞ
Su

~u gðaÞdG

 !
¼ 0. ð4Þ

Here, as illustrated in Fig. 2, GðaÞSu is the intersection of qOS

with GðaÞu , LS is the part of qOS enclosed in the domain O, ~u
and ~gðaÞ are smooth test functions defined, respectively, in
OS and GðaÞSu . The homogeneous natural boundary condi-
tions have been embedded in the weak formulation of the
problem.
In the MLPG method test functions and trial solutions

are chosen from different spaces, and the test function need
not vanish where essential boundary conditions are
specified. In order to simplify the algebraic work, we select
test functions ~u which vanish on the inner boundary LS;
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therefore the LSAWF (4) reduces to

�

Z
OS

ru � r ~udO�
Z
OS\OE

lg ~udO

þ
Xs
a¼1

Z
GðaÞ
Su

u ~gðaÞdGþ
Z
GðaÞ
Su

~ugðaÞ dG

 !
¼ 0. ð5Þ

Subdomains OS are taken to be circles in order to facilitate
the numerical evaluation of integrals.

3.2. Discrete nonlinear formulation

In order to seek an approximate solution of the
nonlinear problem, we use 2-D MLS basis functions1 (see
Appendix A) to express the trial solution in terms of nodal
unknowns, û1; . . . ; ûN . Note that the MLS basis functions
do not have the Kronecker delta property. Therefore nodal
unknowns, û1; . . . ; ûN , do not equal values of the trial
solution at the nodes. The Lagrange multiplier field gðaÞ is
approximated by 1-D MLS basis functions constructed
from nodes lying on the curve GðaÞu . We emphasize that only
nodes belonging to GðaÞu are employed for constructing the
field gðaÞ. Therefore

ðgðaÞÞh ¼
XnðaÞ
b¼1

ĝðaÞb wðaÞb ,

where nðaÞ is the number of nodes belonging to GðaÞu , wðaÞb ’s
are 1-D MLS basis functions, and ĝðaÞb ’s are fictitious nodal
values. We collect ĝðaÞb ’s into s distinct vectors ĉð1Þ; . . . ; ĉðsÞ,
and denote the total number of Lagrange multiplier nodes
by NL:¼

Ps
a¼1n

ðaÞ.
In order to derive N þNL equations for nodal un-

knowns û and ĉð1Þ; . . . ; ĉðsÞ, we consider in (5) N sub-
domains OS1; . . . ;OSN , and N þNL independent test
functions: ~u1; . . . ; ~uN , and ~gðaÞ1 ; . . . ; ~g

ðaÞ
nðaÞ , a ¼ 1; . . . ;s. The

discrete nonlinear equations obtained from (5) are

Kûþ lGðûÞ þ
Xs
a¼1

RðaÞĉðaÞ ¼ 0, (6a)

VðaÞû ¼ 0; a ¼ 1; . . . ;s, (6b)

where

½K�ij ¼ �

Z
Oi

S

rcj � r ~ui dO; i; j ¼ 1; . . . ;N, ð7aÞ

½GðûÞ�i ¼ �

Z
Oi

S\OE

gðuh;xÞ ~ui dO; i ¼ 1; . . . ;N, ð7bÞ

½RðaÞ�ib ¼

Z
Gi ðaÞ
Su

wðaÞb ~uidG; i ¼ 1; . . . ;N; b ¼ 1; . . . ; nðaÞ,

ð7cÞ

½VðaÞ�bj ¼

Z
Gb ðaÞ
Su

cj ~g
ðaÞ
b dG; b ¼ 1; . . . ; nðaÞ; j ¼ 1; . . . ;N.

ð7dÞ
1The boundary qO of the 2-D domain O is approximated by piecewise

straight lines connecting adjacent nodes on it.
For subdomains having the shape of a sector of a circle,
integrals in Eqs. (7a)–(7d) can be computed by the Gauss
quadrature rule.
In the MLPG1 method the test function ~ui for the ith

node is chosen to be the weight function W i used in the
MLS approximation, but of a different support. That is,

~uiðxÞ ¼W iðZixÞ,

where Zi is a positive number representing the ratio of the
supports of the test, and the weight functions for the ith
node. Test functions for the Lagrange multipliers are
chosen to be the test functions ~ui’s restricted to the
boundary of the domain.
Let rows of the ðN �NLÞ �N matrix Y be comprised of
ðN �NLÞ linearly independent null vectors of the NL �N

matrix V obtained by appending rows of matrices VðaÞ’s,
and set

û ¼ YTu. (8)

Substitution from (8) into (6b) gives

VðaÞYTu ¼ 0; a ¼ 1; . . . ;s,

which are identically satisfied for every ðN �NLÞ-vector u.
Similarly, let rows of the ðN �NLÞ �N matrix X equal
ðN �NLÞ linearly independent null vectors of the NL �N

matrix RT obtained by appending columns of matrices
RðaÞ’s, and transposing the entire matrix. Then

XRðaÞ ¼ 0; a ¼ 1; . . . ;s.

Premultiplying both sides of Eq. (6a) by X and substituting
from (8) we obtain the following reduced system of ðN �
NLÞ nonlinear equations for u:

K̄uþ lḠðuÞ ¼ 0, (9)

where

K̄ ¼ XKYT; ḠðuÞ ¼ XGðYTuÞ.

Having found u from (9), û is computed from (8).

4. Pseudoarclength continuation method

The system of nonlinear equations (9) may not admit a
unique solution u for an arbitrary value of the parameter l.
We use the pseudoarclength continuation method (see e.g.
[36,37]) to solve Eqs. (9). It enables one to find the
complete bifurcation path and the symmetry breaking
bifurcation. The pseudoarclength method exhibits the
stability and the reliability of the new displacement pull-
in extraction (DPIE) scheme presented in [39], since it does
not treat the applied voltage as a given parameter but as an
unknown. Furthermore, it detects symmetry breaking
bifurcations which seem not to be predicted by the DPIE
algorithm.
In this method a new parameter s is added so that l and

u are considered functions of s. If the solution ðuk; lkÞ of
Eqs. (9) is known at s ¼ sk, the solution ðukþ1; lkþ1Þ ¼

ðuk þ Dukþ1; lk þ Dlkþ1Þ at the abscissa skþ1 ¼ sk þ Dskþ1
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is found by solving the system of equations:

K̄ukþ1 þ lkþ1Ḡðukþ1Þ ¼ 0,

ðukþ1 � ukÞ
TM_uk þ ðlkþ1 � lkÞ

_lk � Dskþ1 ¼ 0, ð10Þ

where M is a symmetric positive definite matrix, and a
superimposed dot indicates derivative with respect to s. In
many cases (see e.g. [36,37]), M is chosen to be the identity
matrix, but for the present problem, numerical experiments
have shown that more stable solutions are obtained by
choosing

M ¼ WTW,

where W is defined by (27) in Appendix A. This implies that
the arc length is computed by using the actual nodal values,
rather than the fictitious ones.

The solution of the set (10) of nonlinear equations, for
the unknowns Dukþ1 and Dlkþ1, is found by using
Newton’s iterations. Hence the generic mth iteration is

K̄
ðmÞ
kþ1 Ḡðu

ðmÞ
kþ1Þ

ð_ukÞ
TM _lk

2
4

3
5 DuðmÞkþ1

DlðmÞkþ1

2
4

3
5

¼ �

K̄u
ðmÞ
kþ1 þ lðmÞkþ1Ḡðu

ðmÞ
kþ1Þ

ðu
ðmÞ
kþ1 � ukÞ

TM_uk þ ðl
ðmÞ
kþ1 � lkÞ

_lk � Dskþ1

2
4

3
5, ð11Þ

where ðDuðmÞkþ1;Dl
ðmÞ
kþ1Þ indicates the mth solution increment;

ðu
ðmÞ
kþ1; l

ðmÞ
kþ1Þ is the updated solution at the ðm� 1Þth

iteration, i.e.

u
ðmÞ
kþ1 ¼ uk þ

Xm�1
h¼1

DuðhÞkþ1; lðmÞkþ1 ¼ lk þ
Xm�1
h¼1

DlðhÞkþ1.

K̄
ðmÞ
kþ1 is the tangent stiffness at the ðm� 1Þth iteration, i.e.

K̄
ðmÞ
kþ1 ¼ K̄þ lðmÞXDðmÞkþ1Y

T,

with

½D
ðmÞ
kþ1�ij ¼

Z
Oi

S\OE

2

ð1þ wðxÞTYTu
ðmÞ
kþ1Þ

3
cj ~ui dO.

Iterations are performed until the infinity norm of the
incremental deflection field, and the incremental l is below a
prescribed tolerance eT. That is, iterations are performed till

max sup
x2O
½wðxÞTYTDuðmÞkþ1�;Dl

ðmÞ
kþ1

� �
oeT.

Once the solution ðukþ1; lkþ1Þ has been found, the direction
vector ð_ukþ1; _lkþ1Þ, needed for the subsequent iteration is
determined by solving

K̄
ðm̄kþ1Þ

kþ1 Ḡðu
ðm̄kþ1Þ

k Þ

ð_ukÞ
TM _lk

" #
_ukþ1

_lkþ1

" #
¼

0

1

� �
,

where m̄kþ1 is the number of iterations required for the
solution to converge. The direction vector is then rescaled
according to

ð_ukþ1Þ
TM_ukþ1 þ ð

_lkþ1Þ
2
¼ 1.
The length Dskþ2 for the next step is determined from the
knowledge of the length Dskþ1 and the iteration number m̄kþ1

using the following simple adaptive scheme

Dskþ2 ¼ Dskþ1

ffiffiffiffiffiffiffiffiffiffi
t

m̄kþ1

r
,

where t represents the desired number of iterations for the
convergence of Newton’s method. The parameter t is chosen
in such a way that if Newton’s method converges rapidly the
step size is increased, while if Newton’s method converges
slowly the step size is decreased [36].
The pseudoarclength algorithm is started by assuming

that for s0 ¼ 0 the solution is the pair ðu0; l0Þ ¼ ð0; 0Þ, and
computing the solution u1 for a given small l1 with the
standard Euler method resulting from linearizing (9) about
ðu0; l0Þ. Once the solution corresponding to this small
electrostatic force is computed, the direction vector ð_u1; _l1Þ
is estimated by the linear approximation

_u1 ¼
1

Ds1
ðu1 � u0Þ; _l1 ¼

1

Ds1
ðl1 � l0Þ,

where the initial arc length is

Ds1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1Þ

TMu1 þ ðl1Þ
2

q
.

We note that when the tangent stiffness matrix, K̄,
becomes singular the whole matrix is generally nonsingular
unless a bifurcation occurs. This means that the pull-in
instability may be detected, and the MEMS post-instability
behavior analyzed.
When a bifurcation occurs the whole matrix on the left-

hand side of Eq. (11) becomes singular, and crossing the
bifurcation point implies a change in the sign of the
determinant of this matrix (see [36]). In this case, the
bifurcation point is determined by using the secant method,
and the bifurcation path is followed by using the normal
vector to the original path as an initial estimate of the
direction vector.

5. Results

We compare results for a rectangular, a circular, an
annular circular, and an elliptic MEMS from the MLPG
method with those obtained using either the shooting
method or the finite-difference method. For the elliptic
MEMS, we investigate the effect of the ellipse aspect ratio
on the pull-in instability. To the authors’ knowledge, no
earlier results are available for the elliptic MEMS.
For the nondimensional problem (3) parameters com-

pared are lPI and kuPIk1, and, when a symmetry breaking
bifurcation occurs, lSB and kuSBk1. lPI and kuPIk1
indicate, respectively, the value of the parameter l for
which the pull-in instability occurs, and the corresponding
infinity norm of the deflection field; lSB and kuSBk1
represent, respectively, the highest l for which a symmetry
breaking bifurcation occurs, and the corresponding infinity
norm of the deflection field.



ARTICLE IN PRESS
R.C. Batra et al. / Engineering Analysis with Boundary Elements 30 (2006) 949–962954
For a specific MEMS, the dimensional value of the pull-
in voltage (symmetry breaking bifurcation) is obtained by
substituting lPI (lSB) into (2), while the dimensional value
of the membrane deflection at the pull-in instability
(symmetry breaking bifurcation) is obtained by multi-
plying kuPIk1 ðkuSBk1Þ by the initial gap h.

The MLS approximation (see Appendix A) uses linear
monomial basis, m ¼ 3. The size ri of the support of a
weight function varies with the problem, and other
constants defining weight functions are k ¼ 1, ci ¼ ri=4.
The integration is performed by using nine quadrature
points for each line integral, and 9� 9 quadrature points
for each 2-D subdomain. Values of basis functions at
quadrature points are stored in the computer memory to
economize on the CPU time. The pseudoarclength
continuation is started with l1 ¼ 0:1, t ¼ 3, and the
tolerance eT is set equal to 10�6. If the convergence is not
achieved in 10 Newton’s iterations the incremental arc
length Ds is reduced by a factor of 2, and the algorithm is
restarted from that point. In the neighborhood of the pull-
in instability, more steps are needed to accurately estimate
the pull-in parameters.

5.1. Rectangular MEMS

We consider a rectangular MEMS of unit length, width
equal to 1=8, clamped on edges x1 ¼ 0; 1, and free on edges
x2 ¼ 0; 1=8. We assume that the electrostatic force is
exerted only for x1 2 ðe; 1� 2eÞ.

5.1.1. Reduction of boundary-value problem to initial-value

problem

Following [7], we assume that the solution is only a
function of x1, and is symmetric with respect to the line
x1 ¼ 1=2, yielding the following 1-D nonlinear boundary-
value problem:

u001ðx
1Þ ¼ 0; x1 2 ð0; eÞ, ð12aÞ

u002ðx
1Þ ¼

l

ð1þ u2ðx1ÞÞ
2
; x1 2 ðe; 1=2Þ, ð12bÞ

u1ð0Þ ¼ 0; u02ð1=2Þ ¼ 0, ð12cÞ

u1ðeÞ ¼ u2ðeÞ; u01ðeÞ ¼ u02ðeÞ, ð12dÞ

where a superimposed prime indicates derivative with
respect to x1.

The solution of the homogeneous equation (12a) for x1 2

ð0; eÞ is

u1ðx
1Þ ¼ c1x

1 þ c2; c1; c2 2 R.

By imposing the first boundary condition in (12c), we
obtain

c2 ¼ 0.

The interphase conditions (12d) give

u2ðeÞ ¼ c1e, ð13aÞ

u02ðeÞ ¼ c1. ð13bÞ
Hence the constant c1 may be eliminated, and the
deflection field for x1 2 ðe; 1=2Þ is determined by solving
the boundary-value problem

u002ðx
1Þ ¼

l

ð1þ u2ðx1ÞÞ
2
; u2ðeÞ ¼ u02ðeÞe,

u02ð1=2Þ ¼ 0. ð14Þ

The constant c1 is subsequently determined by either (13a)
or (13b).
Next, by generalizing the approach of [7] to partially

electroded plates we convert the boundary-value problem
to the initial-value problem

d2w

dZ2
¼

1

w2
;

dw

dZ
ð0Þ ¼ 0; wð0Þ ¼ 1.

The above transformation is achieved by applying the
change of variables:

Z ¼ bðð1
2
� eÞ � x1Þ; u2ðx1Þ ¼ awðZÞ � 1,

a ¼
1

wðbð1
2
� eÞÞ þ ebw0ðbð1

2
� eÞÞ

,

l ¼
b2

ðwðbð1
2
� eÞÞ þ ebw0ðbð1

2
� eÞÞÞ3

. (15)

We numerically solve the aforementioned initial-value
problem with Mathematica using the built-in function
NDSolve, obtain wðZÞ, and for every pair ðw; bÞ we
determine the corresponding pair ðu2ðx1Þ; lÞ, and the
constant c1. Once the deflection field is known on the
entire strip we compute its infinity norm, which equals
the mid-span deflection.

5.1.2. Numerical results and comparisons

For the solution of the 2-D boundary-value problem by
the MLPG method, we use a regular grid of 33� 5 nodes
on the MEMS domain as shown in Fig. 3. Radii ri of the
support of each weight function (Eq. (28)) are set equal to
1=8. The subdomains of integration are determined by
supports of test functions, and their radii are chosen equal
to 1=32.
Fig. 4 exhibits the bifurcation diagram showing the

infinity norm of the deflection versus the load parameter l.
We emphasize that beyond the pull-in voltage there is no
steady state configuration where the two plates are
separate. For different values of the parameter e, we
compare in Table 1 the MLPG solutions with those
obtained by solving the problem by the method of Section
5.1.1. It is clear that values of lPI predicted by the MLPG
method are very close to those obtained from the method
of Section 5.1.1; the maximum difference between the two
for e ¼ 0:4 equals 0:3%. The maximum deviation between
the two values of kuPIk1 equals 1:28%, and occurs for
e ¼ 0:3.
For e ¼ 0 and l ¼ 1:19, Fig. 5 gives the deflected

shape of the MEMS for a configuration beyond the
pull-in instability. The MLPG solution is independent of
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Fig. 3. Uniform grid of 33� 5 nodes on the rectangular MEMS. The electrostatic force is effective in the shaded region.
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Fig. 4. For different values of e, comparison of the bifurcation diagrams obtained with the method of Section 5.1.1 (solid line) and the MLPG method

(polygons) for the rectangular MEMS.

Table 1

For the rectangular MEMS, comparison of the MLPG results with those

obtained by the method of Section 5.1.1

e Method of Section 5.1.1 MLPG

lPI kuPIk1 lPI kuPIk1

0 1.400 0.3927 1.400 0.3885

0.2 1.584 0.3671 1.584 0.3671

0.3 1.996 0.3662 1.997 0.3615

0.4 3.412 0.3470 3.421 0.3475
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the x2 coordinate, and supports the assumption made in
Section 5.1.1. The maximum deflection of the MEMS
exceeds kuPIk1 because no constraint is imposed on the
maximum deflection of a point. Deformed shapes of the
membrane beyond the pull-in deflection may be unstable
and hence physically unrealizable.

5.2. Circular disk

We consider a disk of unit radius clamped along its
periphery.
5.2.1. Reduction of boundary-value problem to initial-value

problem

Following [38] we assume that the solution is a function
of the radial coordinate r only. Thus, the problem defined
by Eq. (2) reduces to the following 1-D nonlinear
boundary-value problem:

u00ðrÞ þ
1

r
u0ðrÞ ¼

l

ð1þ uðrÞÞ2
; uð1Þ ¼ 0; u0ð0Þ ¼ 0, (16)

where a superimposed prime indicates derivative with
respect to r.
We reduce the boundary-value problem (16) to the

initial-value problem

d2w

dZ2
þ

1

Z
dw

dZ
¼

1

w2
;

dw

dZ
ð0Þ ¼ 0; wð0Þ ¼ 1,

by applying the following change of variables:

Z ¼ br; uðrÞ ¼ awðZÞ � 1; a ¼
1

wðbÞ
; l ¼

b2

wðbÞ3
.

As for the rectangular MEMS, we numerically solve the
initial-value problem with Mathematica using the built-in
function NDSolve, and for every pair ðw; bÞ determine the
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corresponding pair ðuðrÞ; lÞ. Once the deflection field is
known on the entire disk we compute its infinity norm,
which equals the deflection of the disk center.

5.2.2. Numerical results and comparisons

Instead of considering the entire disk we analyze
deformations of a quarter of the disk by using the grid of
86 nodes shown in Fig. 6. Here we do not assume that the
deflection is independent of the circumferential coordinate
W. On straight boundaries we impose homogeneous natural
boundary conditions arising from the symmetry of the
problem. We thus tacitly neglect solutions that do not
exhibit the presumed symmetries. The size ri of the support
of each weight function is chosen to be 2=3. Subdomains of
integration are determined by supports of test functions,
and their radii are chosen equal to the distance between the
chosen node and the one closest to it.

Fig. 7 shows the infinity norm of the deflection versus the
load parameter l. Results from the MLPG method and
those from the technique of Section 5.2.1 are compared in
Table 2; the difference between the two values of lPI, and
kuPIk1 equal 0:32% and 1:6%, respectively.

Fig. 8 depicts the deformed shape of a quarter of the disk
for a voltage less than the pull-in voltage with the
deflection at the center greater than the pull-in deflection.
The computed deflection is found to be independent of the
circumferential coordinate, and supports the assumption
made in Section 5.2.1.

5.3. Annular disk

We consider an annular disk of inner radius 0:1, and
outer radius 1 clamped along its inner and outer
boundaries.

Following [12] we study only one-half of the annular
domain, and impose homogeneous natural boundary
conditions on the straight edges. We thus do not compute
solutions that are asymmetric about the horizontal axis.
The symmetry breaks after the pull-in instability, and the
bifurcated solution does not inherit the symmetry of the
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Table 2

For the circular MEMS, comparison of the MLPG results with those from

the method of Section 5.2.1

Method of Section 5.2.1 MLPG

lPI kuPIk1 lPI kuPIk1

0.7890 0.4365 0.7915 0.4433
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Fig. 8. Deformed shape of a quarter of the circular MEMS for l ¼ 0:485.
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Fig. 9. Locations of 165 nodes on one-half of an annular disk.
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domain. We compare our results with those obtained in
[12] by the finite-difference method using 1600 points.

In the MLPG implementation, we use the 165 nodes
located as shown in Fig. 9. Values of weight functions
parameters are the same as those for the circular disk
problem studied in Section 5.2.

Fig. 10 exhibits the infinity norm of the deflection versus
the load parameter l. Numerical solutions from the MLPG
and the finite-difference methods are compared in Table 3.
The symmetry breaking voltage, lSB, is less than the pull-in
voltage lPI, and the maximum difference between the
corresponding values of lPI, kuPIk1 and lSB is 1:53%.

Figs. 11a and b report the symmetric, and the
asymmetric deformed shapes of the annular disk after the
pull-in, for l ¼ 1:34, and 1:18, respectively.

Fig. 12 depicts the variation of the pull-in parameters,
lPI and kuPIk1, with the ratio (inner radius)/(outer radius),
keeping the outer radius at the constant value 1. The
MLPG results are computed using �165 nodes. The
nondimensional pull-in voltage data are fitted with a
quadratic polynomial (dashed line), and the corresponding
nondimensional pull-in maximum deflections with a poly-
nomial of degree zero (solid line). Expressions for the
aforementioned polynomials are

lPI ¼ 1:33þ 16:3r2; kuPIk1 ¼ 0:390,

where r is the ratio (inner radius)/(outer radius). Whereas
the maximum pull-in deflection is nearly independent of the
ratio of the inner to the outer radius of the MEMS, the
pull-in voltage increases essentially quadratically with this
ratio. Fig. 13 exhibits the dependence of symmetry break-
ing parameters, lSB and kuSBk1, upon the ratio of the inner
to the outer radius of the annular disk. With increasing
inner radii, the nondimensional pull-in voltage lPI sig-
nificantly increases due to increased stiffness of the system,
and the same holds for the nondimensional lowest
symmetry breaking voltage, lSB. Whereas the nondimen-
sional pull-in maximum deflection, kuPIk1, is virtually
independent of the inner radius of the disk, the nondimen-
sional symmetry breaking maximum deflection, kuSBk1,
decreases with increasing inner radius. Expressions for the
best fit polynomials in Fig. 13 are

lSB ¼ 1:27þ 16:6r2; kuSBk1 ¼ 0:513� 0:254r.

Fig. 14 shows the variation with the ratio r, of the
quantity ðr� � rÞ=ð1� rÞ, where r� is the ratio between the
radial location of the nondimensional pull-in maximum
displacement kuPIk1, and the outer radius of the ring.
MLPG data are fitted with a quadratic polynomial (solid
line) whose expression is

r� � r
1� r

¼ 0:343þ 0:450r� 0:423r2.

5.4. Elliptic disk

We consider an ellipse of semi-major axis a ¼ 1, semi-
minor axis b, and clamped along its periphery. We analyze
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Table 3

Comparison of the MLPG results with the finite-difference solution for the

annular MEMS with inner radius equal to one-tenth of the outer radius

Finite-difference MLPG

lPI kuPIk1 lSB lPI kuPIk1 lSB

1.544 0.393 1.486 1.548 0.399 1.485
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one quarter of the ellipse, impose homogeneous natural
boundary conditions on the straight edges, and investigate
the effect of the aspect ratio b=a on the pull-in instability of
the system. As before, we do not compute solutions that
are asymmetric about either one of the two major axes of
the ellipse.

We study four aspect ratios, namely 0:25; 0:5; 0:75, and
0:95. We use the grids of 86; 87; 85, and 94 nodes as shown
in Figs. 15a–d. For a uniformly loaded elliptical membrane
clamped on its edges, these nodal placements give an error
of less than 0:7% in the maximum deflection with respect
to the analytical solution

uaðx1;x2Þ ¼ k
x1

a

� �2

þ
x2

b

� �2

� 1

 !
,

k ¼ 1
2

a2
þ

2

b2

� ��
. ð17Þ

Here, x1 and x2 are Cartesian coordinates aligned with the
major and the minor axes of the ellipse. Values of weight
functions parameters are the same as for the circular disk,
and the annular disk problems studied in previous sections.

Fig. 16 shows pull-in bifurcation diagrams for four
elliptic MEMS. Due to an increase in the stiffness of the
system with a decrease in the aspect ratio, the nondimen-
sional pull-in voltage increases significantly with a decrease
in b=a. Results are compared with finite-difference
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solutions obtained by mapping the elliptic domain into a
strip via the change of coordinates given in Appendix B. In
elliptic coordinates, homogeneous essential boundary
conditions are imposed on the edge x1 ¼ arctanhðb=aÞ,
and homogeneous natural boundary conditions are im-
posed on the remaining edges. A grid of 50� 70 nodes
located, respectively, along x1 and x2 directions is used.
With a considerably reduced number of nodes (�90 versus
3500), the MLPG method is able to reproduce finite-
difference results within 2% error for the nondimensional
pull-in voltage, and less that 4% error for the nondimen-
sional pull-in displacement.
Fig. 17 depicts the variation of the pull-in parameters,

lPI and kuPIk1, with the aspect ratio b=a. The nondimen-
sional pull-in voltage data are fitted with a quadratic
polynomial in a=b (dashed line), and the corresponding
nondimensional pull-in maximum deflections with a
straight line (solid line). Expressions for the aforemen-
tioned polynomials are

lPI ¼ 0:377 1þ
a

b

� �2� �
; kuPIk1 ¼ 0:440.

As the aspect ratio approaches 1, results for the elliptic
geometry match results for the circular MEMS.

6. Conclusions

We have implemented the pseudoarclength continuation
method in the MLPG formulation of an electrostatically
actuated MEMS. A LSAWF of the problem is derived
wherein essential boundary conditions are enforced by a set
of Lagrange multipliers. The MLS approximation is used
to generate basis functions for the trial solution, and the
test functions are taken to be the weight functions of the
MLS approximation. The resulting set of nonlinear
equations is solved by the Newton iteration method. The
accuracy and the reliability of the proposed technique is
assessed through comparisons of the presently computed
results with those from other numerical methods.
It is shown that a reduced number of nodes (�160) and a

few steps (�100) in the pseudoarclength continuation
method are sufficient for estimating the pull-in parameters
and the symmetry breaking bifurcations with an error of at
most 1:53%. The convergence rate of the pseudoarclength
continuation method does not vanish when the pull-in state
is approached; moreover, since the applied voltage is
treated as unknown, the number of iterations remains
bounded.
For the annular circular MEMS, the pull-in voltage

increases parabolically with an increase in the ratio of the
inner to the outer radius of the disk, but the maximum pull-
in deflection is nearly constant. For an elliptical MEMS
the pull-in voltage decreases rapidly with an increase in the
ratio of the minor to the major axes of the ellipse, but the
maximum pull-in deflection is essentially unchanged.

Appendix A. MLS approximation

Meshless methods generally require local interpolation
to represent the trial function. In the MLPG method we
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use the MLS approximation [35] that allows for the
accurate construction of a given trial function on the
entire domain, from the knowledge of its values at some,
suitably chosen, scattered points.

Consider a continuous and differentiable scalar function
u defined on a 2-D connected domain O. The generic point
in O is indicated by x and its coordinates in a rectangular
Cartesian frame are x1 and x2. The fictitious nodal
values at scattered points N ¼ fx1;x2; . . . ;xNg on Ō are
collected into the N-vector ŵ ¼ ½ŵ1 . . . ŵN �

T. The global
approximation uh on O of u is defined as

uðxÞ ’ uhðxÞ ¼ pTðxÞaðxÞ; x 2 O, (18)

where

pTðxÞ ¼ ½p1ðxÞ p2ðxÞ . . . pmðxÞ� (19)

is a complete monomial basis of order m.
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The m-vector aðxÞ ¼ ½a1ðxÞ . . . amðxÞ�
T is composed of

indeterminate coefficients, which vary with the point x on
the domain O. At each location x̄ in O these coefficients are
determined by a local least-squares approximation of uðxÞ

on a small neighborhood Ox̄ of x̄. The local approximation
ux̄ðxÞ is defined by

uðxÞ ’ ux̄ðxÞ ¼ pTðxÞaðx̄Þ; x 2 Ox̄ � O. (20)

Therefore, in a small neighborhood of a generic point x̄ the
coefficients ai are treated as the unknown constants of the
classical polynomial least-squares approximation. They are
determined by minimizing the functional J x̄ representing
the weighted discrete L2 error norm, and defined by

J x̄ðaÞ ¼
XN

i¼1

W iðx̄Þ½ux̄ðxiÞ � ûi�
2. (21)

The function W i is the weight function of node i. Lower
bounds for the diameters of the supports of weight
functions that ensure the regularity of the MLS basis
functions are given in [25].

The stationarity of J x̄ with respect to a yields

aðx̄Þ ¼ Aðx̄Þ�1Bðx̄Þû, (22)

where the ðm;mÞ and the ðm;NÞ matrices A and B are
defined by

Aðx̄Þ ¼ PTWðx̄ÞP; Bðx̄Þ ¼ PTWðx̄Þ, (23)

where P is a ðN;mÞ matrix of real numbers:

PT ¼ ½pTðx1Þ . . . p
TðxN Þ�,

and W is a ðN;NÞ diagonal matrix defined by

Wðx̄Þ ¼ Diag½W 1ðx̄Þ . . . W N ðx̄Þ�.

Substituting (22) in the global approximation (18) gives
the MLS approximation

uhðxÞ ¼ wðxÞTû, ð24Þ

wðxÞ ¼ pðxÞTA�1ðxÞPTWðxÞ, ð25Þ

in terms of the vector of basis functions wðxÞ ¼ ½c1ðxÞ . . .
cN ðxÞ�

T. We emphasize that for an arbitrary node i located
at the place xi the fictitious nodal value ûi does not equal
the actual nodal value uhðxiÞ of the approximating
function, i.e.

uhðxiÞaûi.

Indeed, the nodal values of the approximating function
collected in the vector uh are related to û by

uh ¼ Wû, (26)

where the nondiagonal matrix W is defined by

½W�ij ¼ cjðxiÞ. (27)
In the paper, we consider Gauss weight functions

W iðxÞ ¼

exp½�ðdi=ciÞ
2k
� � exp½�ðri=ciÞ

2k
�

1� exp½�ðri=ciÞ
2k
�

; 0pdiori;

0; diXri:

8><
>:

(28)

Here, di ¼ jx� xij is the distance from the node located at
xi to point x; ci and k are constants controlling the shape of
the weight function, and ri is the radius of the compact
support of W i. Computed results depend upon values
assigned to ci, ri and k.
Appendix B. Confocal elliptic coordinates

For elliptic MEMS problems solved with the finite-
difference method, elliptic coordinates ðx1; x2Þ are intro-
duced. They are related to rectangular Cartesian coordi-
nates ðx1; x2Þ by

x1 ¼ c cosh x1 cos x2;x2 ¼ c sinh x1 sin x2,

x1 2 0; arctanh
b

a

� �� �
; x2 2 ½0; 2pÞ, ð29Þ

where c2 ¼ a2 � b2, and a and b are the semi-major and the
semi-minor axes of the ellipse, respectively. Thus, the
elliptic domain becomes a strip. Curves x1 ¼ const: are
confocal ellipses with the focal points located in x1 ¼ 	c;
similarly, curves x2 ¼ const: are confocal hyperbolas.
In elliptic coordinates, the Laplacian of a scalar field

u : ½0; arctanhðb=aÞ� � ½0; 2pÞ ! R becomes (see [40])

4u ¼
2

c2ðcosh 2x1 � cos 2x2Þ

q2

ðqx1Þ2
þ

q2

ðqx2Þ2

� �� �
u. (30)
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