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Elastostatic Deformations of a Thick Plate by using a Higher-Order Shear and
Normal Deformable Plate Theory and two Meshless Local Petrov-Galerkin

(MLPG) Methods

L. F. Qian1,3, R. C. Batra2 and L. M. Chen3

Abstract: We use two meshless local Petrov-Galerkin
formulations, namely, the MLPG1 and the MLPG5, to
analyze infinitesimal deformations of a homogeneous
and isotropic thick elastic plate with a higher-order shear
and normal deformable plate theory. It is found that
the two MLPG formulations give results very close to
those obtained by other researchers and also by the three-
dimensional analysis of the problem by the finite element
method.

1 Introduction

Conventional numerical methods such as the finite ele-
ment method (FEM), the finite difference method, and
the boundary element method have been used to find an
approximate solution of an initial-boundary-value prob-
lem. More recently, the meshless method has attracted
considerable attention due to the flexibility of placing
nodes in the domain of study and not needing to con-
nect them into closed polygons. Atluri and Zhu (1998)
developed the Meshless Local Petrov-Galerkin (MLPG)
method that does not require a background mesh to nu-
merically evaluate integrals appearing in the local weak
formulation of the problem. Even though the Galerkin
approximation of the problem is obtained when one
of the basis functions is taken as the weight function
(e.g. see Atluri et al. (1999)), it may not be an opti-
mum choice. By repeated use of the divergence theo-
rem, some or all spatial derivatives on the trial solution
can be transferred to the test function. For problems
governed by second-order differential equations, Atluri
and Shen (2002a,b) have discussed six different choices
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of test functions and numbered the corresponding for-
mulations as MLPG1, MLPG2,. . ., MLPG6. Of these,
MLPG1, MLPG2 and MLPG6 involve spatial derivatives
of the trial solution and the test function of the same or-
der; MLPG6 is the meshless local Galerkin approxima-
tion. As also suggested by Atluri and Shen (2002a,b),
the MLPG6 required considerably more computer time
in accurately evaluating the domain integrals as com-
pared to that for the MLPG1 and the MLPG5 formu-
lations. For the same locations of nodes, computed re-
sults were found to be sensitive to the number of Gauss
points used. Accordingly, we describe here the MLPG1
and the MLPG5 formulations for the analysis of elasto-
static deformations of a thick elastic plate with a higher-
order shear and normal deformable plate theory (HOS-
NDPT) proposed by Batra and Vidoli (2002). Whereas in
the MLPG1 the test function equals the weight function
of the moving least squares approximation (Lancaster
and Silkauskas (1981)), in the MLPG5 the test function
equals the Heaviside step function. For problems gov-
erned by the Poisson equation, Atluri and Shen (2002a,b)
have shown that it is more economical to use the MLPG5
than the Galerkin FEM. The MLPG5 formulation for the
HOSNDPT differs from that for the 2-dimensional elas-
tostatic problems in that area integrals do not indentically
vanish.

Other recent developments in the MLPG method include
the following. Atluri and Zhu (2000) solved elastostatic
problems, Lin and Atluri (2000) introduced the upwind-
ing scheme to analyze steady state convection-diffusion
problems, and Ching and Batra (2001) used monomials
and singular fields near a crack tip to find basis func-
tions by the moving least squares approximation. Gu and
Liu (2001) and Batra and Ching (2002) used the New-
mark family of methods to analyze 2-dimensional tran-
sient elastodynamic problems. The bending of a thin
plate has been studied by Long and Atluri (2002), and
Warlock et al. (2002) scrutinized elastostatic deforma-



162 Copyright c© 2003 Tech Science Press CMES, vol.4, no.1, pp.161-175, 2003

tions of a material compressed in a rough rectangular
cavity.

The paper is organized as follows. Sections 2 and 3
briefly review the compatible HOSNDPT and the MLPG
formulations respectively. Section 3 also discusses the
basis functions and how we impose essential bound-
ary conditions. Numerical examples and comparison of
presently computed results with those available in the lit-
erature are given in Section 4. Conclusions are summa-
rized in section 5.

2 Higher-Order Shear and Normal Deformable
Plate Theory

By using a mixed variational principle due to Yang and
Batra (1995), Vidoli and Batra (2000) and Batra and Vi-
doli (2002) derived a first-order and a higher-order the-
ory for thick piezoelectric plates. Salient features of the
theory include the satisfaction of natural boundary con-
ditions prescribed on the top and the bottom surfaces
of the plate, accounting for both transverse normal and
transverse shear deformations, and computations of the
transverse normal and the transverse shear stresses from
the plate equations rather than by integration through
the thickness of the balance of linear momentum. For
thick plates, the theory predicts boundary layers near the
clamped and the free edges, and the asymmetry in the
deformations about the midsurface of a homogeneous
thick plate with surface tractions prescribed only on one
of the major surfaces. Subsequently, Batra, Vidoli and
Vestroni (2002) used the mechanical counterpart of this
theory to study the propagation of plane waves and free
vibrations of a thick plate. When using the Hellinger-
Reissner variational principle, they postulated indepen-
dent through-the-thickness expansions for displacements
and stresses and called it a mixed HOSNDPT. However,
when stresses are derived by substituting expansions for
displacements in Hooke’s law, they called the theory as
compatible HOSNDPT. For the same order of expansion
of displacements, the mixed HOSNDPT gives through-
the-thickness distributions of the transverse normal stress
and the transverse shear stress closer to their analytical
values than those given by the compatible HOSNDPT.
Because of ease of use we employ the latter to analyze
static deformations of a thick isotropic and homogeneous
linear elastic rectangular plate with different boundary
conditions prescribed on the edges. We note that the em-
phasis here is on the use of the two MLPG formulations

for analyzing deformations of a thick plate.

W

Figure 1: Schematic sketch of the problem

We use rectangular Cartesian coordinates shown in Fig.
1 to describe infinitesimal deformations of a rectangu-
lar plate occupying, in the unstressed reference con-
figuration, the region Ω defined by 0 ≤ x ≤ a, 0 ≤
y ≤ b and −t/2 ≤ z ≤ t/2. The midsurface of the
plate is denoted by S, and displacements of a point
along the x, y and z axes by u, v and w respectively.
For through-the-thickness expansion of displacements,
we take for basis functions the Legendre polynomials
L0(z),L1(z),L2(z) . . . normalized by∫ t/2

−t/2
Li(z)L j(z)dz = δi j, i, j = 0,1,2, . . ., (1)
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Following Mindlin and Medick (1959) who attributed it
to W. Prager, Batra and Vidoli (2002) set

u =




u(x,y, z)
v(x,y, z)
w(x,y, z)


=

K

∑
i=0




ui(x,y)
vi(x,y)
wi(x,y)


Li(z), (3)
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for a Kth order plate theory. When K ≥ 2, the plate theory
is called higher-order. Since we account for both trans-
verse normal and transverse shear deformations, we call
it a higher-order shear and normal deformable plate the-
ory (HOSNDPT). Note that ui, vi, wi (i = 0,1,2, . . .,K)
have the same dimensions. Recalling that L ′

i(z) = dLi/dz
is a polynomial of degree (i−1) in z, we write

L′
i(z) =

K

∑
j=0

di jL j(z), (4)

where di j are constants. For K = 7,
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(5)

Note that elements of the first row and the last column of
the (K +1)× (K +1) matrix di j are zeroes. For infinites-
imal deformations, strains ε are given by
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≡
K

∑
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{ηi}Li(z), (6)

where for i = 0,1,2, ...,K, ηi is a 6-dimensional vector
with components

ηi(1) = ∂ui/∂x, ηi(2) = ∂vi/∂y, ηi(3) =
K

∑
j=0

d jiw j,

ηi(4) = ∂wi/∂y+
K

∑
j=0

v jd ji, ηi(5) = ∂wi/∂x+
K

∑
j=0

u jd ji,

ηi(6) = ∂vi/∂x+∂ui/∂y.
(7)

The terms with d ji couple displacements of the Kth or-
der with those of the lower order. Using Hooke’s law,
stresses at a material point x = (x,y, z) are given by

σ = {σxx σyy σzz σyz σzx σxy}T = Dε, (8)

where D is the matrix of elastic constants. Substitution
from (6) and (7) into (8) gives stresses at a point (x,y, z)
in terms of the displacements and in-plane gradients of
displacements of the point (x,y,0).

Let ũ, ṽ and w̃ be three linearly independent functions de-
fined on Ω. Multiplying equations expressing the balance
of linear momentum in the x, y and z directions by ũ, ṽ
and w̃ respectively, adding the three resulting equations,
and using the divergence theorem, we obtain∫

Ω
ε̃T σdΩ−

∫
∂Ω

ũT σndS−
∫

Ω
ũT fdΩ = 0 (9)

where n is an outward unit normal on ∂Ω, f is the body
force per unit volume, ε̃ is the 6-dimensional strain vector
derived from displacements ũ = (ũ, ṽ, w̃), and ∂Ω is the
boundary of Ω. Substitution from (6) and (8) into (9) and
integration with respect to z from −t/2 to t/2 gives

K

∑
i=0

[∫
S
{η̃i}T [D]{ηi}dS−

∫
Γu

{ũi}T [n][D]{ηi}dΓ

−
∫

Γq

{ũi}T{qi}dΓ−
∫

S
{ũi}T{ f i}dS

−Li(±t/2)
∫

S
{ũi}T{q±}dS

]
= 0, (10)

where

{qi}=
∫ t/2

−t/2
Li(z){q}dz, { f i} =

∫ t/2

−t/2
Li(z){ f}dz, (11)

and {q±} is the traction on the top and the bottom sur-
faces of the plate. Furthermore, Γu and Γq are disjoint
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parts of the boundary Γ of S where displacements and
surface tractions are prescribed respectively as {ui} and
{qi}. Usually {ũi} is taken to vanish on Γ u. However, in
the MLPG formulations, it is not necessary to do so since
the essential boundary conditions are imposed either by
the penalty method or by the elimination of the corre-
sponding degrees of freedom. Here, we have skipped the
derivation of plate equations in terms of moments and
membrane forces; these are given in Batra and Vidoli
(2002) and Batra, Vidoli and Vestroni (2002).

3 Implementation of the MLPG Method

3.1 Derivation of algebraic equations

Let Sα ⊂ S be a smooth 2-dimensional region associ-
ated with a node in S, Γαu = ∂Sα ∩Γu, Γαq = ∂Sα ∩Γq,

Γα0 = ∂Sα − Γαu − Γαq, and
M∪

α = 1
Sα = S; thus M

equals the number of nodes in S. S1,S2, . . . ,SM need not
be of the same shape and size. Let φ1,φ2, . . . ,φN and
ψ1,ψ2, . . . ,ψN be linearly independent functions defined
on Sα . For a Kth order plate theory, there are 3(K + 1)
unknowns u0, u1, . . .,uK at a point in Sα or S. We write
these as a 3(K +1) dimensional array {u}, and set

{u(x,y)}=
N

∑
J=1

[φJ(x,y)]{δJ}, (12)

{ũ(x,y)} =
N

∑
J=1

[ψJ(x,y)]{δ̃J}, (13)

where, for each value of J, {δJ} is a 3(K + 1) dimen-
sional array and [φJ] is a square matrix of 3(K + 1) rows
and columns. Similar remarks apply to {ũ}, [ψJ] and
{δ̃J}. The 3(K + 1) rows of the matrix [φJ] are obtained
by repeating (K +1) times the three rows of the ith-block
given below.

[3 rows of the ith block of φJ] =


0︷ ︸︸ ︷
0 0 0
0 0 0
0 0 0

. . .

. . .

. . .
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. . .

. . .

. . .

K︷ ︸︸ ︷
0 0 0
0 0 0
0 0 0


, (14)

The functions φJ are determined by the moving least
squares method described below after eqn. (19). The ana-
logue of unknowns {δJ} is the nodal displacements in the
FEM. However, in the MLPG method, {δJ} do not gen-
erally equal nodal displacements. Substitution from (12)

into (7) gives

{η} =
N

∑
J=1

[BJ]{δJ}, {η̃}=
N

∑
J=1

[B̃J]{δ̃J}, (15)

where {η} is a 6(K + 1) dimensional array, and for each
value of J, BJ is a 6(K + 1)× 3(K + 1) matrix. The
6(K + 1) rows of the matrix BJ can be divided into
(K + 1) blocks of 6 rows each; 6 rows of the ith block
are given below.

[6 rows of the ith block of BJ] =


0︷ ︸︸ ︷
0 0 0
0 0 0
0 0 φJd0i

0 φJd0i 0
φJd0i 0 0

0 0 0

. . .

. . .

. . .

. . .

. . .

. . .

i︷ ︸︸ ︷
∂φJ/∂x 0 0

0 ∂φJ/∂y 0
0 0 φJdii

0 φJdii ∂φJ/∂y
φJdii 0 ∂φJ/∂x

∂φJ/∂y ∂φJ/∂x 0

. . .

. . .

. . .

. . .

. . .

. . .

K︷ ︸︸ ︷
0 0 0
0 0 0
0 0 φJdKi

0 φJdKi 0
φJdKi 0 0

0 0 0



, (16)

and B̃J is obtained from BJ by substituting ψJ for φJ. The
repeated index i on dii is not summed.

Replacing the domain S of integration in eqn. (10) by S α ,
substituting for {u} and {ũ} from eqn. (12) and (13), and
requiring that the resulting eqn. hold for all choices of
{δ̃} we arrive at the following system of algebraic equa-
tions.

[KIJ]{δJ}−{FI} = 0, (17)

where

[KIJ] =
∫

Sα

(
[B̃I]T [D][BJ]

)
dΩ

−
∫

Γαu

(
[ψI]T [n][D][BJ]

)
dΓ

−
∫

Γα0

(
[ψI]T [n][D][BJ]

)
dΓ, (18)

{FI} =
∫

Γαq

[ψI ]T{q}dΓ

+
∫

Sα
[ψI ]T{ f i}dS

+ Li(±t/2)
∫

Sα

[ψI ]T{q±}dΩ. (19)
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Equations like (17) are found for each Sα , α =
1,2, . . .,M. Essential boundary conditions, as described
later in this section, are imposed and the equations are
solved simultaneously for {δ}.

3.2 Basis functions of the moving least squares ap-
proximation

We find basis functions {φJ} by the moving least squares
(MLS) approximation; see Lancaster and Salkauskas
(1981) for details. For the sake of completeness, we
briefly describe below the MLS approximation. The ap-
proximation f h(x,y) of a scalar-valued function f (x,y)
defined on Sα is written as

f h(x,y) =
m

∑
j=1

p j(x,y)a j(x,y), (20)

where

pT (x,y) = {1,x,y,x2,xy,y2, . . .}, (21)

is a complete monomial in (x,y) having m terms. For
complete monomials of degrees 1, 2 and 3, m = 3, 6 and
10 respectively. The unknown coefficients a1,a2, . . . ,am

are functions of x = (x,y), and are determined by mini-
mizing J defined by

J =
n

∑
i=1

W(x−xi)[pT (xi)a(x)− f̂i ]2, (22)

where f̂i is the ficticious value of f at the point (x i,yi),
and n is the number of points in the domain of influence
of x for which the weight function W (x− x i) 
= 0. We
take

W(x−xi) =
 1−6

(
di

rw

)2

+8

(
di

rw

)3

−3

(
di

rw

)4

, 0 ≤ di ≤ rw,

0 , di ≥ rw,

(23)

where di = |x−xi| is the distance between points x and
xi, and rw is the size of the support of the weight function
W . Thus the support of W is a circle of radius r w with
center at the point xi.

The stationarity of J with respect to a(x) gives the fol-
lowing system of linear equations for the determination
of a(x):

A(x)a(x) = B(x)f̂, (24)

where

A(x) =
n

∑
i=1

W (x−xi)pT (xi)p(xi),

B(x) = [W(x−x1)p(x1), W(x−x2)p(x2),
. . . ,W(x−xn)p(xn)]. (25)

Substitution for a(x) from (24) into (20) gives

f h(x) =
m

∑
j=1

φj(x) f̂ j, (26)

where

φk(x) =
m

∑
j=1

p j(x)[A−1(x)B(x)] jk, (27)

may be considered as the basis functions of the MLS ap-
proximation. It is clear that φk(x j) need not equal the
Kronecker delta δk j. In order for the matrix A, defined by
(25)1, to be invertible, the number n of points in the do-
main of influence of x must at least equal m. For m equal
to 3 or 6, Chati and Mukherjee (2000) have found that
15≤ n≤ 30 gives acceptable results for two-dimensional
elastostatic problems. For an elastodynamic problem,
Batra and Ching (2002) used Gauss weight functions, the
complete set of quadratic monomials and rw = 3.5 times
the distance to the third nearest node to the node at x i.
Thus rw and the locations of nodes in Sα and hence S
must be such that n satisfies the required constraint. We
take

rw = ρhi (28)

where hi is the distance from node i to its nearest neigh-
bor, and ρ is a scaling parameter.

3.3 MLPG1 and MLPG5 formulations

Atluri and Shen (2002a,b) classified the weak form (17)
as MLPG1 and MLPG5 according as ψJ = W(x− xJ)
or ψJ = H(x − xJ) where H(x) is the Heaviside step
function. Even though the derivative of a Heaviside
step function is a delta function, the area integrals over
Sα in eqn. (18) do not vanish identically in MLPG5
since expressions for η i(3), ηi(4) and ηi(5) involve terms
with no derivatives. The MLPG5 formulation for the
compatible HOSNDPT differs from the corresponding
2-dimensional elastostatic problem without body forces
in which area integrals vanish identically. Note that
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KIJ 
= KJI in both MLPG1 and MLPG5, and KIJ need
not be positive semidefinite.

The region Sα associated with node α is taken to be a cir-
cle of radius hα with center at xα . Integrals appearing in
equations (18) and (19) are evaluated by using a Gauss
quadrature rule. For each Gauss quadrature point xQ, the
MLS basis functions are found and the integrand is eval-
uated at xQ. The number of Gauss points and the scaling
parameter ρ in eqn. (28) affect computed results; these
will be elaborated upon in Section 4.

3.4 Imposition of essential boundary conditions

We use the matrix transform technique (e.g. see Atluri
and Shen (2002a)) to impose essential boundary condi-
tions. Let D and I denote respectively the set of nodes
where x-displacements are and are not prescribed; a sim-
ilar treatment holds for y- and z-displacements. Writing
the x-displacements of nodes as {u}, we have

{u}=
{

uD

uI

}
=
[

φDD φDI

φID φII

]{
δD

δI

}
. (29)

Solving the first of these equations for δD, we get

{δ} =
{

δD

δI

}
=

{
φ−1

DDuD

0

}
+

[ −φ−1
DDφDI

I

]
{δI},

(30)

where 0 and I are the null and the identity matri-
ces respectively. Substitution from (30) into (17)
and the premultiplication of the resulting equation by{ −ψ−1

DDψDI

I

}T

gives

[KIJ ]{δI}−{FI} = 0, (31)

where

[KIJ] =

[ −ψ−1
DDψDI

I

]T

[KIJ]

[ −φ−1
DDφDI

I

]
, (32)

{FI} =

[ −ψ−1
DDψDI

I

]T

{FI}

+

[ −ψ−1
DDψDI

I

]
[KIJ]

{
φ−1

DDuD

0

}
. (33)

We note that once eqn. (31) has been solved for unknown
degrees of freedom δI , displacements of all nodes are
known. ηi at any point x can then be evaluated from
(15), strains can be found from eqn. (6) and stresses can
be determined by using eqn. (8).

Figure 2: Locations of uniformly distributed nodes
on the midsurface

4 Numerical Results

We compute results for a square plate made of a homo-
geneous and isotropic material and compare them with
those available in the literature. We have set Poisson’s ra-
tio = 0.3, ρ = 15, K = 6, M = 196 and m = 15, i.e., com-
plete monomials of degree 4 are considered in eqn. (21).
Equal number of uniformly spaced nodes are placed in
the x-and y-directions (cf. Fig. 2). The non-dimensional
displacement u is related to the dimensional displace-
ment u by

u =
100Et3

12q0a4(1−ν2)
u, (34)

where E is Young’s modulus, q0 the uniformly dis-
tributed normal traction on the top surface of the plate,
and a is the length of a side of the square plate. The
following boundary conditions are imposed at a simply
supported (S), a clamped (C) and a free (F) edge.
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Table 1
Non-dimensional centroidal deflection of a thick square plate with t/a = 0.2

SSSS SCSC SFSF
MLPG1 0.4798 0.2928 1.4362
MLPG5 0.4793 0.2928 1.4368
Kant & Hinton (1980) 0.4900 0.3016 1.4496
Yuan & Miller (1992) 0.4905 0.3021 1.4542
Lee et al. (2002) 0.4904 0.3021 1.4539
Kant (1982) 0.4800 0.2930 1.4304
Kocak & Hassis (2002) 0.4782 0.2920 -

Table 2
Non-dimensional deflection of the centroid of a square plate of different thicknesses

SSSS CCCC
t/a Sinivas Kocak Srinivas

MLPG1 MLPG5 et al. & Hassis FEM MLPG1 MLPG5 & Rao FEM
(1969) (2002) (1973)

0.1 0.4220 0.4275 0.4249 0.4200 0.4249 0.1468 0.1476 0.1496 0.1486
0.2 0.4798 0.4793 - 0.4786 0.4803 0.2112 0.2103 0.2134 0.2124
0.3 0.5717 0.5589 - - 0.5710 0.3119 0.3064 - 0.3129
0.4 0.6967 0.6807 - - 0.6952 0.4470 0.4408 - 0.4471
0.5 0.8511 0.8304 - - 0.8487 0.6125 0.6050 - 0.6114

S : σxx = 0, w = v = 0 on x = 0,a;

σyy = 0, u = w = 0 on y = 0,b;

C : u = v = w = 0,x = 0,a; y = 0,b;

F : σxx = σxy = σxz = 0 on x = 0,a;

σyy = σyx = σyz = 0 on y = 0,b. (35)

Henceforth S denotes a simply supported edge rather than
the midsurface of the plate.

For a thick square plate with a = 250 mm and t/a = 0.2,
Table 1 compares the presently computed centroidal de-
flection of the midsurface of the plate under different
edge conditions with those obtained by other investiga-
tors. It is clear that both MLPG1 and MLPG5 solutions
agree very well with those of other researchers. Present
results differ slightly from those of Kant and Hinton
(1980), Yuan and Miller (1992) and Lee et al. (2002)
since they used a first-order shear deformation theory
with a shear correction factor of

√
5/6; no such correc-

tion factor is used in the present compatible HOSNDPT.
When two opposite edges are clamped and the other two

edges are simply supported, the centroidal deflection is
nearly 60% of that when all four edges are simply sup-
ported. However, when two opposite edges are free and
the other two are simply supported, then the centroidal
deflection is nearly 3 times that when all four edges are
simply supported.

For a square plate, Table 2 compares the effect of the
aspect ratio on the centroidal deflection with all edges
either simply supported or clamped; FEM results were
obtained with the commercial code IDEAS by using 20-
node brick elements; the number of uniform elements in
the x-, y- and z-directions equalled 40, 40 and 4 respec-
tively. Both MLPG1 and MLPG5 formulations yield cen-
troidal deflections of the midsurface that are very close
to those obtained by other methods. Values, obtained by
different methods, of the centroidal deflection of the mid-
surface and of the nondimensional stress σxx(t/a)2/q0 at
the center of the top surface of either a simply supported
or a clamped plate are compared in Table 3. Again, the
MLPG1 and MLPG5 methods give results close to the
analytical solutions of Srinivas et al. (1969). Stresses
and stress resultants for plates with different edge condi-
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Table 3
Nondimensional deflection of the centroid and the nondimensional stress σ xx at the center of the top
surface of a simply supported square plate

Non-dimensional deflection Non-dimensional stress
t/a Srinivas Iyengar Srinivas Iyengar

MLPG1 MLPG5 et al. et al. MLPG1 MLPG5 et al. et al.
(1969) (1974) (1969) (1974)

0.10 0.4220 0.4275 0.4249 0.4248 0.2887 0.2920 0.2900 0.2898
0.14 0.4412 0.4418 0.4427 0.4427 0.2932 0.2889 0.2930 0.2922

Table 4
Non-dimensional stress σxx at the center of the top surface of a thick square plate

SSSS CCCCt/a
MLPG1 MLPG5 FEM MLPG1 MLPG5 FEM

0.1 0.2887 0.2920 0.2900 0.1432 0.1450 0.1440
0.2 0.2984 0.3020 0.2976 0.1617 0.1589 0.1613
0.3 0.3129 0.3110 0.3099 0.1895 0.1836 0.1877
0.4 0.3333 0.3286 0.3283 0.2274 0.2224 0.2235
0.5 0.3640 0.3692 0.3568 0.2877 0.2725 0.2725

Table 5
Non-dimensional stress resultants for a SCSC thick plate

t/a=0.1 t/a=0.2
Point Stress Kant & Lee Kant & Lee

(x/a,y/a) resultant MLPG1 MLPG5 Hinton et al. MLPG1 MLPG5 Hinton et al.
(1980) (2002) (1980) (2002)

(0.5,0.5) Mxx 0.0257 0.0251 0.0258 0.0258 0.0300 0.0298 0.0292 0.0292
(0.5,0.5) Myy 0.0333 0.0325 0.0332 0.0333 0.0341 0.0335 0.0330 0.0331
(0.5,0.0) Myy 0.0758 0.0726 0.0697 0.0680 0.0672 0.0641 0.0626 0.0627
(1.0,0.0) Qx 0.250 0.255 0.243 0.243 0.258 0.259 0.251 0.251
(0.5,0.0) Qy 0.4656 0.4884 0.5000 0.5000 0.4856 0.4820 0.4750 0.4750

Table 6
Non-dimensional stress resultants for a SFSF thick plate

t/a=0.1 t/a=0.2
Point Stress Kant & Lee Kant & Lee

(x/a,y/a) resultant MLPG1 MPLG5 Hinton et al. MLPG1 MLPG5 Hinton et al.
(1980) (2002) (1980) (2002)

(0.5,0.5) Mxx 0.122 0.123 0.122 0.122 0.1228 0.1224 0.1230 0.1230
(0.5,0.5) Myy 0.0261 0.0256 0.0256 0.0256 0.0245 0.0246 0.0237 0.0237
(1.0,0.5) Qx 0.465 0.466 0.460 0.460 0.4600 0.4640 0.4560 0.4570
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tions are compared in Tables 4, 5 and 6. In every case the
MLPG1 and the MLPG5 techniques yield results very
close to those obtained either by the FEM or by other
researchers. Here

Mxx =
1

q0a2

∫ t/2

−t/2
zσxxdz, Qx =

1
q0a

∫ t/2

−t/2
σxzdz, (36)

etc.

We now delineate the effect of different parameters on
the quality of the MLPG solutions.

4.1 Order of plate theory

In order to delineate the acceptable order of the plate the-
ory to use for a given plate, we have plotted in Figs. 3a-4b
the nondimensional centroidal deflection and the nondi-
mensional stress at the center of the top surface versus
K for a CCCC square plate with a uniformly distributed
pressure applied on the top surface. For the MLPG1 and
the MLPG5, K = 3 for t/a ≤ 0.1 gives converged val-
ues of the deflection and the stress. However, for a plate
with t/a > 0.1, one should use K = 4 for the MLPG1 and
K = 5 for the MLPG5 formulations. The stress values
computed with the MLPG5 exhibit oscillations of higher
amplitude with an increase in the value of K than those
obtained from the MLPG1 method.
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Figure 3a: Centroidal deflection vs. the order K of
the plate theory with the MLPG1 formula-
tion. � t/a = 0.1 � t/a =
0.2 � t/a = 0.3 � t/a = 0.4

◦ t/a = 0.5
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Figure 3b: Nondimensional stress σxx vs. the order K
of the plate theory with the MLPG1 formu-
lation. � t/a = 0.1 � t/a =
0.2 � t/a = 0.3 � t/a = 0.4

◦ t/a = 0.5
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Figure 4a: Centroidal deflection vs. the order K of
the plate theory with the MLPG5 formula-
tion. � t/a = 0.1 � t/a =
0.2 � t/a = 0.3 � t/a = 0.4

◦ t/a = 0.5
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Figure 4b: Nondimensional stress σxx vs. the order K
of the plate theory with the MLPG5 formu-
lation. � t/a = 0.1 � t/a =
0.2 � t/a = 0.3 � t/a = 0.4

◦ t/a = 0.5

4.2 Number of nodes

For a square plate we considered uniformly distributed
nodes with the same number of nodes on each side for the
two MLPG formulations; other variables were assigned
the following values: t/a = 0.1, K = 6, m = 15, ρ = 15.
Figures 5 and 6 exhibit the convergence of the centroidal
deflection and the nondimensional stress at the top sur-
face of a simply supported plate with uniform normal
tractions applied on the top surface. Whereas the cen-
troidal deflection computed with the two formulations
converges monotonically, the stress does not. The ampli-
tude of the oscillation in the axial stress value is higher
for the MLPG5 formulation than that for the MLPG1
method. For both formulations, 13 uniformly spaced
nodes on each side provide essentially converged results.
Numerous case studies revealed that very good results
for plates with t/a > 0.1 could not be obtained with less
than 150 nodes even when the number of Gauss points
used to numerically evaluate integrals in (18) and (19)
was increased.
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Figure 5: Convergence of the centroidal deflection and
of the nondimensional axial stress σxx at the
center of the top surface of a square plate; re-
sults obtained with the MLPG1 formulation.
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Figure 6: Convergence of the centroidal deflection and
of the nondimensional axial stress σxx at the
center of the top surface of a square plate; re-
sults obtained with the MLPG5 formulation.
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Figure 7a: Centroidal deflection vs. number of mono-
mials in the MLS basis function. �
t/a = 0.1 � t/a = 0.2 � t/a =
0.3 � t/a = 0.4 ◦ t/a = 0.5
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Figure 7b: Axial stress σxx at the center of the top sur-
face vs number of monomials in the MLS ba-
sis functions. � t/a = 0.1 �
t/a = 0.2 � t/a = 0.3 � t/a =
0.4 ◦ t/a = 0.5

4.3 Number m of monomials used to find MLS basis
functions

It seems intuitive that more terms in the expression (21)
for p will lead to improved results. However, a larger

value of m will necessitate larger values of ρ and of the
number NQ of quadrature points. For K = 6, ρ = 15,
NQ = 9× 9 = 81, and number of nodes = 256, Figures
7a and 7b depict, for the MLPG1 formulation, the cen-
troidal deflection and the axial stress at the center of the
top surface of a clamped-clamped square plate; similar
results were obtained with the MLPG5 method. It is clear
that for all values of t/a considered, m = 6 or a complete
set of quadratic monomials gives good values of the two
variables plotted in these Figs.

4.4 Effect of ρ

The value of ρ in eqn. (28) usually depends upon m, i.e.,
the number of monomial terms included in the expres-
sion for p in eqn. (21). For a given distribution of nodes,
ρ should be large enough so that the matrix A defined
by eqn. (25)1 is invertible. Chati and Mukherjee (2000)
found that, for m = 3 or 6, a good value of ρ should be
such that 15 to 30 nodes lie in the region |x−x Q| ≤ ρhQ.
For a thick square simply supported plate with t/a = 0.2,
and K = 6, m = 15, NQ = 9×9 = 81, number of nodes
= 256, Figs. 8 and 9 exhibit the dependence upon ρ of
the nondimensional centroidal deflection and of the axial
stress at the center of the top surface for the MLPG1 and
the MLPG5 formulations respectively. The centroidal
deflection computed with the MLPG5 method has con-
verged for ρ = 9 and that with the MLPG1 for ρ = 12.
However, the convergence of the axial stress requires
ρ= 13 for the MLPG5 and ρ≥ 15 for the MLPG1 formu-
lations. Acceptable values of the deflection and the axial
stress are obtained with ρ = 8 for the two formulations.

4.5 Effect of number of quadrature points

We consider a clamped square plate and study the effect
of varying the number NQ of quadrature points on the
computed results.Figures 10 and 11 exhibit, for plates of
different aspect ratios t/a, the dependence upon NQ of
the computed centroidal deflection and of the axial stress
at the center of the top surface of the plate. For 0.1 ≤
t
a ≤ 0.5, the MLPG5 requires 64 quadrature points for
computing good values of these two variables. However,
the MLPG1 formulation needs 64 quadrature points for
computing converged values of the centroidal deflection
and of the axial stress for t/a ≥ 0.4.
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Figure 8: MLPG1 results vs. the scaling parameter. ρ.
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Figure 9: MLPG5 results vs. the scaling parameter, ρ.
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Figure 10a: MLPG1 results vs. number of Gauss

points. � t/a = 0.1 �
t/a = 0.2 � t/a = 0.3 �
t/a = 0.4 ◦ t/a = 0.5
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Figure 10b: MLPG1 results vs. number of Gauss
points. � t/a = 0.1 �
t/a = 0.2 � t/a = 0.3 �
t/a = 0.4 ◦ t/a = 0.5
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Figure 11a: MLPG5 results vs. number of Gauss
points. � t/a = 0.1 � t/a =
0.2 � t/a = 0.3 � t/a = 0.4

◦ t/a = 0.5

30 40 50 60 70 80 90
No. of Gauss points

0.1

0.15

0.2

0.25

0.3

A
xi

al
st

re
ss

Figure 11b: MLPG5 results vs. number of Gauss
points. � t/a = 0.1 � t/a =
0.2 � t/a = 0.3 � t/a = 0.4

◦ t/a = 0.5

5 Conclusions

We have used two meshless local Petrov-Galerkin formu-
lations, proposed by Atluri and Shen (2002a,b), namely
the MLPG1 and the MLPG5, to find an approximate so-
lution for deformation fields in a thick plate with edges

subjected to different boundary conditions. Whereas
in MLPG1 the test function is set equal to the weight
function of the moving least squares approximation, in
MLPG5 the test function equals a Heaviside step func-
tion. Deformations of the plate are modeled by a higher-
order shear and normal deformable theory developed by
Batra and Vidoli (2002). For the mechanical problem, a
Kth order plate theory has 3(K + 1) unknowns at each
point on the midsurface of the plate. Thus for a plate
with all edges free and M nodes on the midsurface, there
will be 3(K + 1)M unknowns and an equal number of
linear algebraic equations will need to be solved simulta-
neously.

It is found that the MLPG1 and the MLPG5 formula-
tions are very effective in analyzing elastostatic defor-
mations of a plate. Computed values of the centroidal
deflection and the normal stress at the center of the top
surface match well with those either reported by other
investigators or found from the 3-dimensional analysis
of the problem by the finite element method. Conver-
gence studies with respect to the number M of uniformly
distributed nodes, the number NQ of quadrature points
used to evaluate integrals numerically, the order of com-
plete monomials used to find basis functions of the mov-
ing least squares (MLS) approximation, the order of the
plate theory, and the radius of the circular support of the
weight function have been carried out. For t/a ≤ 0.1, a
3rd-order plate theory is adequate and for t/a > 0.1 a 5th-
order shear and normal deformable plate theory should
be used. In general, values computed with the MLPG1
formulation converge monotonically to their “exact” val-
ues but those computed with the MLPG5 exhibit oscil-
lations. Complete monomials of degree 2 are adequate
in the polynomial basis functions employed in the MLS
approximation. 169 uniformly spaced nodes are suffi-
cient for obtaining essentially converged results. With no
partitioning (see Atluri and Shen (2002a,b)) of the do-
main of integration, 64 quadrature points should be used
to evaluate integrals appearing in the stiffness matrix and
the load vector.

When essential boundary conditions are imposed by the
penalty method, results for two-dimensional elastostatic
problems have been found to be less sensitive to the value
of the penalty parameter provided that it is greater than
a critical value. For the plate problem studied herein,
the value of the penalty parameter affected noticeably the
computed results. This could be due to our attempt to sat-
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isfy three-dimensional boundary conditions with a two-
dimensional theory. Batra and Ching (2002) found that
the time step used to compute a stable solution of a two-
dimensional elastodynamic problem by the MLPG1 for-
mulation and the explicit central-difference method also
depends upon the value assigned to the penalty parame-
ter.
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