
MECH. RES. COMM. Vo!.3, 303-306, 1976. Pergamon Press. Printed in USA. 

EXTENSION OF AN ENERGY THEOREM OF BARENBLATT'S TO ELASTODYNAMICS 

R.C. Batra, Rolla, Missouri, USA 
M. Levinson 
Department of Civil Engineering and Engineering Mechanics, 
McMaster University, Hamilton, Ontario, Canada 

(Received 23 March 1976; accepted as ready for print 2 April 1976) 

In~oduction 

In some ixoblems of the mechanics of continuous media one encctufcers the situ- 
aticm that the soltfdcn of the differenelal equations of the problem, satisfy- 
ing initial and botmdary ccmditicms, is determined only to within one or nDre 
arbitrary paL~=ters. In order to determine the appropriate value of these 
parameters for a given suc/h ~...-oblem ore u~lly makes use of subsiai~vy con- 
ditdnns such as the finiteness of velocities, stresses, etc. For elastostatic 
problems, Barenblatt [i] has given a theorem to establish these additional 
cmmditicms which is an extensicm of the principle of minimum potentlal energy. 
~hese conditions L...-ovide the equations to  be a p ~  to  the ~ value 
problem in c~er to obtain a cumplete solution to the problem. Barenblatt 
illustrates the use of his theorem to rederive such o~litlc~s for a contact 
~oblem and a cra~k problem; these results previously had been established by 
re~,i~ing stresses to remain finite. 

In the present note we generalize Barenblatt's result to co~er a class of ela- 
s t i c  problems. The problems included are those for which the system is 
in a st~ state in the sense that the to1-~l k/netic energy, the total strain 
energy and the w~rk dome by the external forces are independent of time. 

Extemsicm of Barenblatt's ~KEem to the S State Elasto- "c Case 

Ore%sider a dynanic, linear, elastic systan which is in a stead~ state in the 

sense that the total k/netic energy, the total ~train energy and the total 

w3rk done by the external forces are finite constants*. Note that if a sys- 

ten is in a St~y state acucrdirg to the u s ~ l  d e f i n i t i c m  .,ni%ich re~,ires that 

the velocity of ~ point of the ~ be time-~t, then the system 

surface tractions and the body forces at a ~aterial point are assumed to 
be functions of its position only. 
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would be in a steady state according to the present definition. Hoover, the 

converse need not be true. Now, assume that the solution of the field equa- 

tions and boundary conditions of the problem contains same arbitrary parame- 

ters which remain undetermined. We denote the set of undetermined elements 

of the solution by M. According to Hamilton's principle 

6K - 6W + 6A = 0 (i) 

where 6K, 6W and ~A are, respectively, the variations of the kinetic energy K, 

the strain energy W and the work A of the external forces for a given virtual 

state of the elastic system. Let u represent the displacement field of the 

system which corresponds to same f'~ed M; 61u is a variation of this field 

satisfying the gecmetric constraints imposed upon the system and correspon- 

ding to the same fi~ed M, and 629 is a variation of the displacement field 

corresponding to the variation 6M of the set of undetexmJned elements. We de- 

note the variations in K, W and A corresponding to these variations in u by 

61K, 61W , 61A and 62K 62W 62A. In view of the independence of the varia- 

tions 61u and 6M, we obtain frcm (i) 

61K- 61W + 61A = 0 
(2) 

62K 62W 62A = 0 

Frcm relation (2)1 we obtain in the us~m! manner the differential equations 

" ~ 
PU i - ( . . , j + b i = 0 in R (3) 

1,3 

and the bouna~ry conditions 

(~ ~-~--W)n. = f on ~i R 
~u. _ 1,3 ] 1 (4) 

u = u on ~R-31R 
~O 

which corresponds to an arbitrary fixed set of undetermined elements M. Here 

R ~ E 3 denotes the bounded region of the Euclidean space occupied by the body 

in the reference configuration, n is an outward unit normal to DR, the bouD~ary 

of R, and p is the mass density per unit volume. Note that we have referred 

the deformation to a fixed rectangular Cartesian co-ordinate system. A o~t~L~ 

followed by a subscript i denotes partial differential with respect to x i and 

a superposed dot stands for the material time derivative. Furthermore, f de- 

notes the surface tractions applied on the part ~ 1R of the bour~ary of R and 

b gives the body force per unit volume. Now if the field u satisfies the dif- 

ferential equations of motion and the boundary conditions, then 
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~R R 

= I (~u~.-~--W)nj ui dA+ I b.udV, 
~R 1'3 

dt 
R R ~ui,j ui'j dV, 

d 
I 6.u av (5) = 2 ~-K) + ~ ~ 
d 

R 
In order to obtain (5)3 from (5)2 we have used the divergence theorem and (3). 

By our definition of a generalized steady state system and (5)4 

df ~u'.~v -- c (~nt). 

R 

We claim that C is zero. Indeed, if C @ 0, then If pg-u~V I ÷ ® as t + ®. 

But by the Cauchy-Schwarz inequality, R 

I 12 <- dv  u2dv . 
R R R 

since the right-hand side of this ine~lity is bounded, because of the assum- 

ptions of linear elasticity, f p~.ix~V is hounded which is a contr~cticn. 
R Hence C = 0 and, therefore, 

A = 2~-K). 

Since this equation holds for arbitrary M we have 

62A = 2(~2 W- ~2K). (6) 

Upon substitution of (2) 2 in (6), we obtain 

62 (K-W) = 0 (7) 

This relation is a general condition which deters the set of u ~  

elements M of the problem. In particular, if the solution of (3) and (4) is 

determined to within a finite number of parameters, Ci, C2, . .. Cn, then from 

(7) 

(K-W9 
= 0, i = 1,2, ...... n. (8) 

In general, (8) is a system of n equations for n unknowns. If (8) has a 

~ique solution, then the solu~A__~n of the p;-Qblem (3) and (4) would also be 

determ/ned tmd_quely. We summarize the preceding discussion in the following 
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~neorem: If, for a dynamic, linear, elastic system 

= o ,  = o ,  = o ( 9 )  

and the solution of the field equations (3) and boundary conditions (4) is 

determined to within a set of undetermined parameters, then these parameters 

are solutions of (7). 

We remark that, in practice, it may be easier to determine the unknown para- 

meters from 

~2 A = 0. (i0) 

Clearly, in view of (6), (iO) is equivalent to (7). 

Batra, Levinson and Hahn [2] have applied the above theorem to the problem of 

the indentation, by a rigid cylir~er, of an elastic layer bonded to a uniforn~ 

ly rotating rigid cylinder. They used the complete equations of motion inclu- 

ding the Coriolis acceleration terms and were able to rigorously reduce that 

the deformations of the elastic layer for this steady state elastodynanic pro- 

blem were symmetric with respect to the line joining the centers of the two 

contacting cylinders; this result ~s not obvious. 
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