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Introduction

In some problems of the mechanics of continuous media one encounters the situ-
ation that the solution of the differential equations of the problem, satisfy-
ing initial and boundary conditions, is determined only to within one or more
arbitrary parameters. In order to determine the appropriate value of these
parameters for a given such problem one usually makes use of subsidiary con-
ditions such as the finiteness of wvelocities, stresses, etc. For elastostatic
problems, Barenblatt [1] has given a theorem to establish these additional
conditions which is an extension of the principle of minimum potential energy.
These conditions provide the equations to be appended to the boundary value
problem in order to obtain a complete solution to the problem. Barenblatt
illustrates the use of his theorem to rederive such conditions for a contact
problem and a crack problem; these results previously had been established by
requiring stresses to remain finite.

In the present note we generalize Barenblatt's result to cover a class of ela-
stodynamic problems. The problems included are those for which the system is
in a steady state in the sense that the total kinetic energy, the total strain
energy and the work done by the external forces are independent of time.

Extension of Barenblatt's Theorem to the Steady State Elasto-Dynamic Case

Consider a dynamic, linear, elastic system which is in a steady state in the
sense that the total kinetic energy, the total strain energy and the. total
work done by the external forces are finite constants®. Note that if a sys-
tem is in a steady state according to the usual definition which requires that
the velocity of every point of the system be time-independent, then the system

*he surface tractions and the body forces at a material point are assumed to
be functions of its position only.
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would be in a steady state according to the present definition. However, the
oonverse need not be true. Now, assume that the solution of the field equa-
tions and boundary conditions of the problem contains some arbitrary parame-
ters which remain undetermined. We denote the set of undetermined elements
of the solution by M. According to Hamilton's principle

K- 8W+ 8A = 0 (1)

where §K, W and SA are, respectively, the variations of the kinetic energy K,
the strain energy W and the work A of the external forces for a given virtual
state of the elastic system. Iet u represent the displacement field of the
system which corresponds to same fixed M; $ju is a variation of this field
satisfying the geometric constraints imposed upon the system and correspon-
ding to the same fixed M, and $§,u is a variation of the displacement field
corresponding to the variation &M of the set of undetermined elements. We de-
note the variations in K, W and A corresponding to these variations in u by
61K, 8;W, &;A and §,K §,;W 6§,A. In view of the independence of the varia-
tions §;u and &M, we obtain fram (1)
;K- §;W+ 8;A = 0

(2)
52K 62W (SzA = 0

From relation (2); we obtain in the usual manner the differential equations

. oW . ;
PG "Gy Jedtb=0 inR ®
1,3
and the boundary conditions
oW

( yn, = £, on 9;R

Bui,j J 1 (4)
u =4 on 3R-9;R

which corresponds to an arbitrary fixed set of undetermined elements M. Here
R = E3 denotes the bounded region of the Euclidean space occupied by the body
in the reference configuration, n is an outward unit normal to 3R, the boundary
of R, and p is the mass density per unit volume. Note that we have referred
the deformation to a fixed rectangular Cartesian co-ordinate system. A comma
followed by a subscript i denotes partial differential with respect to X, and
a superposed dot stands for the material time derivative. Furthermore, £ de-
notes the surface tractions applied on the part 3;R of the boundary of R and

b gives the body force per unit volume. Now if the field u satisfies the dif-
ferential equations of motion and the boundary conditions, then
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A= | pwns [pow,
oR R

= J(au Ing 1wy dA+J19-gav,

w13
= 4 u-u dv - pﬁ u,dv + W
dt pr- i1 ﬁ-———ui . dv,
R RY%,5 3
= 20HK) + I Ig-gdv (5)

R
In order to obtain (5)3 from (5), we have used the divergence theorem and (3).

By our definition of a generalized steady state system and (5) 4

g—t J p\}-gdv = C (constant).
R
We claim that C is zero. Indeed, if C # 0, then[fpuudvl-woast-rw
But by the Cauchy-Schwarz inequality,

. 2 . 2
|Jpg-£ﬂV| SqudVIpudV.
R R

Since the right-hand side of this inequality is bounded, because of the assun~
ptions of linear elasticity, [ pyu-udV is bounded which is a contradiction.
Hence C = 0 and, therefore, R

A = 2(W-~K).
Since this equation holds for arbitrary M we have

GzA = 2(62W - 52K). (6)
Upon substitution of (2), in (6), we obtain

o (K-W) = 0 (7
This relation is a general condition which determines the set of undetermined
elements M of the problem. In particular, if the solution of (3) and (4) is
determined to within a finite number of parameters, Cyr Cyr vve Gy then fram

(7)

3 (K=W)
BCi

= 0, i=1,2,...... n. (8)

In general, (8) is a system of n equations for n unknowns. If (8) has a
unique solution, then the solution of the problem (3) and (4) would also be
determined uniquely. We summarize the preceding discussion in the following
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Theorem: If, for a dynamic, linear, elastic system

K =0 W=0 A-=0 (®)
and the solution of the field equations (3) and boundary conditions (4) is
determined to within a set of undetermined parameters, then these parameters
are solutions of (7).

We remark that, in practice, it may be easier to determine the unknown para-
meters fram
(SzA = 0. (10)

Clearly, in view of (6), (10) is equivalent to (7).

Batra, Levinson and Hahn [2] have applied the above theorem to the problem of
the indentation, by a rigid cylinder, of an elastic layer bonded to a uniform-
ly rotating rigid cylinder. They used the camwplete equations of motion inclu-
ding the Coriolis acceleration terms and were able to rigorously reduce that
the deformations of the elastic layer for this steady state elastodynamic pro-
blem were symmetric with respect to the line joining the centers of the two
contacting cylinders; this result was not obvious.
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