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Abstract 

Deformations of a viscoelastic rubberlike layer bonded to a rigid cylinder 
and indented by a rigid plane surface are studied by the finite element 
method. The constitutive relation assumed for the viscoelastic rubber is 
that proposed by Boltzman. Some of the assumptions made to simplify the 
work are that the roll cover is rotating at a uniform angular speed, steady 

state has reached, the deformations of the rubberlike layer are infinite- 
simal and the effect of inertia forces is negligible. Results presented 
include the pressure distribution at the contact surface and the stress 
distribution near the bond surface. 

Introduction 

The problems of the smooth rolling contact between a viscoelastic cylinder 

and a rigid plane, and between a rigid cylinder and a viscoelastic half 

space have been studied by Hunter [1] and by Morland [2,3]. In each of 

these studies Boltzman's linear viscoelastic stress-strain relation was 

used. It was also assumed that plane strain state of deformation prevailed 

and the effect of inertia forces was neglected. For the problem of the 

viscoelastic cylinder the maximum principal strain found to occur was of 

the order of the semicontact angle. Harvey [4] has studied the problem 

of a linear viscoelastic cylinder rolling on a rigid plane on the assumption 

that the frictional force between the cylinder and the plane is sufficient 

to prevent slipping between the two over the entire contact area. Also the 

effect of inertia force was included in the analysis in an approximate way. 
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In the present work the viscoelastic cylinder is assumed to have a rigid 

cylindrical core and contact surfaces are presumed to be smooth. Other 

assumptions made to simplify the problem are that the steady state has 

reached, the effect of inertia forces is negligible and that plane strain 

state of deformation prevails. The possible applications we have in mind 

are in the paper, plastic and textile industry. We solve the problem by 

the finite element method and do not make any assumption on the thickness 

of the roll cover relative to the radius of the cylinder. Also in the 

numerical solution of the problem actual relaxation moduli, if available, 

can be used rather easily. We note that the finite element method has been 

used earlier [5-8] to solve viscoelastic contact problems. We refer the 

reader to References 5, 6, and 7 for details of the finite element formu- 

lation of the viscoelastic boundary value problem. Here we give the 

governing equations for our problem in the next section and then present 

and discuss results for a sample problem. 

Formulation of the Problem 

As shown in Figure i, we use a fixed set of rectangular Cartesian axes 

(with origin at the point of contact of the undeformed roll cover and the 

plate) to describe the deformations of the rubberlike layer. We assume 

that the cylindrical core and the plate are made of materials considerably 

harder than rubber and regard these as being rigid. In the absence of body 

forces Such as gravity, the mechanical deformations of the rubberlike layer 

are governed by 

; : o ,  
(I) 

.o 

oij,j = px.,. 

In (i) o.. is the Cauchy stress tensor, p is the present mass density, x is 
lj 

the present position of a material particle that occupied place X in the 

reference configuration, a superimposed dot indicates material time 

differentiation, a comma followed by an index j indicates partial differen- 

tiation with respect to x., and the usual summation convention is used. 
J 

Before stating the constitutive relation for the rubber and the side 

conditions such as boundary conditions accompanying (i) we give below the 

assumptions made to simplify the problem. 
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We assume that the rubberlike layer is homogeneous and isotropic, the roll 

cover rotates at a uniform angular speed ~, steady state has been reached, 

contact surfaces are smooth, and the deformations are small so that a con- 

stitutive relation linear in displacement gradients applies. Also as is 

often presumed for viscoelastic materials [5-9], we assume that the bulk 

behavior of the rubber is elastic. Furthermore, we assume that a plane 

strain state of deformation prevails and that the inertia effects are 

negligible. This last assumption appears reasonable since the mass density 

of rubber is quite low, being comparable to that of water. Under the 

foregoing assumptions the indices i and j in (i) range over 1,2, the problem 

becomes 2-dimensional quasistatic and one needs to solve for the x only since 

P : Po ( !  - u i , ~ ) '  ( 2 )  

U. = X. - X . .  
I I I 

The constitutive relation for the rubber is taken as 

i t ~c . .  (x,T) ~ij I t ~ (x,-~) 
oij = G 1 (t - ~) Ij ~ dT + [G2-G I (t-T) Ckk ~ 

aT 3 aT 
--oo --oo 

aij = ( u i ,  j + u j , i ) / 2 ,  

d'~, (3) 

Here G 1 and G 2 are, respectively, the shear and the bulk moduli of rubber 

and 6ij is the Kronecker delta. Substitution from (3) into (1) 2 yields 

linear field equations for u which are to be solved under the following 

boundary conditions. 

At the inner surface, u = 0 and at the outer surface 

e . o . . n .  = O, 
I Jj  j 

n . o . . n .  = O, I x  I + c l  I > £ ,  (4 )  I I j  j 

x 2 = D, I x  1 + < I. 

Here n is an outward directed unit normal to the outer surface, e is an 

unit tangent vector, D is the depth of indentation, 2£ is the contact width 

and c£ is the distance between the center of the contact width and the 

center line of the roll cover. The fact that oijn j = 0 at IXl + c£I= £ 

implies that n.o..n. = 0 and this ensures that the normal stress is con- 
z i j  j 

tinuous across the arc of contact and that a contact problem rather than a 

punch problem is being solved. We note that of the three constant's, c, £ 

and D appearing in (4) only one can be taken to be known and the other two 

are to be determined as a part of the solution. 



268 C. BAPAT and R.C. BATRA 

In solving the problem by the finite element method we have found it 

convenient to replace (4) 3 by 

niaijn j = p(xl) , 

P(Xl)~ 0 as 

Ix 1 + c l l  ~ £, 

I×l + cg[ ~ ~. 
(5) 

Here p stands for the normal pressure between the roll and the plane surface 

Of course p is unknown apriori and is to be determined as a part of the 

solution. A boundary condition such as (5) was used in References, 6, 7 and 

8 wherein the load p was replaced by equivalent normal loads at the nodal 

points on the contact surface. 

We refer the reader to References 5, 6 and 7 for details of the finite 

element formulation of the problem and how to solve the resulting system of 

equations. As is done in these references, we presume 2£ and iterate on the 

estimated pressure profile until the deformed surface of the roll cover 

matches with the profile of the indentor to within a prespecified tolerance. 

The value of c is then found graphically from the plot of pressure distribu- 

tion on the contact surface. In practice, the total load P given by 

= I p dxl P 

Ix 1 + c~l ~ l 

is prescribed. Taking P as known and finding c, £ and D that will satisfy 

all the pertinent equations though feasible takes considerable amount of 

computing time. 

Results for a Sample Problem 

The finite element program developed by Batra [7] was suitably modified to 

solve the present contact problem. We add that unlike a linear elastic 

problem the stiffness matrix in the resulting system of equations for the 

viscoelastic problem has a very large band width and is asymmetric. Whereas 

Batra [7] studied a thermoviscoelastic problem we study here a homothermal 

problem. That is, the temperature is uniform throughout the rubberlike 

layer and it stays the same for all times. 

In order to solve the problem by the finite element method, the region of 

the rubberlike layer lying within six times the estimated arc of contact 

is divided into subregions. Fig. 2 depicts the region studied and its 

subdivision in the reference configuration. The region considered is 
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sufficient since the stresses have been shown to decay rather rapidly in 

somewhat similar problems studied earlier [5-8]. The end faces of the 

region shown in Fig. 2 are presumed to be traction free. 

In the results presented herein for a sample problem we have taken the 

following values of various geometric and material parameters. 

G 1 = 150(I + e - t / ' 2 )  ps i ,  G 2 = 20,000 psi 

= .244 rad /sec . ,  

R 0 = 10.25 i n . ,  R i = 10.05 i n . ,  D = 4.59 x 10 -3 in .  

For the elastic problem the value of G I is taken as 300 psi. These values 

of G I and G 2 correspond to nearly incompressible rubbers. The indented 

surface is assumed to conform to the plane profile of the indentor if, in 

the deformed position, each nodal point lies within .01D of the plane 

surface. The normal loads on the presumed contact surface are iterated 

until such is the case. 

Figure 3 shows the pressure distribution at the contact surface for the 

elastic and the viscoelastic roll covers. As expected the pressure dis- 

tribution for the viscoelastic roll cover is asymmetric. For the same 

value of the indentation, the peak pressure and the total load for the 

elastic problem are, respectively, 1.57 and 1.65 of that for the viscoelastic 

roll cover. Also the contact width, as found from Fig. 3, for the elastic 

problem is 7,5 percent more than that for the viscoelastic problem. The 

value of the parameter c appearing in equation (4), also determined from 

this figure, is .023 for the viscoelastic problem. Note that c equals zero 

for the elastic problem. 

When the arc of semicontact width is .03 radians, the maximum principal 

strain found to occur was .034 and the maximum shear strain to be .068. 

This seems to agree qualitatively with that obtained by Hunter [i] who 

studied the rolling contact between a homogeneous viscoelastic cylinder 

and a rigid plane. 

In Fig. 4 is plotted the variation of -o22 at the center of the outermost 

layer of the roll cover with the distance from the center line. The point 

where -o22 is maximum for the viscoelastic problem has shifted to the left 

of the point where peak pressure occured at the contact surface. The ratio 

of the maximum values of -o22 for the elastic roll cover to that for the 

viscoelastic roll cover is 1.56 which is essentially the same as that for 

the peak pressures on the outermost surface. Also the plot of -o22 at the 
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center of the layer glued to the cylindrical core (Fig. 5) seems to indicate 

that this ratio of the maximum values of -022 for the elastic and visco- 

elastic problems remains virtually unchanged through the thickness of the 

roll cover. The results plotted in Figures 4 and 5 support the assumption 

that stresses decay rapidly with the distance from the center line. 
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