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SUMMARY

A set of non-linear and coupled equations governing the thermomechanical deformations of a viscoplastic
body undergoing simple shearing deformations is integrated in time by using the forward-difference Galerkin
finite-element (FDGFE) method and the Crank-Nicolson-Galerkin finite-element (CNGFE) method. In
the latter scheme the number of unknown functions is increased so that the governing equations contain only
first-order spatial derivatives. It is shown that the solutions obtained by the two methods agree qualitatively;
however, the CNGFE method seems to introduce some damping into the system for non-polar materials,
but none for dipolar materials.

INTRODUCTION

Adiabatic shear is the name given to a localization phenomenon that occurs during high-rate plastic
deformation such as machining, explosive forming, shock impact loading, ballistic penetration,
fragmentation, ore crushing, impact tooling failure, and metal shaping and forming processes. The
localization of shear strain has been observed in steels, non-ferrous metals and polymers. The
phenomenon is important in practice because progressive shearing on an intense shear band
provides an undesirable mode of material resistance to imposed deformation, and the bands are
often precursors of shear fracture.

A thorough study of adiabatic shear banding and processes such as metal forming, impact and
penetration requires the integration, with respect to time, of a coupled system of non-linear partial
differential equations. For the model representing one of these phenomena to be somewhat
realistic, it should incorporate such effects as strain hardening, strain-rate hardening and thermal
softening. These effects are exhibited by most metals undergoing large deformations at high strain
rates. For homogeneous and simple shearing deformations of such viscoplastic materials, the
adiabatic shear stress/shear strain curve is generally concave towards the origin and has a peak in
it. At this peak the effect of thermal softening equals the combined effect of strain and strain-
rate hardening. Under further loading, the thermal softening overtakes the strain and strain-rate
hardening, and consequently the shear stress required to maintain simple shearing deformations
of the body decreases with an increase in shear strain.

In nearly all the practical problems mentioned above it is necessary to integrate the governing
equations well beyond the peak in the stress—strain curve. Whereas it is a trivial matter to carry
out this integration when the deformations are homogeneous, it is rather time-consuming to do
so for inhomogeneous deformations, even when the deformations are one-dimensional. Here we
discuss our experience with two methods, the forward-difference scheme and the Crank—Nicolson
method. In each case the governing partial differential equations were first reduced to a set of
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ordinary differential equations by wusing the Galerkin finite-element method. In the
Crank—Nicolson method the number of unknowns at each point was increased from five to eight
so that only first-order spatial derivatives of the unknowns appeared in the equations. We should
point out that the governing equations are stiff. and no artificial viscosity was introduced in either
case.

Our numerical examples reveal that the Crank-Nicolson-Galerkin finite-element (CNGFE)
method allows the use of timesteps at least two orders of magnitude larger than those permitted
by the forward-difference Galerkin finite-clement (FDGFE) scheme, and still gives an acceptable,
stable solution. It is conceivable that the efficiency of the forward-difference scheme would improve
if auxiliary variables were introduced, as was done for the Crank-Nicolson method, so that only
first-order spatial derivatives appeared in the governing equations.

We refer the reader to excellent books' and references therein for a discussion of various
numerical integration techniques. Chandra and Mukherjee® have recently used the forward-
difference method to integrate a stiff set of partial differential equations somewhat akin to ours.
They used an Euler type scheme with automatic timestep control. However, selecting parameters
that control the time-increment automatically is a hard task.

In a previous paper® the emphasis was on reporting the complete set of solutions, obtained by
using the CNGFE method, to equations studied herein. In this paper, we provide details of the
two numerical techniques and compare results obtained by using the two methods.

FORMULATION OF THE SIMPLE SHEARING PROBLEM

We study the simple shearing deformations of a dipolar viscoplastic material, and assume that all
the variables have been made dimensionless. Thus the body occupies the infinite slab bounded by
the planes vy = =1. The governing equations (see Reference 6 for details) are

P = é(s —la,,),, (1)

0 = kb,,, + A(s*> + 02) 2)

§= (v, — As) (3)

o= !p.(v,_,._,. - %o‘) 4)

U= A(s? + a?)/[1 + (WAbo)]" (5)

A= max{O. |Gt = a) b + ) ©

with boundary conditions

v(1,0) = *1 )

0,(x1,0)=0 (8)

a(£1,0) =0 9)

and a suitable set of initial conditions. Equations (1) and (2) express, respectively, the balance of
linear momentum and internal energy. Here v is the velocity of a material particle, p its mass
density, p its shear modulus, / a characteristic material length, k its thermal conductivity, 6 its
temperature change from that in the reference configuration, and s and o may be interpreted as
the shear stress and the dipolar shear stress. A superimposed dot indicates material time differen-
tiation and a comma followed by subscript y signifies partial differentiation with respect to y. The
constitutive relations (3)—(6) give one possible model of viscoplastic materials. Equation (6) implies
that the plastic parts As and Ao/l of the strain rate and the dipolar strain rate vanish when

(8= o) e = [1 + (Wb)]” (1 — ab)

Because variables are dimensionless, the yield stress is unity in an isothermal and quasistatic
reference test. The material parameters | and n describe the strain hardening of the material, a
is the thermal softening, and b and m represent the strain-rate sensitivity of the material.
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We assume that the initial values of 6, s and { are symmetric in y, and those of v and o
antisymmetric in y, and seek solutions of equations (1)-(6) with the same symmetry. Thus the
problem is to be studied over the spatial domain [0,1], and the boundary conditions become

v(il)=1, v(0,)=0 (10)
0,,(1,) =0, 0,(0,)=0 (11)
o(1,) =0, o(0,0)=0 (12)
For the initial conditions we take
vy.0)=y, a(3.0)=0, Wy.0)=0 (13a)
0(y.0) = 0-1(1—y?)%xp’ ") (13b)
5(y.0) = (1 — ab(y,0)) (13¢)

The temperature field given by equation (13b) describes the aberration in the initial temperature
distribution and will result in inhomogeneous deformations of the body. Equation (13c) implies
that the initial stress distribution is non-uniform and that all material points lie on their respective
yield surfaces.

NUMERICAL INTEGRATION OF GOVERNING EQUATIONS

Crank-Nicolson—Galerkin finite-element method*

With the auxiliary vanables

U=v,, g=9,, P=0y (14)
we can rewrite equations (1)-(4) as
el
v=—(s—Ip),, 15
p( p) (15)
0= kg,, + A(s* + 0?) (16)
5 = p(u — As) (17)
. A
= !p.(u._,,— Yol (18)

Thus only first-order spatial derivatives of the unknowns, v, 8, 5, o, u, g and p appear in the
governing equations. Let H' denote the space of functions defined on [0,1], the square of whose
first-order derivative is integrable over [0,1]. We approximate the unknown functions v.6,. . . by
a linear combination of the finite-element basis functions {&,(v), i=1.2.. . ..N} in an N-dimensional
subspace of H'. For example,

v(y.1) = vi(d(y) (19)

Throughout this paper, a repeated index implies summation over the range of the index. By using
Galerkin’s method® we thus reduce equations (14)-(18) to the following set of equations:

Myu; = — Qv (20)

Mg = — Q.8 (21)

M;p; = — Q0 (22)
. I = I =

Ml’j"'i == o Q;‘,‘-‘] + o Qr',rpi (23)

* Since this paper was originally submitted the details of the CNGFE method have been published:™ they are reproduced
here for completeness.
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ijei = —kQg + APy (24)

Mtjji = ""Ma'fuf = ""Arsk Ruk (25)

'Mi}dl = = MQJ;“; - P‘AI{TJ'\’RJ]I& (26)

where

1

Mf, — J ¢r¢;d)" =M, (27)
0
1

0,= [ o, (28)
)

Q_ij =0, (¢i¢,)|('| (29)
I

Ri;’k = J bbby dy = Rikj = Rkif (30)
0
1

Py= [ o+ oy =, G1)
(1]

The non-linear dependence of P; and A upon s, @, | and 6 means that the coupled set of ordinary
differential equations (20)-(26) is not that easy to integrate. The matrices M, Q. Q,. R, and
P; have been evaluated by using the linear basis functions. Also, v(r) denotes the velocity of node
i at time f.

In the Crank-Nicolson method, equations (20)-(26), assumed to hold at time ¢ + 3A¢, are used
to predict the values of v, 6, . . . at time r + Ar from a knowledge of their values at time . This
is accomplished by approximating 0,(r + A7) by (8,(r + Ar) — 6,(1))/Ar, 8,1 + $Ar) by
§(0,(r + Ar) + 0,(1)), and so on, and by first evaluating the non-linear terms on the right-hand side
of equations (20)—(26) at time . The resulting system of linear algebraic equations is solved for
vi(t + Ar) and similar terms, the right-hand sides of equations (20)—(26) are now evaluated at time
t + $Ar, and the system of equations solved again for v,(t + Ar) and similar terms. This iterative
process is continued until, at each nodal point,

Av, A8, As Ay
B0 15 11+ 157+ 1ol + ) + i + 8w = @)

where the subscript i has been dropped from v;, 8, . . ., Av denotes the difference between the
newly found value of v and that used to compute the right-hand side in equations (20)—(26), and
€ is a preassigned small number. The initial conditions (13) were used to find v,(0) and similar
terms.

Forward-difference Galerkin finite-element method

In this method the field equations (1) and (2) are first recast in a weak form. Let & and (| be
two smooth functions defined on [0,1] such that $(0) = $(1)=0. With equations (1) and (2)
multiplied through by ¢ and £ respectively, and with the boundary conditions (10)-(12), integration
by parts over the interval [0,1] gives

I . 1 1 1 1
J vbdy = - f sb,, dy = f od,,,dy (33)
[ P Jo ‘ P Jo

]

1 1 1
fﬂgdy = — k[ 0., dy + J EA(s* + o?)dy (34)
(] (1} 0

Let the interval [0,1] be divided into N—1 subintervals, not necessarily of equal length. Thus N
is the number of nodes in the mesh. Let &' and ¢! (i=1.2.. . ..N) be the Hermite basis functions.®
and &, (i=1,2,. . .,N) the finite-element basis functions introduced previously (see e.g. equation
(19)). We impose the following approximations on v and 6:



COMPARISON OF SOLUTIONS FOR ADIABATIC SHEAR BANDING 745

v(y.0) = vilt) b(y) + (1) () (35)
B(y,7) = 8,(r) bily) (36)

Here (1) is the value of v,; at node i at time r. Hermite basis functions ¢'and ¢/ can be
constructed by matching together element shape functions &Y, &Y, ¢} and 3, and similarly &,(y)
can be obtained by matching &, and ¢,. In the Galerkin approximation the same set of basis
functions is used to approximate the test functions ¢ and £ as is used for v and 6. Recalling that

equations (33) and (34) must hold for arbitrary ¢ and &, we arrive at the following set of ordinary
differential equations:

Mw=—F (37)
HO=-T0 +W (38)
Here
W=V, Y1y V2s Y2 - - o0 VASYNET

0=1{0,,0,...05"

N-1
F={F,F,... Fy'= z {f.u-f(u m-fuuu-fua JU}T
J=1

fu sdy,, + lodl,,,
fuiin J sbl,y + lo bl
fusaw T [Ja, ) sé9,, + lodY,,, dy
fouisu sbi,, + lo b,

B0 dld) Y bidy
N~ Bibl dlol dYbl io]
I | awe olos otn sioe
| o00b blob B0 bl

M:

with similar definitions for H, T and W. In the above integrations (), is the region occupied by
the Jth element. These integrals are evaluated numerically by using the four-point Gauss integration
rule. Explicit expressions for the matrices in equation (38) are not stated above since they are
given in many books on the finite-element method (see e.g. Becker er al.¥).

Equations (37), (38) and (3)-(5) are integrated with respect to time ¢ by using the simple
forward-difference method. The solution of equations (37) and (38) gives nodal values of v, y and
0 at the next step. From these, values of v, ¥, 6 and v,,, at the Gauss points are calculated by
using the interpolation relations (35) and (36). For each Gauss point, equations (3)-(5) are
integrated to obtain the local values of s, o and s at the next timestep. Because the integration
scheme is only conditionally stable in the linear case, the timestep has to be kept very small; its
value depends on the grid size, the material properties and the present deformations of the body.

COMPUTATION AND DISCUSSION OF RESULTS

In order to compute numerical results the following values of various dimensionless parameters that
correspond to a typical hard steel were chosen: p = 1:5711x10°%, k = 1-:9891 x 1073, a = 0-4973,
= 2403, n = 0:09, b = 107 and m = 0-025.

For homogeneous deformations of the block, the peak in the shear stress/shear strain curve
occurs at a strain of 0-093. In solving the problem by either of the two methods, no attempt was
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made to use diagonal matrices equivalent, in some sense. to those computed by using the basis
functions. The domain [0,1] was divided into 13 subdomains with nodes at 0, 0-05, 0-10, 0-15,
0-20, 0-25, 0-34375, 0-43750, 0-53120, 0-6250, 0-71875, 0-81250 and 1-0. For the forward-difference
scheme various integrals appearing in the expressions for F, M, H, T and W were evaluated by
using the four-point Gauss quadrature rule.

When [ = 0-0 the forward-difference scheme necessitated taking At = 5 x 107" in order to
obtain a stable solution. However, for the Crank-Nicolson method Ar = 107 was found to give
a stable and acceptable solution since the results obtained with Ar = 5 x 10~® were found to be
indistinguishable from those computed with the larger value of Ar. However, the results presented
here are for At = 5 x 107°.
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Figure 1. The evolution of the plastic strain rate at the centre of a specimen of non-polar material and its distribution
within the specimen at different times

Figure 1 depicts the evolution of the plastic strain rate at the centre of a specimen of non-polar
(i.e. I = 0) material, and the distribution of plastic strain rate within the specimen at different
times. Initially the two methods give almost identical results. However, when the deformation
begins to localize near the centre of the block the FDGFE method gives higher values of the
plastic strain rate at points near the centre of the specimen, and also results in narrower regions
of rapidly deforming material, than given by the CNGFE method. Not only is the localization
delayed by the CNGFE method, but the peak value of the plastic strian rate computed is lower
than that obtained by using the FDGFE method. As is discussed elsewhere,® the development of
a late-stage plateau in the peak plastic strain rate is a numerical artifact and does not represent a
physical phenomenon. The plateau was also developed in the solution computed by using the
FDGFE method (although it is not shown in Figure 1). The computed results are qualitatively
similar for different meshes, but differ quantitatively. The CPU time required to compute the
solution by the FDGFE method was nearly three times that needed for the CNGFE method when
€ in equation (32) was set equal to 0-01. In each case the shear stress became uniform throughout
the specimen shortly after the temperature perturbation was introduced, and stayed uniform until
the time for which results are presented here. The computed results for times much higher than
this were not considered acceptable because the shear stress developed oscillatory behaviour,
probably as a result of the coarseness of the mesh, the timestep size and/or the integration schemes
used.

Figure 2 shows how the temperature at different points within the specimen evolves as the
specimen is being deformed. Because of the assumption of insulated boundaries, and as heat is
generated by plastic working, the temperature at every point in the material increases. As the
deformation begins to localize near the centre of the specimen, the temperature at points near
the centre increases considerably more than at points away from the centre. Again, the two
methods give virtually identical temperature distributions until the deformation begins to localize.
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Figure 2. The distribution of the temperature within a specimen of non-polar materials at different times
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Figure 3. The evolution of the plastic strain rate at the centre of a specimen of dipolar material, and its distribution within
the specimen at different times

Figure 3 compares the solutions for the dipolar materials with [ = 0-01. In this case the two
methods predict the initiation of localization at essentially the same time, but the peak plastic
strain rate given by the FDGFE method is higher than that computed by the CNGFE method.
Also, the time increment needed to compute a stable solution with the FDGFE method had to
be reduced to 2-5x107%, thereby necessitating at least three times as much CPU time as was
required for the CNGFE method. Whereas for non-polar materials the FDGFE method gave
higher values of the plastic strain rate, especially at points near the centre of the specimen, for
dipolar materials the CNGFE method predicted higher values of the peak plastic strain rate until
the localization of the deformation began in earnest. The two methods give virtually identical
values of other field quantities, such as the dipolar stress and the temperature change, until the
time for which results have been computed and plotted in Figure 3.

A comparison of the results plotted in Figures 1 and 3 reveals that the inclusion of dipolar
effects delays the onset of the localization of the deformation. This delay is predicted by both
methods.

Whether or not the introduction of auxiliary variables in the FDGFE method will permit the
use of a larger timestep remains to be seen. Also, the use of automatic timestep control as
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di

scussed by Chandra and Mukherjee® may improve the efficiency of the FDGFE method. Finally,

we remark that the effect of choosing different perturbations 6(y.0) and mesh size has been

di

R

scussed in References 6, 7, 9 and 10.
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