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SUMMARY

The locations of optimal stress points in Lagrangian and serendipity elements are determined by using the
symbolic mathematical tool MATHEMATICA#. It is found that, for the Lagrange family of elements of
order more than two, the co-ordinates of optimal stress points slightly di�er from those of the reduced
Gauss integration points. Some of the serendipity family of elements have either none or only one optimal
stress point at the element centre. Thus, when using higher-order elements in the p- or hp-version, it is more
desirable to employ the Lagrange family of elements. Copyright # 1999 John Wiley & Sons, Ltd.
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1 INTRODUCTION

The ®nite element method has been extensively used in the analysis and design of structural
members where the maximum shear stress or the maximum principal stress plays a critical role. In
the displacement-based ®nite element formulation, the stresses are not as accurately determined
as the nodal displacements. Barlow1 showed the existence of optimal points in an element where
stresses are most accurate. He computed the locations of these points for ®rst- and second-order
bar, beam and plane elements and found these points to be coincident with the locations of
reduced Gauss quadrature points. These optimal stress points have drawn more attention
recently because of the superconvergent patch recovery2,3 (SPR) wherein nodal values of stresses
are obtained by using the least squares ®t to the stresses evaluated at the sampling points. Thus
the SPR technique depends upon the precise location of sampling points. Based on Barlow's
result for lower-order elements, the reduced Gauss integration points have been taken as the
optimal stress points for higher-order elements.2,3 However, for higher-order elements, the
locations of these two sets of points are slightly di�erent, and are given herein for the Lagrange
and serendipity families of elements.

2 BAR ELEMENTS

Our technique of ®nding the locations of optimal stress points is exactly the same as that
employed by Barlow,1 and is brie¯y sketched for the sake of completeness. Consider an nth-order
bar element for which the displacement ®eld in the local co-ordinate x is given by4

ua � �1; x; x2; . . . ; xn�a � Pna �1�
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where a is the unknown coe�cient vector. Substituting into (1) the local co-ordinates of nodes,
we obtain the following relationship between the nodal displacements ddddda and the coe�cient
vector a:

ddddda � Aa �2�
Here A is the �n � 1� � �n � 1� matrix of nodal co-ordinates. Now, consider the displacement
®eld

ub � �1; x; x2; . . . ; xn�1�b � Pn�1b �3�
containing a complete polynomial of degree (n � 1) in the same nth-order element with n � 1
nodes. Substituting the local co-ordinates of n � 1 nodes into (3), we conclude that

dddddb � Bb �4�
where B is �n � 1� � �n � 2� matrix and dddddb is the nodal displacement vector for the nth-order
element. Setting ddddda � dddddb gives

a � A
ÿ1
Bb �5�

The ®rst-order derivatives (or strains) of the displacement ®elds (1) and (3) may be written as

dua
dx
� dx

dx

dPn

dx
a;

dub
dx
� dx

dx

dPn�1
dx

b �6�

where x is the global co-ordinate along the bar. The locations of optimal stress points are given by
equating dua=dx and dub=dx. Since the Jacobian dx=dx depends only upon the element geometry,
it is the same in the two cases. Thus the locations of optimal stress points are given by

dPn

dx
A
ÿ1
B ÿ dPn�1

dx

� �
b � Cb � 0 �7�

Vectors C for elements of order 1±5 are listed in Table I. The locations of optimal stress points
and also of reduced Gauss integration points for elements of order 1±10 are given in Table II. A

Table I. C vectors for a bar element of order 1±5, and locations of optimal stress points

n C Optimal stress points

1 x[ÿ 1, 2, ÿ1] 0

2 (9a/16)[ÿ 1, 3, ÿ3, 1], where a � 1 ÿ 3x2 +
1���
3
p

3 (8xa/27)[1, ÿ4, 6, ÿ4, 1], where a � 5 ÿ 9x2 +

���
5
p

3
, 0

4 (625a/3072)[1, ÿ5, 10, ÿ10, 5, ÿ1], where a � 1 ÿ 15x2 � 20x4 +
�p 3+ �p 29=5��

2 2
p .

5 (81xa/25000)[ÿ 1, 6, ÿ15, 20, ÿ15, 6, ÿ1], where a � 259 ÿ 1750x2 � 1875x4 +
�p 35+ 8 7

p ��
5 3
p , 0
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MATHEMATICA# ®le5 to compute the locations of optimal stress points in an nth-order
element is given in the Appendix. The results in Table II indicate that the locations of optimal
stress points coincide with those of reduced Gauss points for ®rst- and second-order elements but
di�er for higher-order elements.

3 PLANE ELEMENTS

We ®rst consider the Lagrange family of elements. The displacement ®eld (ua , va) for a 4-noded
quadrilateral element can be written as

�ua; va� � �1; x; Z; xZ��au; av� �8�

Table II. Locations of optimal stress points and reduced integration points for a bar element of order 1±10

n Optimal stress point Reduced integration point

1 0.000 000 000 000 000 0.000 000 000 000 000

2 +0.577 350 269 189 626 +0.577 350 269 189 626

3 +0.745 355 992 499 923 +0.774 596 669 241 483
0.000 000 000 000 000 0.000 000 000 000 000

4 +0.822 216 434 079 134 +0.861 136 311 594 953
+0.271 956 127 951 169 +0.339 981 043 584 856

5 +0.865 378 610 694 123 +0.906 179 845 938 664
+0.429 480 143 297 037 +0.538 469 310 105 683
0.000 000 000 000 000 0.000 000 000 000 000

6 +0.892 679 195 264 306 +0.932 469 514 203 152
+0.531 927 345 786 612 +0.661 209 386 466 265
+0.176 884 889 851 544 +0.238 619 186 083 197

7 +0.911 349 929 075 623 +0.949 107 912 342 759
+0.603 734 362 960 412 +0.741 531 185 599 394
+0.301 098 673 974 045 +0.405 845 151 377 397
0.000 000 000 000 000 0.000 000 000 000 000

8 +0.924 844 999 189 023 +0.960 289 856 497 536
+0.656 780 435 752 793 +0.796 666 477 413 627
+0.393 069 322 232 124 +0.525 532 409 916 329
+0.130 885 552 834 301 +0.183 434 642 495 650

9 +0.935 010 096 431 202 +0.968 160 239 507 626
+0.697 524 300 046 188 +0.836 031 107 326 636
+0.463 873 825 561 129 +0.613 371 432 700 590
+0.231 660 687 225 311 +0.324 253 423 403 809
0.000 000 000 000 000 0.000 000 000 000 000

10 +0.942 915 732 607 524 +0.973 906 528 517 172
+0.729 774 318 838 830 +0.865 063 366 688 985
+0.520 041 425 499 254 +0.679 409 568 299 024
+0.311 636 635 682 542 +0.433 395 394 129 247
+0.103 821 422 787 923 +0.148 874 338 981 631
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where au and av are unknown coe�cients and (x, Z) are the local co-ordinates of a point. The
displacement ®elds (ub , vb) containing polynomial terms up to a complete quadratic are

�ub; vb� � �1; x; Z; xZ; x2; Z2��bu; bv� �9�

where bu and bv are the unknown coe�cients. The spatial derivatives for these two displacement
®elds are given by

@ua
@x

@va
@x

@ua
@Z

@va
@Z

26664
37775 � 0 1 0 Z

0 0 1 x

" #
�au; av� �10�

@ub
@x

@vb
@x

@ub
@Z

@vb
@Z

26664
37775 � 0 1 0 Z 2x 0

0 0 1 x 0 2Z

" #
�bu; bv� �11�

By substituting for nodal co-ordinates into (8) and (9) we compute nodal displacements. Setting
these nodal displacements equal to each other, we obtain a relation between (au , av) and (bu , bv).
The locations of optimal stress points are obtained by equating the spatial derivatives of u and v
in (10) and (11), and substituting for (au , av) in terms of (bu , bv). The result is

0 0 0 0 ÿ2x 0
0 0 0 0 0 ÿ2Z

� �
�bu; bv� � 0 �12�

Equation (12) holds for every choice of bu and bv if and only if x � Z � 0. Thus the location of the
optimal stress point coincides with that of the reduced Gauss integration point. The optimal
stress points for quadratic and cubic Lagrange elements are similarly found and the pertinent
equations are given in Table III. It is clear that their local co-ordinates coincide with those of the
one-dimensional element given in Table II.

For a quadratic serendipity element, Barlow1 found the optimal stress points to be (+1/ 3
p

,
+1/ 3
p

) in local co-ordinates, and are coincident with those of the Lagrange quadratic
element. The locations of optimal stress points for the cubic, quartic and ®fth-order serendipity
elements are given in Table IV. It should be noted that both cubic and 5th-order elements have
only one optimal stress point at the centre of the element, and the quartic element has no
optimal stress point within the element. Furthermore, even though the cubic and ®fth-order
elements have an optimal stress point at the centre, it is di�cult to accurately evaluate the stress
components elsewhere since only one sampling point is available for the superconvergent patch
recovery.

4 A NUMERICAL EXAMPLE

Consider a square cantilever plate subjected to uniform pressure on the top surface, and let the
plate be discretized into four elements as shown in Figure 1. Our intent is to compare errors in
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Table III. C matrices and the optimal stress points for Lagrangian quadratic and cubic elements

Quadratic element Cubic element

Pn [1, x, Z, x2, xZ, Z2, x2Z, xZ2, x2Z2] [1, x, Z, x2, xZ, Z2, x3, x2Z, xZ2, Z3, x3Z, x2Z2, xZ3, x3Z2, x2Z3, x3Z3]
Pn�1 [1, x, Z, x2, xZ, Z2, x3, x2Z, xZ2, Z3, x2Z2] [1, x, Z, x2, xZ, Z2, x3, x2Z, xZ2, Z3, x4, x3Z, x2Z2, xZ3, Z4, x3Z2, x2Z3, x3Z3]

C
0; 0; 0; 0; 0; 0; 0; 0; 0; 1 ÿ 3x2; 0
0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1 ÿ 3Z2

� �
0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 209 x ÿ 4x3; 0
0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 209 Z ÿ 4Z3

� �
Solutions of Cb � 0 +

1

3
p ;+

1

3
p

� �
+

5
p

3
;+

5
p

3

� �
or �0; 0�

Table IV. C matrices and the optimal stress points for serendipity cubic, quartic and ®fth order elements

Cubic element Quartic element

Pn [1, x, Z, x2, xZ, Z2, x3, x2Z, xZ2, Z3, x3Z, xZ3] [1, x, Z, x2, xZ, Z2, x3, x2Z, xZ2, Z3, x4, x3Z, x2Z2, xZ3, Z4, x4Z, xZ4]
Pn�1 [1, x, Z, x2, xZ, Z2, x3, x2Z, xZ2, Z3, x4, x3Z, x2Z2, xZ3, Z4] [1, x, Z, x2, xZ, Z2, x3, x2Z, xZ2, Z3, x4, x3Z, x2Z2, xZ3, Z4, x5, x4Z, x3Z2, x2Z3, xZ4, Z5]

C
f0g; 209 x ÿ x3; f0g; 0; 0; 2x�1 ÿ Z2�; 0; 0; 0
f0g; 0; f0g; 0; 0; 2�1 ÿ x2�Z; 0; 0; 209 Z ÿ Z3

" #
f0g; �ÿ1 � 15x2 ÿ 20x4�=4; f0g; 0; 0; 0; �1 ÿ 3x2��ÿ1 � Z2�; 0; 0; 2xZ�1 ÿ Z2�; 0; 0; 0
f0g; 0; f0g; 0; 0; 0; 2xZ�1 ÿ x2�; 0; 0; �ÿ1 � x2��1 ÿ 3Z2�; 0; 0; �ÿ1 � 15Z2 ÿ 20Z4�=4

� �
Solutions of Cb � 0 �0; 0� ±

5th-order element

Pn [1, x, Z, x2, xZ, Z2, x3, x2Z, xZ2, Z3, x4, x3Z, x2Z2, xZ3, Z4, x5, x4Z, x3Z2, x2Z3, xZ4, Z5, x5Z, x3Z3, xZ5]

Pn�1 [1, x, Z, x2, xZ, Z2, x3, x2Z, xZ2, Z3, x4, x3Z, x2Z2, xZ3, Z4, x5, x4Z, x3Z2, x2Z3, xZ4, Z5, x6, x5Z, x4Z2, x3Z3, x2Z4, xZ5, Z6]

C
f0g; 2x�ÿ259 � 1750x2 ÿ 1875x4�=625; f0g; 0; 0; 0; 0; 4x�17 ÿ 25x2��Z2 ÿ 1�=25; f0g; 2x�9 ÿ 25Z2��Z2 ÿ 1�=25; 0; 0; 0
f0g; f0g; 0; 0; 0; 0; 0; 2Z�9 ÿ 25x2��x2 ÿ 1�=25; f0g; 4Z�ÿ17 � 25Z2��x2 ÿ 1�=25; 0; 0; 2Z�ÿ259 � 1750Z2 ÿ 1875Z4�=625

� �
Solutions of Cb � 0 (0,0)
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stresses at the optimal stress points and the reduced Gauss integration points. The error e in the
stresses is de®ned as the di�erence between their values for the nth and (n � 1)th-order elements
and normalized by stresses for the (n � 1)th-order element. Figures 2 and 3 compare the errors in
stresses at the optimal stress points and the reduced integration points in element A when the
plate is modelled with Lagrangian cubic and quartic hierarchical elements. It is evident that the
errors at the optimal stress points are lower than those at the reduced Gauss integration
points. Thus, it is expected that stresses recovered by the SPR from their values at the optimal
stress points will have better accuracy than those from their values at the reduced integration
points.

Figure 4 exhibits the convergence of the shear stress at point P obtained by using the
superconvergent patch recovery. Whereas the optimal stress points were employed as sampling
points for Lagrangian hierarchical elements, reduced Gauss integration points were used for
serendipity elements. The shear stress is normalized with that obtained by using a mesh with
100� 100 4-noded quadrilateral elements. It is clear from the results plotted in Figure 4 that the
shear stress obtained from the Lagrange family of elements converges as the order of the element
is increased but that derived from the serendipity family of elements appears to diverge. This is
because a serendipity element of order higher than three either has only one or no sampling point
within the element.

5 CONCLUSIONS

We have computed locations of optimal stress points for bar and quadrilateral elements of
various orders. It is found that these locations may di�er from those of the reduced integration
points. The serendipity elements of order 3 and higher have either one or no optimal stress point
within the element. Thus the Lagrange family of hierarchical elements should be used in p- or hp-
versions to get better accuracy of the stresses.

The optimal stress points for the hierarchical and isoparametric Lagrange elements are the
same since both elements have the same polynomial terms even though they have di�erent shape
functions.

Figure 1. A cantilever plate
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Figure 2. Errors in stresses in a Lagrangian cubic element (left ®gures for the optimal stress points and right ®gures for
the reduced Gauss integration points)
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Figure 3. Errors in stresses in a Lagrangian quartic element (left ®gures for the optimal stress points and right ®gures for
the reduced Gauss integration points)
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APPENDIX: MATHEMATICAL DATA PROGRAM

Bar element
ord1 � 3;
ord2 � ord1 � 1;
sh1 � Range[1,ord1 � 1];
sh2 � Range[1,ord2 � 1];
Do[ Part[sh1,i]s^(iÿ 1),{i,ord1 � 1}];
Do[ Part[sh2,i]s^(iÿ 1),{i,ord2 � 1}];
A � IdentityMatrix[ord1 � 1];
B � Table[1, {i,ord1 � 1},{j,ord2 � 1}];
tmp � ÿ 1;
del � 2/ord1;
Do[ tmpva � sh1/.s! tmp;

tmpvb � sh2/.s! tmp;
Do[ Part[A,i,j] � Part[tmpva,j],{j,ord1 � 1}];
Do[ Part[B,i,j] � Part[tmpvb,j],{j,ord2 � 1}];
tmp � tmp � del,{i,ord1 � 1}];

IAB � Inverse[A].B;
dsh1 � D[sh1,s];
dsh2 � D[sh2,s];
Eq � Factor[Simplify[dsh1.IABÿ dsh2]]
Factor[Simplify[Solve[Eq � � 0,s]]]
N[%,16]

Figure 4. Convergence of the shear stress at point A obtained by the superconvergent patch recovery in Lagrangian and
serendipity ®nite elements
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Lagrangian element

ord1 � 3;
ord2 � ord1 � 1;
sh1 � Range[1,(ord1 � 1)*(ord1 � 1)];
sh2 � Range[1,(ord1 � 1)*(ord1 � 1) � 2];
cv � Range[1,ord1 � 1];
isum � 0;
Do[ Do[ isum � isum � 1;

Part[sh1,isum] � s^(iÿ 1)*t^( jÿ 1);
Part[sh2,isum] � s^(iÿ 1)*t^( jÿ 1),{i,ord1 � 1}],

{j,ord1 � 1}]

Part[sh2,(ord1 � 1)*(ord1 � 1) � 1] � s^ord2;
Part[sh2,(ord1 � 1)*(ord1 � 1) � 2] � t^ord2;
A � IdentityMatrix[(ord1 � 1)^2];
B � Table[1, {i,(ord1 � 1)^2},{j,(ord1 � 1)^2 � 2}];
del � 2/ord1;
tmp � ÿ 1;
Do[ Part[cv,i] � tmp;

tmp � tmp � del,{i,ord1 � 1}];
jj � 0;
Do[ Do[ jj � jj � 1;

tmpva � sh1/.{s! Part[cv,i],t! Part[cv,j]};
tmpvb � sh2/.{s! Part[cv,i],t! Part[cv,j]};
Do[Part[A,jj,ii] � Part[tmpva,ii],{ii,1,(ord1 � 1)^2}];
Do[Part[B,jj,ii] � Part[tmpvb,ii],{ii,1,(ord1 � 1)^2 � 2}],{i,ord1 � 1}],

{j,ord1 � 1}];
IAB � Inverse[A].B;
dsh1 � {D[sh1,s],D[sh1,t]};
dsh2 � {D[sh2,s],D[sh2,t]};
Eq � Simplify[dsh1.IABÿ dsh2]
Simplify[Solve[Eq � � 0, {s,t}]]
N[%,16]

REFERENCES

1. J. Barlow, `Optimal stress locations in ®nite element models', Int. j. numer. methods eng., 10, 243±251
(1976).

2. O. C. Zienkiewicz and J. Z. Zhu, `The superconvergent patch recovery and a posteriori error estimates.
Part 1: The recovery technique', Int. j. numer. methods eng., 33, 1331±1364 (1992).

3. O. C. Zienkiewicz, J. P. De S. R. Gago and D. W. Kelly, `The hierarchical concept in ®nite element
analysis', Comput. Struct., 16(1±4), 53±65 (1983).

4. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Vol. 1, 4 Edn., McGraw-Hill, 1989.
5. S. Wolfram, The MATHEMATICA, 3 Edn., Cambridge University Press, 1996.

Copyright # 1999 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 15, 127±136 (1999)

136 H.-S. OH AND R. C. BATRA


