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SUMMARY

The superconvergent patch recovery (SPR) with bilinear interpolation functions usually gives good values of
recovered stresses in an element patch. However, when 4-node quadrilateral elements meeting at a node are
rigidly rotated with the essential and natural boundary conditions unchanged, the recovered stresses
obtained by the SPR change and depend upon the local rotation of the patch. This can be remedied either by
including higher-order terms in the polynomials for the assumed stress distribution in an element patch, or
by using linear interpolation functions, which gives inferior accuracy of the recovered stresses near the
boundaries of the domain. Additional sampling points are suggested to compute the higher-order terms.
Copyright © 1999 John Wiley & Sons, Ltd.
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1 INTRODUCTION

The superconvergent patch recovery' > (SPR) technique, proposed by Zienkiewicz and Zhu,
improves the accuracy of nodal stresses in linear and higher-order finite elements. These
recovered stresses when used in Zienkiewicz—Zhu’s error estimate>*> also improve the accuracy
of the error estimate.” In the SPR, an element patch consists of all elements sharing a node. A
polynomial is assumed to represent the distribution of a stress component in the element patch,
and the unknown parameters in the polynomial are calculated by the least-squares fit to the
values of the stress component at sampling points in the patch. Thus, the accuracy of recovered
stresses usually depends on the degree of the assumed polynomial. For example, for a ‘regular
mesh’ discretized with bilinear isoparametric quadrilateral elements, an element patch usually
consists of four elements, the assumed polynomial is a bilinear form and each element has one
sampling point coincident with the optimal stress point.

However, as the local mesh is rotated without changing the boundary conditions and the
applied loading, global stresses obtained by the SPR change significantly and their calculation
becomes impossible for an angle of rotation of 45 degrees. This is because the number of terms in
the assumed polynomial for nodal stresses is not enough to fully represent the local rotation of
the mesh. This occurs both in a regular and an irregular mesh.
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This phenomenon can be avoided either by approximating the stress distribution in an element
patch with a polynomial of order high enough to represent the rotation, or low enough to exclude
the rotation. Additional sampling points are suggested to determine unknown parameters
associated with the higher-order polynomial.

2 THE SPR INDEPENDENT OF MESH ROTATION

Figure 1 shows a typical element patch and the associated sampling points in a regular mesh
discretized with bilinear quadrilateral elements. Each component a: of the stress field in the patch
is expressed as

0': = Pa (1)
where
P=[1 x y xy, a=la a a a4]T (2)
For simplicity, we write (1) as
o, =1, x,y, x) 3)

Then, as the finite element mesh is locally rotated through an angle 6 without any change of the
loading and boundary conditions, the stress component in the rotated co-ordinates becomes

Gﬂ; :/}(1’ X/, )/, )C/y,, er’ y/Z) (4)

because X’ = x cos 0 + ysin 0 and y' = —x sin 0 + y cos 0. If one uses the locally rotated mesh
and computes recovered stresses by using (1), then these would differ significantly from those
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Figure 1. Element patch and sampling points
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obtained by using a regular mesh because of the absence of terms involving x> and y?. In general,
then, the polynomial P in (1) should be a complete polynomial of degree 2; namely,

P=[1 x y xp ¥ )] (5)

Better accuracy of recovered stresses is expected in an arbitrary mesh because of added higher-
order terms. However, the polynomial (5) has six terms. Thus six unknowns are to be determined,
and we need at least two additional sampling points. However, four additional sampling points,
shown in Figure 1, are employed for symmetry in this paper. Each additional sampling point is
located on the common side between two adjoining elements where the line joining two interior
sampling points intersects it. Stress values at these additional sampling points can be easily
obtained by applying the SPR in one dimension. For example, in order to obtain stress values at
the additional sampling point A in Figure 1, the SPR technique is applied to points B and C; it is
equivalent to interpolating stresses at A from those at B and C.

Alternatively, one could omit the term xy in the polynomial P; however, the recovered stresses
lose some accuracy near the boundaries of the body.

3. NUMERICAL EXAMPLES

We illustrate for two example problems the effect of employing the conventional and additional
sampling points in the SPR, and the lower-order polynomial in P. In each case, Young’s modulus
and Poisson’s ratio are set to 10 and 0-3, respectively. Figure 2 shows a finite element mesh for a
cantilever beam with height/length equal to 0-2. In Figure 3, we have plotted contours of the
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Figure 2. Cantilever beam subjected to uniform pressure at the end face
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Figure 3. Contours of the bending stress obtained by the SPR technique with linear and bilinear interpolation functions
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(d) 44.9 degree rotation

Figure 4. Contours of the bending stress obtained by the SPR with only the conventional sampling points as the mesh is
locally rotated

bending stress recovered by using the linear and the bilinear interpolation functions in the SPR
technique. Even though there is no rotational dependence exhibited by the SPR technique with a
linear interpolation function, the accuracy of the recovered stresses near the two edges of the
beam is less than that obtained with the bilinear interpolation function. Figure 4 depicts contours
of the bending stress obtained by the SPR with only the conventional sampling points for
different angles of rotation of the mesh. For the regular mesh of Figure 2, as expected, the
magnitude of the bending stress is symmetrical about the horizontal centroidal axis, but this
symmetry disappears when the mesh is rotated through 15, 30 and 44-9 degrees. However, when
additional sampling points are also considered the contours of the bending stress are independent
of the rotation of the mesh. Figure 5 shows the bending stresses at the point P obtained by the
SPR with conventional sampling points only and with conventional and additional sampling
points; these are normalized by the bending stress at point P for no rotation of the mesh. It is
clear that the bending stress obtained with the conventional sampling points strongly depends on
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Figure 5. Bending stress at point P vs. the angle of rotation of the mesh

the rotation of the mesh. The slope of the curve rapidly increases when the angle of rotation is
close to 45°, and we cannot calculate the bending stress for an angle of rotation of 45° because
then the matrix PTP is singular. However, the stresses obtained with the conventional and
additional sampling points do not depend on the angle of rotation of the mesh.

Figure 6 exhibits a finite element model of a circular plate with a circular hole at its centre and
subjected to a uniform pressure on the inner surface of the hole. For this problem, the solution
should be independent of the angular position of a point. The distribution of the maximum
principal stress recovered by the SPR technique with linear and bilinear interpolation functions is
plotted in Figure 7. As for the beam problem (cf. Figure 3), the SPR technique with the bilinear
interpolation functions gives more accurate values of the principal stresses near the boundaries.
Figure 8 evinces, for different angles of rotation of the mesh, the distribution of the maximum
principal stress obtained by the SPR technique with conventional and additional sampling
points. The stress obtained with the conventional sampling points shows non-uniform
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Figure 6. Finite element model and boundary condition for an annular circular plate
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Figure 7. Contours of the maximum principal stress in the circular plate obtained by the SPR technique with linear and
bilinear interpolation functions
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Figure 8. Contours of the maximum principal stress in the circular plate obtained by the SPR with conventional, and
with conventional and additional sampling points

distribution along the circumference of the outer boundary, but that obtained by using the
conventional and additional sampling points in the SPR is uniformly distributed in the circum-
ferential direction. Figure 9 shows the distribution of the Zienkiewicz—Zhu error energy
norm.>*3 When using only the conventional sampling points in the SPR, the error distribution is
unreasonable, since the error in the shaded element near the middle of the free boundary is larger
than that in the shaded element near the hole. The inaccuracy of the recovered stress shown in
Figure 8 yields this incorrect estimate of Zienkiewicz—Zhu’s error. However, by using the
conventional and additional sampling points, the computed Zienkiewicz—Zhu errors vary only in
the radial direction as expected.
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(a) conventional sampling points (b) conventional and additional sampling points

Figure 9. Distribution of Zienkiewicz—Zhu’s error energy norm in the circular plate

4 CONCLUDING REMARKS

We have shown for two commonly encountered example problems that the SPR technique
employing bilinear interpolation functions with conventional sampling points for bilinear
quadrilateral elements gives an incorrect distribution of stresses as the mesh is locally rotated.
However, when either a linear polynomial for recovered stresses or a higher-order polynomial
expression for the recovered stresses and additional sampling points suggested herein are used,
the recovered stresses are independent of the orientation of the mesh with respect to the global
axes. The proposed modified SPR technique can be easily extended to the 8-noded brick element.
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