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SUMMARY

Large deformations of rubber-like materials are analyzed by the meshless local Petrov–Galerkin (MLPG)
method. The method does not require shadow elements or a background mesh and therefore avoids
mesh distortion difficulties in large deformation problems. Basis functions for approximating the trial
solution and test functions are generated by the moving least-squares (MLS) method. A local mixed
total Lagrangian weak formulation of non-linear elastic problems is presented. The deformation gradient
is split into deviatoric and dilatational parts. The strain energy density is expressed as the sum of two
functions: one is a function of deviatoric strains and the other is a function of dilatational strains. The
incompressibility or near incompressibility constraint is accounted for by introducing the pressure field
and penalizing the part of the strain energy density depending upon the dilatational strains. Unlike in
the mixed finite element formulation, in the MLPG method there is no need for different sets of basis
functions for displacement and pressure fields. Results computed with the MLPG method for a few sample
problems are found to compare very well with the corresponding analytical solutions. Copyright q 2007
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Rubber-like materials are frequently used in the automotive industry, mechanical, civil, electrical
and electronic engineering, see, e.g. [1]. Biological tissues can also be regarded as rubber-like
materials. For example, the material of an arterial wall [2] is modeled as rubber-like.

In continuum mechanics, rubber-like solids are generally modeled as isotropic, incompressible
and hyperelastic. From a theoretical point of view, the incompressibility constraint facilitates
finding analytical solutions for isotropic hyperelastic problems, see, for example, [2]. Besides
homogeneous deformations, there are five families of inhomogeneous deformations [3] that can be
produced in every incompressible isotropic hyperelastic solid. Some works have investigated the
possibility of treating rubber as a nearly incompressible material by separating the strain energy
for distortional deformations from that for the dilatational ones using Penn’s invariants [4] and the
multiplicative decomposition of the deformation gradient into a volume preserving deformation
and a pure dilatation, see, e.g. [5]. In [6] it is proved that the behavior of slightly compressible
materials may approximate well that of incompressible materials.

The analysis of problems for rubber-like materials is a challenging task in computational
mechanics due to the possibility of extremely large deformations and the nearly incompressible or
genuinely incompressible material response, see, e.g. [7]. For a complete review and bibliography
of works on numerical modeling of rubber-like materials, we refer the reader to [8, 9]. Many finite
element (FE) formulations have been developed to avoid the volumetric locking resulting from the
incompressibility constraint. Among them are the mixed formulation [10–12], the hybrid methods
[13–15], the selective reduced integration [16], the perturbed Lagrange formulation [17], and the
rank-one filtering method [18]. In addition to difficulties in dealing with incompressibility, FE
formulations frequently break down when applied to elastomers where excessive deformations
lead to mesh entanglement.

Recently, considerable research in computational mechanics has been devoted to the development
of meshless methods. These methods alleviate the difficulty of meshing and remeshing the entire
structure, by only adding or deleting nodes at suitable locations. Meshless methods may also
alleviate some other problems associated with the FE method, such as element distortion. During the
last two decades, several meshless methods for seeking approximate solutions of partial differential
equations have been proposed; these include the element-free Galerkin (EFG) [19], hp-clouds [20],
the reproducing kernel particle [21], the smoothed particle hydrodynamics (SPH) [22], the diffuse
element [23], the partition of unity FE [24], the natural element [25], meshless Galerkin using radial
basis functions [26], the meshless local Petrov–Galerkin (MLPG) [27], the modified smoothed
particle hydrodynamics (MSPH) [28], and the collocation method with radial basis functions [29].
All of these methods, except for the MLPG, the SPH, the MSPH, and the collocation are not
truly meshless since the use of shadow elements is required for evaluating integrals appearing
in the governing weak formulations [30]. The MLPG method has been successfully applied to
several structural problems: static linear plane elasticity [27]; vibrations of elastic planar bodies
[31]; static analysis of thin plates [32]; static analysis of beams [33]; vibrations of cracked beams
[33]; static and dynamic problems for functionally graded materials [34, 35]; analysis of transient
problems with material discontinuities [36]; analysis of microelectromechanical problems [37, 38];
high-speed impact penetration mechanics [39]; and analysis of large deformation problems [40].

The MLPG method is based on local weak form of governing equations and employs meshless
interpolations for both the trial and test functions. The trial functions are constructed by using the
moving-least squares (MLS) [41] approximation which relies on the location of points or nodes in
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the body. In the Petrov–Galerkin formulation, test functions may be chosen from a different space
than the space of trial functions, resulting in several variations of the method, see e.g. [30]. Thus,
the key ingredients of the MLPG method may be summarized as local weak formulation, MLS
interpolation, and Petrov–Galerkin projection. Key issues to be addressed in formulating an MLPG
method are the evaluation of domain integrals appearing in the weak formulation, imposition of
essential boundary conditions, and for transient problems time integration of the resulting ordinary
differential equations.

Here we analyze finite static deformations of rubber-like materials with the MLPG method. We
derive a local mixed weak formulation in which both the pressure and displacement fields are
regarded as unknowns. By splitting the strain energy density into deviatoric and dilatational parts,
we treat simultaneously problems for nearly incompressible and fully incompressible materials.
The essential boundary conditions are imposed through a set of Lagrange multipliers defined on
the boundary. We adopt the concept of secondary nodes developed in [42] for enriching the set
of trial functions without increasing noticeably the computational cost. The method is applied to
the solution of different plane strain sample problems, and it is shown that their accurate solution
can be computed with very few nodes. Moreover, it is shown that when a purely displacement
formulation is adopted in the MLPG method, a locking phenomenon similar to that encountered
in the FE method occurs, suggesting thereby the need for a mixed formulation.

The main contributions of the paper are the derivation of a mixed local weak formulation
of the non-linear problem where the displacement, pressure and constraint reactions are treated
as unknowns that is applicable to completely incompressible or nearly incompressible materials;
showing that pure displacement meshless formulations do not avoid locking phenomenon; adapting
the secondary nodes to non-linear problems, and demonstrating that accurate approximate solutions
can be obtained with a few nodes.

The rest of the paper is organized as follows. In Section 2 we derive a local symmetric weak
formulation valid for hyperelastic materials and then we specialize it to the analysis of plane strain
deformations of rubber-like materials. Section 2 presents the MLPG discrete non-linear equations
for determining an approximate solution. In Section 3, we apply the proposed method to the
solution of linear and non-linear problems. Section 4 addresses solutions of plane stress problems.
Section 5 summarizes conclusions of this work. The Appendix describes the MLS approximation
for generating basis functions to approximate the trial solution using secondary nodes, and the
elasticity tensor for a nearly incompressible hyperelastic isotropic material.

2. APPLICATION OF THE MLPG METHOD TO NON-LINEAR ELASTIC PROBLEMS

2.1. Local weak formulation

Following [43], we consider three distinct configurations of a body in the Euclidean space: the
reference configuration �, an intermediate one �0, and the present one �t . Material points in
� are indicated by x, those in �0 by x0, and those in �t by xt . A field (scalar or tensor) q
in the reference configuration is indicated by q0 or qt when pushed forward in the intermediate
or in the actual configuration, respectively; while its increment from the intermediate to the
actual configuration is denoted by �q(x). Furthermore, w indicates the displacement vector, F
the deformation gradient, C the right Cauchy–Green strain tensor, E the Green–St.Venant strain
tensor, S the second Piola–Kirchhoff stress tensor, and P the first Piola–Kirchhoff stress tensor.
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1784 R. C. BATRA AND M. PORFIRI

A mixed pressure/displacement formulation is used here; the stress tensor depends on both the
Green–St.Venant strain tensor E and the pressure field p. The boundary �� of the domain � is
partitioned into two disjoint parts:

��=�w∪�t

On the boundary �w displacements are prescribed as

wt (x)= w̄(x), x∈�w

while on the boundary �t dead loads are prescribed by

Pt (x)n(x)= t̄(x), x∈�t

where n is the outward unit normal to �t.
For a generic subdomain �s of domain �, the principle of virtual work (see e.g. [44]) gives∫

�s

St (x) ·Sym[(Ft )T(x)∇u(x)]d�=
∫

�s

b(x) ·u(x)d�+
∫

��s

Pt (x)n(x) ·u(x)d�

where u is a virtual displacement or a test function that does not need to vanish on �w, ∇ is the
gradient with respect to reference coordinates, Sym indicates the symmetric part, and superscript
T indicates transposition.

The boundary ��s can be divided into three disjoint parts ��s= Ls∪�ts∪�ws. The curve Ls lies
inside the domain �, �ts equals the part of ��s where natural boundary conditions are prescribed,
and �ws specifies the part of ��s where essential boundary conditions are prescribed. Hence, by
substituting for the traction boundary condition we obtain∫

��s

Pt (x)n(x) ·u(x)d�=
∫
Ls

Pt (x)n(x) ·u(x)d�+
∫

�ts

t̄(x) ·u(x)d�+
∫

�ws

rt (x) ·u(x)d�

where

rt (x)=Pt (x)n(x)

represents the unknown constraint reaction field in the reference configuration acting at boundary
points with prescribed displacements. By choosing test functions that vanish on the interior contour
Ls, the weak formulation of the non-linear problem in the reference configuration is∫

�s

St (x) ·Sym[(Ft )T(x)∇u(x)]d�

=
∫

�s

b(x) ·u(x)d�+
∫

�ts

t̄(x) ·u(x)d�+
∫

�ws

rt (x) ·u(x)d� (1)

In order to impose essential boundary conditions on �w in a weak local sense, we consider the
additional integral equation ∫

�s

wt (x) ·k(x)d�=
∫

�s

w̄(x) ·k(x)d� (2)
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where k is a smooth test field defined on the portion �s of �w. We note that �s plays the same role
for the boundary �w as �s does for �.

The full or nearly incompressibility condition is accommodated by requiring that

pt (x)= p̄t (Et (x)) (3)

where p̄t is the pressure computed from the deformation gradient. This leads to the local weak
formulation ∫

�s

pt (x)�(x)d�=
∫

�s

p̄t (x)�(x)d� (4)

where � is a smooth test field defined on �s.

2.2. Total Lagrangian mixed formulation

In order to derive a total Lagrangian formulation (see e.g. [43]) of the problem suitable for numer-
ical implementation, we regard the present configuration as differing by an infinitesimal amount
from the intermediate configuration and linearize the weak formulation around the intermediate
configuration.

Therefore, we adopt the following incremental form of the stress tensor:

St (x)�S0(x)+C(x)(Et (x)−E0(x))+H(x)(pt (x)− p0(x)) (5)

where

C= �S
�E

∣∣∣∣
0
, H= �S

�p

∣∣∣∣
0

and ·|0 implies that the quantity is evaluated in the intermediate configuration. The constitutive
relation (5) is still non-linear in the displacement increment �w from �0 to �t , since the difference
of the two strains is not linear in the gradient of the incremental displacement. However, since

Et −E0�Sym[(F0)T∇�w], �w=wt −w0

we obtain the following linearized constitutive equation:

St �S0+CSym[(F0)T∇�w]+H�p (6)

Substituting for St from (6) into (1), and decomposing the virtual work done by the external forces
in the right-hand side of (1) into the virtual work done by loads that keep the body in equilibrium in
the intermediate configuration, and the virtual work done by the incremental loads, the incremental
form of the symmetric weak formulation (1) becomes∫

�s

∇�wS0 ·∇ud�+
∫

�s

CSym[(F0)T∇�w]·Sym[(F0)T∇u]d�

+
∫

�s

�pH ·Sym[(F0)T∇u]−
∫

�ws

�r(x) ·u(x)d�
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=
∫

�s

b0(x) ·u(x)d�+
∫

�ts

t̄0(x) ·u(x)d�+
∫

�ws

r0(x) ·u(x)d�

−
∫

�s

S0 ·Sym[(F0)T∇u]d�+
∫

�s

�b(x) ·u(x)d�+
∫

�ts

�t̄(x) ·u(x)d� (7)

In order to determine the incremental displacement field, the incremental pressure field, and the
constraint reactions, we consider also the incremental forms of Equations (2) and (4), i.e.∫

�s

�w(x) ·k(x)d�=
∫

�s

�w̄(x) ·k(x)d� (8)

and ∫
�s

�p(x)�(x)d�−
∫

�s

(Q ·Sym[(F0)T∇�w])�(x)d�

=−
∫

�s

p0(x)�(x)d�+
∫

�s

p̄0(x)�(x)d� (9)

where

Q= � p̄
�E

∣∣∣∣
0

Henceforth, we consider only plane strain problems with deformations in the x1x2, where x1
and x2 define a Cartesian coordinate system, and set

�d=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

��w1

�x1
��w1

�x2
��w2

�x1
��w2

�x2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, �w=
{

�w1

�w2

}
, �r=

{
�r1

�r2

}
, �b=

{
�b1

�b2

}
, �t̄=

{
�t̄1

�t̄2

}

d=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

��1

�x1
��1

�x2
��2

�x1
��2

�x2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, u=
{

�1

�2

}
, �k=

{
��1

��2

}
, w0=

{
w0
1

w0
2

}
, r0=

{
r01

r02

}
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S0 =

⎡
⎢⎢⎢⎢⎢⎣

S011 S012 0 0

S012 S022 0 0

0 0 S011 S012

0 0 S012 S022

⎤
⎥⎥⎥⎥⎥⎦ , B=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1+ �w0
1

�x1
0

�w0
2

�x1
0

0
�w0

1

�x2
0 1+ �w0

2

�x2
�w0

1

�x2
1+ �w0

1

�x1
1+ �w0

2

�x2

�w0
2

�x1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q=

⎧⎪⎨
⎪⎩
Q11

Q22

Q12

⎫⎪⎬
⎪⎭ , H=

⎧⎪⎨
⎪⎩
H11

H22

H12

⎫⎪⎬
⎪⎭ , s0=

⎧⎪⎪⎨
⎪⎪⎩
S011

S022

S012

⎫⎪⎪⎬
⎪⎪⎭ , b0=

{
b01

b02

}
, t̄0=

{
t̄01

t̄02

}

In this notation Equations (7), (8) and (9) can be expressed as

∫
�s

dT(B+S0)�dd�+
∫

�s

dTH�pd�−
∫

�ws

uT�rd�

=−
∫

�s

dTSd�+
∫

�s

uTb0 d�+
∫

�ts

uTt̄0 d�+
∫

�ws

uTr0 d�

+
∫

�s

uT�bd�+
∫

�ts

uT�t̄d� (10)

∫
�s

kT�wd� =
∫

�s

kT�w̄d� (11)

∫
�s

��pd�−
∫

�s

�QT�dd� =
∫

�s

�( p̄0− p0)d� (12)

where

B=BTLB, S=BTs0, H=BTH, Q=BTQ

and L is the elasticity matrix. We note that matrices S0, B, L, H, and Q depend on the state of
deformation and on pressure in the intermediate configuration.

The preceding formulation differs from that used earlier, e.g. [11], in the following respects.
Here, constraint reactions are determined as a part of the solution of the problem, and the pressure
field is given by (3). In [11], the pressure is regarded as a Lagrange multiplier to impose the
incompressibility constraint. Whereas in EFG, e.g. [19], the region �s in Equations (10)–(12)
equals the entire region � occupied by the body in the reference configuration, here �s⊂� is
a subregion of �. Furthermore, as should become clear from the following material, there is no
background mesh used to numerically integrate Equations (10)–(12).
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2.3. Discrete formulation

In order to find an approximate solution of the linearized elastic problem, we approximate compo-
nents of the displacement and the pressure fields by using N 2-D MLS basis functions given by
Equation (A8) in the Appendix:

w1(x)=wT(x)ŵ1, w2(x)=wT(x)ŵ2, p(x)=wT(x)p̂

The constraint reactions field is instead approximated by using 2NB 1-D MLS basis functions
obtained from (A8) by discretizing the boundary of the domain by piecewise linear segments, and
by placing a set of nodes on each segment, i.e.

r1(x)=v(x)Tr̂1, r2(x)=v(x)Tr̂2
For convenience we group nodal displacements and nodal reactions into two vectors ŵ to k̂. In
order to obtain a set of linearly independent algebraic equations for the 3N+2NB nodal unknowns,
we use N local 2-D subdomains �si , NB local 1-D subdomains �si , N independent scalar test fields
�i defined on each �si and vanishing on Lsi , and NB independent scalar test fields �i defined
on �si . Note that subdomains �si and �si do not need to be disjoint. We thus get the following
algebraic problem:⎡

⎢⎣
Kww Kwp Kwr

Kpw Kpp 0

Krw 0 0

⎤
⎥⎦
⎧⎪⎨
⎪⎩
ŵ

p̂

r̂

⎫⎪⎬
⎪⎭=

⎧⎪⎨
⎪⎩

�fw

0

�fr

⎫⎪⎬
⎪⎭+

⎧⎪⎨
⎪⎩
fw

0

fr

⎫⎪⎬
⎪⎭+

⎧⎪⎨
⎪⎩
Rw

Rp

Rr

⎫⎪⎬
⎪⎭ (13)

where the explicit form of the tangent stiffness matrix and of the load vector can be deduced
from Equations (10)–(12). For problems involving dead loads, as those studied in this paper, the
incremental load is a given constant vector, and the tangent stiffness matrix and the residual loads
depend on the deformation and pressure fields in the intermediate configuration.

An alternative to the MLS basis functions is the SSPH basis functions [45] wherein the function
and its derivatives of the desired degree at a point are expressed in terms of the values of the
function at discrete points.

3. COMPUTATION AND DISCUSSION OF RESULTS

In order to validate the problem formulation and the developed computer code, we consider a
square plate of side 1, and we numerically analyze several problems and compare our findings to
either exact or FE solutions.

We take test functions from the same space as the trial solutions. We consider a regular grid
of 49 primary nodes as shown in Figure 1. Linear monomial basis, m=3, is used to generate the
MLS basis functions, and the origin of the coordinate axes is located at the bottom left corner.
Weight functions with square supports are used, and the size ri of their support is chosen to be 1

2 .
This guarantees the non-singularity of matrices in the MLS approximation, since ri equals three
times the nodal spacing. For the considered problems, we found through numerical experiments
that this supports’ size represents a good compromise between computational speed and accuracy.
Larger supports generally result in more accurate solutions but require more computational effort,
see, e.g. [46]. Values assigned to other constants defining weight functions in Equation (A9) are
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x1

x2

Figure 1. Geometry and locations of primary nodes for the sample problem studied.

k=1, ci =ri/4. To numerically evaluate integrals appearing in the linearized weak formulation of
the problem, we use 6×6 quadrature points in each intersection of supports of weight functions
associated with different primary nodes. This approach extends to two-dimensional problems the
technique developed in [33] to increase the accuracy of numerical integration. The approach
noticeably differs from the background mesh concept of the EFG methods [19], since integration
domains are not a priori assigned in a mesh-like manner but are dynamically constructed based on
the nodes’ locations. We note that, for the considered nodes’ distribution, the smallest intersection
among the weight functions’ supports is a square of side 1

6 . This leads to a considerably limited
number of quadrature points.

We first solve a linear elastic problem for a homogeneous and isotropic cantilever plate to show
advantages of the mixed formulation with respect to the pure displacement formulation. We show
that as Poisson’s ratio � approaches 1

2 the pure displacement formulation locks. In this case, the
numerical solution is obtained by solving (13) with zero initial stresses, and

B= E

2(1+�)

⎡
⎢⎢⎢⎢⎣

4/3 0 0 −2/3

0 1 1 0

0 1 1 0

−2/3 0 0 4/3

⎤
⎥⎥⎥⎥⎦ , H=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

0

0

1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, Q=− E

2(1+�)(1−2�)
P (14)

E being Young’s modulus. For this linear problem, exact and MLPG results are compared in terms
of tip deflection.

Problems 2, 3, 4, and 5 focus on finite deformations of Mooney–Rivlin materials under different
loadings and boundary conditions; they represent, respectively, the uniform extension, non-uniform
extension, uniform shear, and non-uniform shear. These problems are solved using the method of
fictitious loads, see, for example, remarks after Equation (30) of [47]. In particular, we choose an
isochoric deformation and determine the corresponding body forces and surface tractions from the
Mooney–Rivlin constitutive relation given in Appendix and the balance laws. The pressure field
corresponding to an isochoric deformation, see Equation (3), is zero since the bulk modulus k
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is finite. The following L2 logarithmic error norm is used to compare computed results with the
exact solution:

ERR= log10

√∫
�[(wEX

1 −wMLPG
1 )2+(wEX

2 −wMLPG
2 )2]d�√∫

�[(wEX
1 )2+(wEX

2 )2]d�
(15)

where superscripts EX and MLPG stand for the exact and the numerical solutions, respectively.
Stress distributions are fairly smooth and numerical findings are in very good agreement with exact
solutions. Quantitative results are only shown for displacements.

Problem 6 analyzes the stress intensity factor in a body made of a Mooney–Rivlin material
undergoing either small or large mode-I deformations. In this case, we use secondary nodes
presented in the Appendix to improve the solution accuracy. The size of the support of the weight
function of a secondary node in Equation (A10) equals the maximum distance between a secondary
node and its associated primary node. We compare the numerical value of the J -integral to the
exact one for small deformations. For large deformations, analytical solutions do not exist; we
compare the MLPG solution with a FE solution and show the behavior of the stress field close to
the crack tip.

For all finite deformation problems, parameters for the Mooney–Rivlin material, defined in the
Appendix, are

A10=1, A20=0.05, k=103

The non-linear problems are solved by the Newton–Raphson method [5] with the total load divided
into small increments, and the load increment changed according to the number of iterations
needed for the solution to converge. The norm of the incremental solution in Newton’s iterations
is computed by using the norm of the interpolated fields rather than that of the fictitious nodal
values.

3.1. Linear elastic problem for a cantilever

We consider the cantilever beam problem studied in [48] for which the exact solution is

w1 = − 2P

Eb3

(
x2− b

2

)[
3x1(2b−x1)+

(
2+ �

1−�

)
x2(x2−b)

]

w2 = 2P

Eb3

[
(x1)

2(3b−x1)+3
�

1−�
(b−x1)

(
x2− b

2

)2

+
(
4+ 5�

1−�

)
b2x1

]

where the right edge is clamped, a distributed load with resultant P is applied on the left edge, b
is the height of the beam, and its width is one. In a consistent set of units the problem is analyzed
for P=−0.1, E=1, and �=0.4,0.499 and 0.49999999. In Table I we report results of the mixed
and the pure displacement formulations in terms of the tip deflection for the three values of �. The
pure displacement formulation essentially locks when the incompressibility constraint is severe,
while the mixed formulation is insensitive to variations of Poisson’s ratio in the neighborhood of
1
2 . Thus, the pure displacement formulation may not give accurate results as �→ 1

2 .
Locking of the pure displacement formulation is also shown in Problem 6 when exact and

numerically evaluated values of J -integrals for a cracked plate are compared.
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Table I. For a cantilever beam, percentage error in the tip deflection
computed with mixed and pure displacement MLPG formulations.

Pure displacement Mixed

�=0.4 0.60 1.20
�=0.499 6.59 0.79
�=0.49999999 10.9 0.80

(b)(a)

Figure 2. (a) Uniform extension of a plate and (b) non-uniform extension of a plate. Undeformed
configuration (shaded), exact solution (empty circles), MLPG solution (dots).

3.2. Uniform extension

We consider simple tensile deformations of a plate and assume that its left and bottom edges are
on rollers, while tractions act on the other two edges as determined by substituting the following
isochoric deformation field in the Mooney–Rivlin constitutive relation:

f1(x1, x2)=2x2, f2(x1, x2)= 1
2 x1

The logarithmic norm (15) of the error in displacements is −4.51. In Figure 2(a) we show the
initial shape of the plate, the final locations of nodes resulting from the exact solution (empty
circle), and the MLPG solution (dots). For this problem no body forces are present and the high
accuracy of the computed solution depends strongly on the linearity of the displacement field that
can be reproduced exactly by the MLS basis functions.

3.3. Non-uniform extension

We now analyze inhomogeneous finite deformations of the plate. We assume that the plate is
supported on rollers on the left and bottom edges, and body forces and surface tractions are
applied according to the stress field determined by the Mooney–Rivlin constitutive relation with
the isochoric deformation field:

f1(x1, x2) = x1+ log(x1+1)
1

log2

f2(x1, x2) = x2
(x1+1) log2

(x1+1) log2+1
+ log(x1+1)

1

log2
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(b)(a)

Figure 3. (a) Uniform shear of a plate, and (b) non-uniform shear of a plate. Undeformed configuration
(shaded), exact solution (empty circles), MLPG solution (dots).

The logarithmic norm (15) of the error in computed displacements is −2.78. In Figure 2(b) we
observe the initial shape of the plate and the final locations of the nodes resulting from the exact
solution (empty circle) and the MLPG solution (dots).

3.4. Uniform shear

We study uniform shear deformations by clamping the left edge of the square plate, and by
loading other edges as determined by substituting the following isochoric deformation field into
the Mooney–Rivlin constitutive relation:

f1(x1, x2)= x1, f2(x1, x2)= x2− 3
4 x1

The logarithmic norm (15) of the error in displacements is −3.84. In Figure 3(a) we exhibit
the initial shape of the plate, and the final locations of nodes resulting from the exact solution
(empty circle) and the MLPG solution (dots). For this case the same comments as those for the
homogeneous extension apply.

3.5. Non-uniform shear

We assume that the plate is clamped at the left edge, and body forces and surface tractions are
applied according to the stress field determined by the Mooney–Rivlin constitutive relation with
the deformation field:

f1(x1, x2)= x1, f2(x1, x2)= x2− 1
2 (x1)

2

The logarithmic norm (15) of the error in displacements computed by the MLPG method is −2.48.
In Figure 3(b) we evince the initial shape of the plate and the final locations of nodes resulting
from the exact solution (empty circle) and the MLPG solution (dots).
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3.6. Crack problem

We consider a cracked plate whose geometry is exhibited in Figure 4(a). By exploiting the symmetry
of the problem, we numerically analyze deformations of the quarter of the domain depicted in
Figure 4(b). In order to accurately analyze effects of the crack, we use secondary nodes in the
neighborhood of the crack tip, all over the domain, and on the boundaries as shown in Figure 5(a).
The secondary nodes located in the neighborhood of the crack tip are needed for accurately
estimating the stress concentration there. The secondary nodes on the boundaries and in the domain
are needed for satisfying well the boundary conditions and improving the solution inside the
domain. From numerical experiments we have observed that locating only secondary nodes in the
neighborhood of the crack tip leads to poor solutions with spurious pressure modes. The total
number of nodes used in the simulation is 168.

The plate is loaded with a uniformly distributed dead load �0=0.65, and the crack length equals
one-half of the plate width. In Figure 5(b) we exhibit the deformed shape of the quarter of the
plate. Recalling that nominal tractions are prescribed on the top surface of the plate, it does not
need to stay horizontal during the deformation process. Also, the total axial force stays constant
even though the width of the plate decreases.

The J -integral in finite elasticity is given by (see, e.g. [49])

J =
∫

�

(
Wn1−n·Pt �w

t

�x1

)
d�

where � is the integration contour surrounding the crack tip in the reference configuration, W is
the strain energy density (e.g. see Equation (B2)), n is the unit outward normal to �, and n1 is
its component in the crack direction. In order to evaluate J , we use a circular contour of radius
0.125 centered at the crack tip.

(a)

(b)

Figure 4. Geometry of a cracked plate loaded in mode-I.
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(b)(a)

Figure 5. (a) Locations of primary (filled circles) and secondary (empty circles) nodes in the quarter of
a cracked plate, and (b) undeformed (solid line), deformed (dotted line) shape of the cracked plate, and

final locations of primary and secondary nodes.

For the linear elastic problem the exact value JL of the J -integral is given by (see, for example,
[42]):

JL =c�(1.325)2
1−�2

E
�20

where 2c is the crack length; it equals 1 in the present case. In Figure 6(a), we exhibit the
J -integrals computed for the linear and the non-linear elastic problems. A similar problem has
been studied in [49] under plane stress conditions, and similar variations of the J -integral for the
linear and non-linear problems have been found.

As an additional test of the MLPG mixed formulation, we compute the J -integral for the
linear elastic problem with the pure displacement formulation and the proposed mixed pressure–
displacement formulation. With the pure displacement formulation, the error in the computed
values of J is 71.3%, while when using the mixed formulation the error is only 1.14%.

Figure 6(b) exhibits the crack opening displacements computed using the MLPG mixed formu-
lation and the commercial FE code ANSYS using the 8-node element PLANE183 and 1057 nodes
with high concentration at the crack tip. The good agreement between the two numerical solu-
tions further validates the present mixed formulation. We note that the proposed MLPG mixed
formulation requires only 168 nodes as compared with 1057 nodes with the FE method.

Figure 7(a) reports the concentration of the first Piola–Kirchhoff stress, defined as P22/�0 for
different values of the dead traction. It shows how the mixed formulation enhanced by secondary
nodes is able to capture the stress concentration without leading to spurious oscillatory behaviors.
From Figure 7(a) it can be concluded that increasing the tension in the plate decreases the order
of singularity of the first Piola–Kirchhoff stress at the crack tip. Figure 7(b) reports instead the
concentration of the axial Cauchy stress, defined as �22/�0 for different values of the dead traction.
From Figure 7(b) it can be seen that increasing the tension in the plate enhances the order of
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Figure 6. (a) J -integral from the linear analysis (solid curve) and J -integral from the non-linear analysis
(empty circles and dashed fitting curve) versus applied nominal surface traction and (b) crack opening
displacement computed using the MLPG formulation (diamond) and ANSYS FE code (empty circles)

versus applied nominal surface traction.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

x2 2c

1

2

3

4

5

6

7

8

P
22

0

0

(b)(a)
0.02 0.04 0.06 0.08 0.1 0.12 0.14

x2 2c

2

4

6

8

10

22
0

Figure 7. (a) Normalized first Piola–Kirchhoff stress in the neighborhood of the crack tip for different
values of the applied nominal surface traction �0, and (b) normalized Cauchy stress in the neighborhood
of the crack tip for different values of the applied nominal surface traction �0. In both figures, stars refer

to the case of �0=0.65, squares to �0=0.45, diamonds to �0=0.26, and circles to �0=0.065.

singularity of the Cauchy stress at the crack tip. By comparing results in Figure 7(b) with those
in Figure 7(a), one concludes that for a non-linear elastic problem the orders of singularity in the
Cauchy stress and in the first Piola–Kirchhoff stress are different. For finite deformations these
two stress tensors are different and are related by the deformation gradient.

Batra and Ching [50] have also delineated the differences in the energy release rates as Poisson’s
ratio is increased to 1

2 . The MLPG method has been employed in [51, 52] to analyze stresses near a
crack tip in a plate loaded on the cracked side by surface tractions parallel to the crack. A transient
linear elastodynamic problem for a cracked plate has been studied by the MSPH method in [53].

3.7. Remarks

When solving numerically boundary-value problems for incompressible materials by the FE
method, one uses elements (equivalently basis functions for the trial solution and the test function)
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that satisfy the Babuska–Brezzi condition [43]. In general, one needs to employ sophisticated anal-
ysis techniques to verify whether or not an element satisfies this condition. Hughes [16] has listed
various FEs that do not satisfy this condition but still perform very well in the numerical solution of
boundary-value problems for linear elastic incompressible materials. For non-linear boundary-value
problems, the analysis becomes more involved, and the complexity increases further for the MLPG
formulation. Even though we have not proved analytically that our choice of basis functions for the
pressure and the displacement fields satisfies the Babuska–Brezzi condition, numerical experiments
performed thus far and reported herein have indicated that these basis functions perform very well
and do not exhibit the locking phenomenon for incompressible materials. It was proved in [36] that
the MLPG formulation for 1-D linear elastic problems with Lagrange multipliers used to enforce
essential boundary conditions satisfies the Babuska–Brezzi condition. In [46] the findings of [36]
are extended to cracked beam problems.

Secondary nodes may be useful in those problems where stress concentrations or critical behav-
iors are expected in certain regions. Indeed, by adding secondary nodes the number of quadrature
points needed for the numerical integration of the stiffness matrix and the load vector is not
increased. Therefore, by adding secondary nodes one is able to increase the number of nodal
degrees of freedom without noticeably increasing the computational time. Moreover, the use of a
large number of secondary nodes may lead to ill-conditioned problems, since the basis functions
of secondary nodes are not significantly different from those of primary nodes.

4. ANALYSIS OF PLANE STRESS PROBLEMS

For problems corresponding to the state of plane stress in the x1x2-plane,

�13=�23=�33=0

where r is the Cauchy stress tensor. For a fully incompressible Mooney–Rivlin material,

r=−p1+C1B̂+C2B̂−1

where C1 and C2 are material parameters, B̂ is the left Cauchy–Green tensor, and p is the pressure
that cannot be determined from the deformation field. The requirement �33=0 gives

p=C1 B̂33+C2(B̂−1)33

and the constitutive relation becomes

r=C1(B̂− B̂331)+C2(B̂−1−(B̂−1)331)

Thus, the boundary-value problem can be solved in the x1x2-plane for displacements w1 and
w2 without solving for the pressure field. The displacement field w3(x1, x2) is computed from
the isochoric condition det(B̂)=1 and the pressure field found from the equation given above.
The procedure is illustrated in [49] and also in Section 5.11 of [54]. Thus, a pure displacement
formulation in the x1x2-plane can be employed to study the plane stress problems for fully
incompressible rubber-like materials.
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5. CONCLUSIONS

We have studied finite plane strain deformations of a rubber-like material with the MLPG method,
with the pressure and displacement fields treated as unknowns. Differing from the FE work, all
variables are interpolated with the same set of MLS basis functions. By using Penn’s invariants, the
deformation is decomposed into a dilatation and a distortion, and consequently the strain energy is
split into two parts: one depending only on dilatational strains and the other on distortional strains.
In order to impose the essential boundary conditions, we consider an augmented formulation, where
a set of Lagrange multipliers is defined on the relevant boundaries. A total Lagrangian formulation
is derived and the resulting set of non-linear algebraic equations governing finite deformations is
solved by Newton–Raphson’s iterations.

A computer code has been developed and used to solve different problems. Computed results for
a body made of a Mooney–Rivlin material under various loading conditions are shown to compare
very well with either analytical solutions or numerical solutions obtained with a FE commercial
code.

APPENDIX A: MLS BASIS FUNCTIONS

We present an MLS approximation technique based on the concept of primary and secondary
nodes. The approach is similar to that presented in [42] with the main difference being that we
do not require a background mesh. We use the traditional MLS approximation of [41] based on
the Gaussian and the Spline weight functions for the generation of the entire set of trial functions,
whereas in [42] the FE basis functions are used as weight functions for the primary nodes.

Consider a continuous scalar function q defined on the two-dimensional connected domain �.
The generic point in � is indicated by x and its coordinates in a Cartesian coordinate system
are x1 and x2. The (fictitious) nodal values at N scattered points N={x1,x2, . . . ,xN } in �̄ are
collected into the N -vector q̂=[q̂1, . . . , q̂N ]T. We partition the set of nodes into two subsets: the
set of primary nodes NP and the set of secondary nodes NS. The global approximation qh of q
in � is defined as

q(x)�qh(x)=pT(x)a(x), x∈� (A1)

where

pT(x)=[p1(x), p2(x), . . . , pm(x)] (A2)

is a complete monomial basis of order m. For example,

pT(x)=[1, x1, x2] linear basis, m=3

The m-vector a(x)=[a1(x), . . . ,am(x)]T is composed of indeterminate coefficients, which vary
with the point x on the domain �. At each location x̄ in � these coefficients are determined by a
local least-square approximation of q(x) on a small neighborhood �x̄ of x̄. The local approximation
qx̄(x) is defined by

q(x)�qx̄(x)=pT(x)a(x̄), x∈�x̄⊂� (A3)
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Therefore, in a small neighborhood of a generic point x̄ the coefficients ai are treated as the
unknown constants of the classical polynomial least-square approximation, and they are determined
by minimizing the following functional Jx̄ representing the weighted discrete L2 error norm:

Jx̄(a)=
N∑
i=1

Wi (x̄)[qx̄(xi )− q̂i ]2 (A4)

The function Wi is the weight function of node i.
At a given location x̄ only few terms in the summation (A4) are not zero since the supports of

the weight functions Wi are much smaller than the domain �. This reduces the memory allocations
when implementing the algorithm in a computer code and strengthens the local character of the
MLS approximation.

The functional Jx̄ may be rewritten in matrix notation as

Jx̄(a)=(Pa− q̂)TW(x̄)(Pa− q̂)

where P is an (N ,m) matrix of real numbers:

PT=[pT(x1) . . . pT(xN )]
and W is the following (N ,N ) diagonal matrix:

W(x̄)=Diag[W1(x̄) . . . WN (x̄)]
The stationarity of Jx̄ with respect to a yields

A(x̄)a(x̄)=B(x̄)q̂ (A5)

where (m,m) and (m,N ) matrices A and B are defined by

A(x̄)=PTW(x̄)P, B(x̄)=PTW(x̄) (A6)

We note that matricesA and B depend on the spatial coordinate x̄ only through the weight functions,
since P is a matrix of real numbers. Solving for a in Equation (A5) and substituting the result in
the global approximation (A3) we obtain the MLS approximation

qh(x)=pT(x)A−1(x)B(x)q̂ (A7)

which, upon introducing the basis functions w(x), can be expressed as

qh(x)=wT(x)q̂, w=[	1 . . . 	N ]T, wT(x)=pT(x)A−1(x)B(x) (A8)

For node xi ,

qh(xi ) �= q̂i

That is, the value of the approximating function at a node does not equal, in general, the value at
that node of the function. Said differently, 	 j (xi ) �=
i j , where 
i j is the Kronecker delta.
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For primary nodes we use Gaussian weight functions with square supports:

Wi (x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
exp

[
−
(
x1−xi1

ci

)2k
]

−exp

[
−
(
ri
ci

)2k
])/(

1−exp

[
−
(
ri
ci

)2k
])

×
(
exp

[
−
(
x2−xi2

ci

)2k
]

−exp

[
−
(
ri
ci

)2k
])/(

1−exp

[
−
(
ri
ci

)2k
])

,

0�|x1−xi1|, |x2−xi2|�ri

0, |x1−xi1|, |x2−xi2|>ri

(A9)

where ci and k are constants controlling the shape of the weight function, and ri is the length of
the side of the square support. Each secondary node xi ∈NS is associated with its closest primary
node ı̄ , xı̄ ∈NP, and its weight function is the product of Wı̄ (x) and W̃ı̄ (x) defined by

W̃i (x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1−6

(
x1−xi1

r̃i

)2

+8

(
x1−xi1

r̃i

)3

−3

(
x1−xi1

r̃i

)4
)

×
(
1−6

(
x2−xi2

r̃i

)2

+8

(
x2−xi2

r̃i

)3

−3

(
x2−xi2

r̃i

)4
)

,

0�|x1−xi1|, |x2−xi2|�r̃i

0, |x1−xi1|, |x2−xi2|>r̃i

(A10)

where r̃i is a constant controlling the support of the weight function. Therefore, once a secondary
node is placed in the domain it is associated with the closest primary node and that primary node
determines the shape of its weight function. Thus, the support of the weight function of a secondary
node is included in the support of the weight function of the corresponding primary node. In this
way the number of quadrature points used in the numerical evaluation of matrices and vectors in
the discrete formulation (13) is only dictated by the number of primary nodes and supports of their
weight functions. Hence, integrals in (13) can be computed by adding integrals on the partitions of
the domain generated by intersecting the supports of the weight functions of the primary nodes.

APPENDIX B: HYPERELASTIC AND MOONEY–RIVLIN MATERIALS

For an isotropic hyperelastic material, the strain energy density (per unit volume in the reference
configuration) function can be expressed as

W (F)=W (I1, I2, I3)

where I1, I2, and I3 are principal invariants of the right Cauchy–Green strain tensor C. From the
strain energy function, one obtains the following expression for the second Piola–Kirchhoff stress
tensor:

S=2
�W
�I1

1+2
�W
�I2

(I11−C)+2
�W
�I3

I3C−1
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For incompressible materials the deformation gradient must satisfy the constraint

det F= J =1 (B1)

at each point of the body. Because of the constraint (B1) derivatives of the strain energy density
with respect to the three principal invariants are not independent, and the strain energy density is
modified as follows to accommodate the constraint:

W (I1, I2)+ p(J−1)

where p is called pressure, and it cannot be determined from the deformation of the body. Hence,
for the stress tensor we have

S=2

(
�W
�I1

�I1
�C

+ �W
�I2

�I2
�C

)
+ pC−1

For nearly incompressible isotropic hyperelastic materials, the stored energy function may be
expressed as (see, e.g. [43])

W (C, p)= W̄ (C)+Q(C, p) (B2)

where

J1= I1(I3)
−1/3, J2= I2(I3)

−2/3

and

W̄ (C) = W1(J1, J2)+W2(J ), W2(J )=kG(J )

Q(C, p) = − 1

2k
( p̄(J )− p)2, p̄=−dW2

dJ
=−k

dG

dJ

Here, W1 and W2 are the strain energy densities depending on the distortional and dilatational
deformations, respectively; k describes the degree of compressibility; the function G vanishes
only for isochoric deformations, and p̄ is the pressure computed from the deformation gradient.
Formally, when k→∞ the material becomes incompressible. The parameters J1 and J2 are the
reduced invariants proposed in [4] to separate the deformation into distortional and dilatational
parts. Following this decomposition, the second Piola–Kirchhoff stress tensor is expressed as

S=2
�W
�C

=2

(
�W̄
�C

+ �Q
�C

)
= S̄− 2

k
( p̄− p)

� p̄
�C

, S̄=2
�W̄
�C

The contribution to the stress field from displacements may be rewritten as

S̄=2

(
�W1

�J1

�J1
�C

+ �W2

�J2

�J2
�C

− p̄
�J
�C

)

By computing the derivatives of the reduced invariants with respect to the strain tensor and by
introducing the quantities,

K1= �W1

�J1
, K2= �W1

�J2
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the tensor S̄ becomes

S̄=2

(
K1 I

−1/3
3

(
I− 1

3
I1C−1

)
+K2 I

−2/3
3

(
I1I−C− 2

3
I2C−1

))
− J p̄C−1

where we used the relations

�I1
�C

=I,
�I2
�C

= I1I−C,
�I3
�C

= I3C−1

For nearly incompressible materials, several forms of the strain energy function are available in
the literature, see, e.g. [12]. Following [21] we use

W1 =
∞∑

m+n=1
Amn(J1−3)m(J2−3)n (B3)

G = 1
2 (J−1)2 (B4)

Expression (B4) for the dilatation energy was proposed in [55]. We note that the resulting
pressure field is given by

p̄=−dW2

dJ
=−k(J−1)

For Mooney–Rivlin materials

W1= A10(J1−3)+A01(J2−3) (B5)

Henceforth, we obtain

K1= A10, K2= A01

The choice of the dilatational strain energy is somewhat non-unique, since it has not been proved
so far that it allows for the convergence of the solution for a nearly incompressible body to the
solution of the corresponding compressible one, but numerical experiments (see, e.g. [21]) have
shown its efficacy.

For the dilatation energy function (B4), the stress tensor is given by

S=2

(
K1 I

−1/3
3

(
I− 1

3
I1C−1

)
+K2 I

−2/3
3

(
I1I−C− 2

3
I2C−1

))
− pJC−1

We note that in this formulation the incompressibility constraint is imposed by increasing the
value of the parameter k. The approach is equivalent to the one followed in the linear elastic case
when the Poisson ratio was chosen close to 1

2 .

The elasticity tensor C has the following expression:

C = 2
�S
�C

= 4

3
K1 I

−1/3
3

[
−2C−1�I+ 1

3
I1[C−1⊗C−1+3C−1�C−1]

]

+ 4

3
K2 I

−2/3
3

[
−4I1C−1�I+4C−1�C−1+2I2

(
2

3
C⊗C−1+C−1�C−1

)
+3(I⊗I−I�I)

]
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+4H11 I
−2/3
3

(
I−1

3
I1C−1

)
⊗
(
I−1

3
I1C−1

)
+4H12

[(
I−1

3
I1C−1

)
⊗
(
I1I−C−2

3
I2C−1

)]

+4H22 I
−4/3
3

(
I1I−C− 2

3
I2C−1

)
⊗
(
I1I−C− 2

3
I2C−1

)
− pJ (C−1⊗C−1−2C−1�C−1)

with (in Cartesian coordinates)

Hi j = �W1

�Ji�J j
, A�B= 1

2 (A⊗B+B⊗A), (A�A)i jkl = 1
2 (Aik A jl +Ail A jk)

and

�C−1

�C
=−C−1�C−1

Similarly, the tensor H relating the incremental stress to the incremental pressure and the tensor
Q are given by

H= �S
�p

=−JC−1, Q=2
� p̄
�C

=−k JC−1≡kH

Expressions for tensors C, H, and Q for a natural reference configuration are

C= 4
3 (K1+K2)(3I�I−I⊗I), H=−I, Q=−kI

Therefore, for infinitesimal deformations the material behaves as an isotropic linear elastic with
constitutive parameters

�= 1

2

(
1−2

K1+K2

k

)
, E=

(
6−4

K1+K2

k

)
(K1+K2)
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