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SUMMARY

Transient finite coupled thermomechanical simple shearing deformations of a block made of an elastother-
moviscoplastic material that exhibits strain and strain-rate hardening, and thermal softening are studied by
using the meshless local Bubnov–Galerkin method. A local nonlinear weak formulation and a semidiscrete
formulation of the problem are derived. The prescribed velocity at the top and the bottom surfaces of
the block is enforced by using a set of Lagrange multipliers. A homogeneous solution of the problem
is perturbed by superimposing on it a temperature bump at the center of the block, and the resulting
nonlinear initial-boundary-value problem is solved numerically. We have developed an integration scheme
to numerically integrate the set of coupled nonlinear ordinary differential equations.

The inhomogeneous deformations of the block are found to concentrate in a narrow region of intense
plastic deformation usually called a shear band. For a material exhibiting enhanced thermal softening, it is
shown that as the shear stress within the region of localization collapses, an unloading elastic shear wave
emanates outward from the edges of the shear band. In the absence of an analytical solution, the computed
results have been compared with those obtained by the finite element and the modified smoothed particle
hydrodynamics methods. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The term adiabatic shear is related to a localization phenomenon that occurs during high strain-
rate plastic deformations such as machining, explosive forming, shock impact loading, ballistic
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penetration, fragmentation, ore crushing, impact tooling failure, and metal shaping and forming
processes. The shear strain localization problems in metals (see e.g. [1]) are generally characterized
by the formation of a narrow region of intense plastic deformation called an adiabatic shear band
(ASB). Although heat conduction plays a significant role in determining the shear band width, it
is called adiabatic since there is not enough time for the heat to be conducted away from the shear
band. The shear strain localization has been observed in many materials such as steel, nonferrous
metals, and polymers. The study of the phenomenon is important because progressive shearing
within an ASB provides an undesirable mode of material resistance to imposed deformations;
moreover, the bands are often precursors of ductile fracture in many metals deformed at high
strain rates.

Recently, considerable research in computational mechanics has been devoted to the development
of meshless methods. An objective of a meshless method is to eliminate or at least alleviate
the difficulty of meshing the domain. Meshless methods may also alleviate some other problems
associated with the finite element method (FEM), such as locking and element distortion. In many
applications, they also provide smooth and accurate approximate solutions with a reduced number
of nodes.

During the last two decades, several meshless methods for seeking approximate solutions of
partial differential equations have been proposed. These include the element-free Galerkin [2], hp-
clouds [3], the reproducing kernel particle [4], the diffuse element [5], the partition of unity finite
element [6], the natural element [7], meshless Galerkin using radial basis functions (RBFs) [8],
the meshless local Petrov–Galerkin (MLPG) [9, 10], the smoothed particles hydrodynamics (SPH)
[11], the modified smoothed particle hydrodynamics (MSPH) [12], the meshless local boundary
integral equation [13], the collocation method using RBFs [14], and the symmetric smoothed
particle hydrodynamics (SSPH) [15]. All of these methods, except for the last six, use either
shadow elements or a background mesh for evaluating integrals in the governing weak formulation
of a problem.

The MLPG method has been successfully applied to several problems in mechanics: static linear
plane elasticity [9]; vibrations of elastic planar bodies [16]; static analysis of beams [17]; static
and dynamic analyses of functionally graded materials [18–21]; transient heat conduction in a
bimaterial body [22]; wave propagation in bars with material interfaces [23] and in cracked beams
[24]; static analysis of nonlinear electromechanical problems [25]; and the determination of stress
concentration factors under static and dynamic loadings [26, 27]. To our knowledge it has not
been applied to analyze a transient thermoviscoelastoplastic problem involving the localization of
deformations into a narrow band.

The MLPG method is based on a local weak formulation of the governing equations and
employs meshless interpolations for both the trial and the test functions. Bases for the trial
functions are usually constructed with the moving least-squares (MLS) approximation [28]. In
the Petrov–Galerkin formulation, the test functions may be chosen from a different space than
the space of trial functions. Thus several variations of the method may be obtained (see e.g.
[9] for discussion). The key ingredients of the MLPG method may be summarized as local
weak formulation, MLS interpolation, Petrov–Galerkin projection, numerical evaluation of domain
integrals, and computation of desired quantities at critical points.

Here we analyze simple shearing deformations of a block made of an elastothermoviscoplastic
material with the MLPG6 method, i.e. the local Bubnov–Galerkin formulation, and we show that
it captures well the localization of deformation and the emanation of an elastic unloading wave
from the shear-banded region. In the constitutive relation for the material, strain and strain-rate
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hardening, and thermal softening are considered. The problem is studied by introducing a local
nonlinear augmented weak form (LNAWF) of coupled nonlinear governing equations with the
nonhomogeneous essential boundary conditions. The prescribed velocities on the top and the
bottom surfaces of the block are enforced by a set of Lagrange multipliers. From the LNAWF,
a semidiscrete formulation is derived, and the constraint related to the nonhomogeneous essen-
tial boundary conditions is treated by introducing a transformation matrix that eliminates the
constrained degrees of freedom. Since nodal variables do not equal values of unknowns at the
nodes, standard time integration packages such as LSODE [29] cannot be employed. Therefore,
the resulting reduced system of coupled nonlinear ordinary differential equations is integrated
in time by a one-step algorithm, which can be regarded as both the first-order Adams–Moulton
method and the first-order backward difference method [30]. The convergence at each time step
is reached by Newton’s iterations. Good agreement between the computed results and the ones
obtained with the FEM in [31] and with the MSPH method in [32] is achieved. For materials
exhibiting enhanced thermal softening, it has been found that the shear stress drops very rapidly
in the localization region, and an elastic unloading shear wave emanates outward from it. The
numerically computed wave speed matches well with the analytical one, and the width of the
region of localization is close to that observed experimentally [33] and to that obtained by the FE
and the MSPH methods.

The remainder of the paper is organized as follows. In Section 2 we formulate the initial-
boundary-value problem to be studied by presenting the governing equations, and initial and
boundary conditions. In Section 3 we present the MLPG formulation of the initial-boundary-value
problem by briefly outlining the MLS approximation, introducing the LNAWF, and obtaining from
it the nonlinear semidiscrete formulation. In Section 4 we discuss the time integration scheme and
compare the numerical solution with those obtained by the FE and the MSPHmethods. Expressions
for functions appearing in the domain integrals are reported in Appendix A.

2. FORMULATION OF THE PROBLEM

We analyze simple shearing deformations of a block made of an elastothermoviscoplastic material
that lies between the planes y=±H as depicted in Figure 1. Only the x-component of velocity is
taken to be nonzero. Equations governing deformations of the body are [1, 31]

�v̇(y, t) = s′(y, t) (1a)

�ė(y, t) = −q ′(y, t)+s(y, t)v′(y, t) (1b)

Figure 1. Geometry and kinematic boundary conditions of the problem.
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�̇(y, t) = v′(y, t) (1c)

�̇(y, t) = �̇e(y, t)+ �̇p(y, t) (1d)

q(y, t) = −�ϑ′(y, t) (1e)

ṡ(y, t) = ��̇e(y, t) (1f)

�ė(y, t) = �cϑ̇(y, t)+s(y, t)�̇e(y, t) (1g)

�̇p(y, t) = �(y, t)s(y, t) (1h)

k(y, t)�̇(y, t) = s(y, t)�̇p(y, t), k(y, t)=k0

(
1+ �(y, t)

�0

)n

(1i)

� =max

{
0,

1

bs

((
s

k0(1−aϑ)(1+�/�0)
n

)1/m

−1

)}
(1j)

Here, a superimposed dot indicates the material derivative with respect to time t , and the prime
means derivative with respect to the space variable y. Furthermore, v is the x-component of
velocity, s the shear stress, q the heat flux, � the shear strain, �e and �p the elastic and the plastic
parts of the shear strain, respectively, e is the specific internal energy, ϑ the temperature rise, �
an internal variable, � the mass density, � the thermal conductivity, c the specific heat, and � the
shear modulus. The parameter k describes the work hardening of the material, a is the thermal
softening parameter, b and m are the strain-rate hardening parameters, �0 and n are the work
hardening parameters, and k0 is the yield stress in a quasi-static isothermal simple shear test. The
plastic multiplier � is zero when the deformation is elastic and is positive for plastic deformations,
see [1].

Equation (1a) is the balance of linear momentum, Equation (1b) the balance of internal energy,
Equation (1c) the definition of the shear strain rate, and Equation (1d) the additive decomposition
of the total shear strain rate into elastic and plastic parts. Equation (1e) is Fourier’s law of heat
conduction, Equations (1f) and (1g) are constitutive relations, and Equation (1h) is the flow rule
with the plastic multiplier � given by Equation (1j). Equation (1i) describes the work hardening
of the material due to plastic deformations. The yield surface is assumed to be given by

s=k0(1−aϑ)

(
1+ �

�0

)n

(1+b�̇p)
m (2)

whose radius increases due to strain and strain-rate hardening and decreases due to thermal
softening.
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We introduce the following nondimensional variables:

y = H ȳ, �= �̄, �= �̄, v=H �̇0v̄, t= t̄

�̇0

s = k0s̄, k=k0k̄, �= �̇0
k0

�̄, b= b̄

�̇0
, �=k0�̄

ϑ = k0
�c

ϑ̄, �= k0
H2�̇20

�̄, �=�cH2�̇0�̄, a= �c

k0
ā

(3)

where quantities with an overbar are nondimensional, and �̇0 is the average shear strain rate.
Substituting Equations (3) into Equations (1) and dropping the overbars from nondimensional
variables, we get the following set of governing equations in nondimensional variables:

�v̇ = s′ (4a)

ϑ̇ = �ϑ′′+�s2 (4b)

ṡ = �(v′−�s) (4c)

�̇ = �s2

(1+�/�0)
n

(4d)

� =max

{
0,

1

bs

((
s

(1−aϑ)(1+�/�0)
n

)1/m

−1

)}
(4e)

Following [31], we assume that a homogeneous solution of Equations (4) under boundary conditions

v(−1, t) = −1, v(1, t)=1 (5a)

ϑ′(±1, t) = 0 (5b)

and initial conditions

v(y,0)= y, ϑ(y,0)= s(y,0)=�(y,0)=0 (6)

is perturbed when �=0.1, ϑ=0.1003, and �=0.0692. We seek a solution to the resulting initial-
boundary-value problem with boundary conditions (5) and initial conditions

v(y,0) = y (7a)

ϑ(y,0) = 0.1003+0.1(1− y2)9 exp(−5y2) (7b)

s(y,0) =
(
1+ 0.1

�0

)n

(1−aϑ(y,0))(1+b)m (7c)

�(y,0) = 0.1 (7d)

The second term on the right-hand side of Equation (7b) represents a perturbation; its amplitude
is chosen large enough to reduce the computational time required for deformations to localize at

Copyright q 2008 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng (2008)
DOI: 10.1002/cnm



R. C. BATRA AND D. SPINELLO

y=0. The peak in the shear stress–shear strain curve occurs at �=0.093. Boundary condition (5b)
implies that the surfaces y=±1 are thermally insulated. Thus all of the heat generated due to plastic
dissipation is used to raise the temperature of the body. The inhomogeneous initial conditions
imply that the temperature rise within the body is nonuniform.

Because of boundary conditions (5) and initial conditions (7), we assume that the solution
exhibits the following symmetries/antisymmetries:

v(−y, t) = −v(y, t) (8a)

ϑ(−y, t) = ϑ(y, t) (8b)

s(−y, t) = s(y, t) (8c)

�(−y, t) = �(y, t) (8d)

Therefore, we solve the problem in the domain (0,1) with initial conditions (7) and the following
boundary conditions

v(0, t) = 0, v(1, t)=1 (9a)

ϑ′(0, t) = 0, ϑ′(1, t)=0 (9b)

3. MLPG FORMULATION

3.1. Local nonlinear augmented weak form

Let �i
S⊆[0,1], i =1,2, . . .,N , be a family of subdomains of the global domain [0,1] such that⋃N

i=1�i
S=[0,1] and �i

S contains the i th node; note that �i
S need not be disjoint in the MLPG

formulation. We introduce the following LNAWF of the problem on the i th subdomain �i
S. The

equation

0=
∫

�i
S

ṽi v̇ dy−
∫

�i
S

�−1ṽi s
′ dy+[�0(�0ṽi + �̃0v)]|�i−

S
−[�1(�1ṽi + �̃1(v−1))]|�i+

S

+
∫

�i
S

ϑ̃i ϑ̇dy+
∫

�i
S

�ϑ̃
′
iϑ

′ dy−
∫

�i
S

ϑ̃i�s2 dy+[(1−�0)ϑ̃iϑ
′]|�i−

S
−[(1−�1)ϑ̃iϑ

′]|�i+
S

+
∫

�i
S

s̃i ṡ dy−
∫

�i
S

�s̃i (v
′−�s)dy+

∫
�i
S

�̃i �̇dy−
∫
�i
S

�̃i�s2
(
1+ �

�0

)−n

dy (10)

with � given by Equation (4e) must hold for all choices of test functions ṽi , ϑ̃i , s̃i , �̃i , �̃0, and
�̃1. Here, ṽi ∈ L2(0,1), ϑ̃i ∈H1(0,1), s̃i ∈ L2(0,1), �̃i ∈ L2(0,1), and �̃0, �̃1∈R.

��(	) :=
{
1, 	=�

0, 	 �=�
(11)

is the characteristic function, and �i−
S , �i+

S are the left and the right boundary points of the
subdomain�i

S. Since the MLS basis functions do not possess the Kronecker delta property, essential
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boundary conditions (9a) cannot be imposed directly at the boundary nodes. Therefore, Lagrange
multipliers �0 and �1 have been introduced. We emphasize that the homogeneous natural boundary
conditions (9b) have been incorporated in the LNAWF. The variational statement expressed by
Equation (10) can be derived by following classical arguments, see e.g. [34].

Since Equation (10) is required to hold for all choices of ṽi , s̃i , ϑ̃i , �̃i , �̃0, and �̃1, Equations (4a),
(4c), and (4d) and essential boundary conditions (9a) immediately follow from it. An integration
by parts of the term involving ϑ′ and then exploiting the arbitrariness of ϑ̃i yields Equation (4b)
and natural boundary conditions (9b).

3.2. Semidiscrete formulation

In order to seek an approximate solution of the nonlinear initial-boundary-value problem defined
by Equation (10), we approximate fields v, ϑ, s, and � by using the MLS basis functions [28]:

vh(y, t) =u(y)Tv̂(t) (12a)

ϑh(y, t) =u(y)TŴ(t) (12b)

sh(y, t) =u(y)Tŝ(t) (12c)

�h(y, t) =u(y)Tŵ(t) (12d)

Here, u are basis functions, and v̂ the vector of fictitious nodal velocities. For convenience, we
collect the fictitious nodal unknowns and the Lagrange multipliers into the 4N - and two-dimensional
vectors:

û(t) := [v̂(t) Ŵ(t) ŝ(t) ŵ(t)]T (13a)

k(t) := [�0(t) �1(t)]T (13b)

where N is the number of nodes in the global domain [0,1].
In order to obtain 4N+2 equations for the 4N+2 unknowns û(t) and k(t), we consider 4N+2

independent test functions in Equation (10):

ṽ1, . . ., ṽN , ϑ̃1, . . ., ϑ̃N , s̃1, . . ., s̃N , �̃1, . . ., �̃N , �̃0, �̃1 (14)

We choose the support of the MLS basis function for the i th node to be the i th subdomain �i
S,

and the related test function to be the MLS basis function. Therefore, since the test and the trial
functions are chosen from the same space, we get the following local nonlinear Bubnov–Galerkin
(MLPG6) semidiscrete formulation:

M ˙̂u(t) =G(û(t))+LTk(t) (15)

Lû(t) = ū (16)

where M is a (4N×4N)-matrix, given by

M=DIAG[D,D,D,D], [D]i j =
∫
�i
S


i
 j dy, i, j =1, . . .,N (17)
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and L is a (2×4N)-matrix given by

[L]1 j =[�0
 j ]|� j−
S

, [L]2 j =[−�1
 j ]|� j+
S

, j =1, . . .,4N (18)

Equation (16) is the affine constraint, with the 2-vector ū given by

ū=[0 1]T (19)

The nonlinear operator G appearing on the right-hand side of Equation (15) can be conveniently
expressed as

G(û(t))=[G1(û(t)) G2(û(t)) G3(û(t)) G4(û(t))]T (20)

with

[G1(û)]i =
∫

�i
S

�−1
i u
′Tŝdy (21a)

[G2(û)]i = −
∫

�i
S

�
′
iu

′T
Ŵ dy+

∫
�i
S


i �
h(û)(uTŝ)2 dy (21b)

[G3(û)]i =
∫

�i
S

�
i (u
′Tv̂−�h(û)uTŝ)dy (21c)

[G4(û)]i =
∫

�i
S


i �
h(û)(uTŝ)2

(
1+u

Tŵ

�0

)−n

dy (21d)

i =1,2, . . .,N . In Equations (21) the term �h(û) is given by

Kh(û)=max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0,

1

buTŝ

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

uTŝ

(1−auTŴ)

(
1+u

Tŵ

�0

)n

⎞
⎟⎟⎟⎟⎠

1/m

−1

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(22)

Let L∗ be the pseudoinverse (see e.g. [35]) of matrix L. Introducing

u :=L∗ū (23)

the affine constraint (16) can be rewritten as

L(û(t)−u)=0 (24)

Let rows of the ((4N−2)×4N)-matrix X be composed of (4N−2) linearly independent null
vectors of the (2×4N)-matrix L, and set

û(t)=u+XTu(t) (25)
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Substituting Equation (25) into Equation (24) gives

LXTu=0 (26)

which are identically satisfied for every (4N−2)-dimensional vector u. Premultiplying both sides
of Equation (15) by X and substituting Equation (25) we obtain the following reduced system of
(4N−2) nonlinear equations for u:

M̄u̇= Ḡ(u) (27)

where

M̄=XMXT, Ḡ(u)=XG(u+XTu) (28)

Having found u from Equation (27), û is computed from Equation (25).

4. COMPUTATION AND DISCUSSION OF RESULTS

4.1. Time integration scheme

As noted earlier the readily available integrators for ordinary differential equations, such as LSODE
used in [31, 32], could not be employed because of a lack of the Kronecker delta property of the
MLS basis functions. We briefly describe below the time integration scheme used herein.

Let the solution un−1=u(tn−1) of system (27) at time tn−1 be known. The solution un =
un−1+�un at time tn = tn−1+�tn is obtained as the root of the following nonlinear equation:

un =un−1+�tnf(un) (29)

where f=M̄−1◦Ḡ. The single step algorithm expressed in Equation (29) can be regarded as both
the first-order Adam–Moulton implicit method and the first-order backward difference method (see
e.g. [30]).

The solution of the set (29) of nonlinear equations in terms of unknowns �un is found by using
Newton’s iterations. Hence the generic �th iteration is

�u(�)
n =�tn(f(u(�−1)

n )+[∇uf(u(�−1)
n )]�u(�)

n )−
�−1∑
p=1

�u(p)
n (30)

where �u(�)
n indicates the �th solution increment with �u(0)

n =0, and u(�−1)
n is the updated solution

at the (�−1)th iteration, i.e.

u(�−1)
n =un−1+

�−1∑
p=1

�u(p)
n (31)

The linear operator ∇uf is the derivative of f with respect to u; recalling Equation (28) it can be
expressed as

∇uf=M̄−1[∇uḠ]=M̄−1X[∇ûG]XT (32)
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The gradient of G can be expressed as

∇ûG=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 ∇ŝG
1 0 0

0 ∇ŴG2 ∇ŝG
2 ∇ŵG2

∇v̂G
3 ∇ŴG3 ∇ŝG

3 ∇ŵG3

0 ∇ŴG4 ∇ŝG
4 ∇ŵG4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(33)

At a generic solution point ûn

[∇ŝG
1(ûn)]i j =

∫
�i
S

�−1
i 

′
j dy (34a)

[∇ŴG2(ûn)]i j = −
∫
�i
S

�
′
i


′
j dy+

∫
�i
S


i
 j�
22(ûn)dy (34b)

[∇ŝG
2(ûn)]i j =

∫
�i
S


i
 j�
23(ûn)dy (34c)

[∇ŵG2( ¯̂u)]i j =
∫

�i
S


i
 j�
24(ûn)dy (34d)

[∇v̂G
3(ûn)]i j =

∫
�i
S

�
i 

′
j dy (34e)

[∇ŴG3(ûn)]i j =
∫

�i
S


i
 j�
32(ûn)dy (34f)

[∇ŝG
3(ûn)]i j =

∫
�i
S


i
 j�
33(ûn)dy (34g)

[∇ŵG3(ûn)]i j =
∫

�i
S


i
 j�
34(ûn)dy (34h)

[∇ŴG4(ûn)]i j =
∫

�i
S


i
 j�
42(ûn)dy (34i)

[∇ŝG
4(ûn)]i j =

∫
�i
S


i
 j�
43(ûn)dy (34j)

[∇ŵG4(ûn)]i j =
∫

�i
S


i
 j�
44(ûn)dy (34k)

i, j =1,2, . . .,N . Expressions for functions � are given in Appendix A.
The increment �u(�)

n at the �th iteration is then the solution of the linear system

K(�)
n �u(�)

n =F(�)
n (35)
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where

K(�)
n :=1−�tn ∇uf(u(�−1)

n ), F(�)
n :=�tn f(u(�−1)

n )−
�−1∑
p=1

�u(p)
n (36)

and 1 is the (4N−2)×(4N−2)-identity matrix. Iterations are performed until a suitable magnitude
of the increment reaches a prescribed tolerance T. In particular, we choose to monitor the sum of
L2 norms of increments in the approximate solutions:

‖�û(�)
n ‖2

L2
4N

:=
∫ 1

0
((uT�v̂(�)

n )2+(uT�Ŵ
(�)

n )2+(uT�ŝ(�)
n )2+(uT�ŵ

(�)

n )2)dy<T (37)

where

T= A+R‖�û(1)
n ‖L2

4N
(38)

and A and R are the absolute and the relative tolerances, respectively. If the solution increment
fails to converge in the norm (37) after 50 iterations, the process is restarted with the time step
reduced by

√
2.

After convergence is achieved, the local truncation error test is performed. The local truncation
error en is defined as the amount by which the solution of the differential equation fails to
satisfy the equation used in the numerical integration algorithm, see [30]. Thus, for the one-step
algorithm (29),

en =�un−�tnf(un) (39)

where un is the converged solution. The estimate for en is given by

�t2n
2

ün (40)

or, equivalently, by using Equation (27)

en = �t2n
2

ḟ(un)= �t2n
2

[∇uf(un)]u̇n = �t2n
2

[∇uf(un)]f(un) (41)

If the following test

‖ên‖L2
4N

�LTA +LTR ‖�ûn‖L2
4N

(42)

fails, then the process is restarted with a time step reduced by
√
2. In Equation (42), LTA and LTR

are the absolute and the relative tolerances for the local truncation error test. From Equations (40)
and (25), we get ên =XTen .

4.2. Numerical results

Results presented below have been obtained by assigning following values to nondimensional
parameters:

� = 3.928×10−5, �=240.3, a=0.4973, n=0.09 (43a)

� = 3.978×10−3, �0=0.017, m=0.025, b=5×106 (43b)
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These values are for a typical steel when the average strain rate �̇0 is 500s−1, except for the
thermal softening parameter a whose value is enhanced in order to reduce the computational time.
Batra and Zhang [32] performed a parametric study to delineate the effect of a in Equation (2),
revealing that for a=0.2 and 0.25 the drop in the shear stress is catastrophic enough for the elastic
unloading wave to emanate from the center of the ASB, whereas for a=0.15 and 0.1 the shear
stress does not decrease rapidly enough for the wave to emanate. An expression for the ASB
initiation time with a is derived in [32] by fitting a curve to the computed data. The temperature
rise in ◦C is obtained by multiplying the nondimensional one with 89.6◦C. The block height H
has been chosen as 2.58mm.

The MLS approximation uses linear monomial bases and the following fourth-order spline
weight function:

Wi (y)=

⎧⎪⎨
⎪⎩
1−6

(
di
ri

)2

+8

(
di
ri

)3

−3

(
di
ri

)4

, di<ri

0, di�ri

(44)

where di =|y− yi | is the distance from node yi to point y, and ri is the radius of support of the
weight function Wi . A nonuniform placement of nodes with nodal coordinates given by

y j =
(

j−1

N−1

)3

, j =1, . . .,N (45)

has been used. Because of the small distance between two adjacent nodes near the origin, and
for matrix A to be well conditioned in the entire domain, we set the radii of the spline weight
functions (44) as

r j =  j (y j+1− y j ), j =1,2, . . .,N−1, rN = N (yN − yN−1) (46)

with

 j =5+(1− y j)
3, j=1,2, . . .,N (47)

From numerical experiments we found that the radii of supports of the weight functions as given
by Equations (46) and (47) are the minimum required for matrix A to be well conditioned. As
previously mentioned, the subdomain �i

S is chosen to be the support of the MLS basis function 
i
for node i with coordinate yi .

Since the MLS basis functions are not polynomials, the use of the standard Gauss quadrature
rule requires a large number of quadrature points to accurately evaluate domain integrals in
Equations (34). This is overcome by using the integration procedure proposed in [17]. The idea is
sketched in Figure 2, where a possible arrangement of nodes is shown. The integrations on �i

S are
performed on each subregion, obtained by dividing the subdomain by boundaries of intersecting
subdomains of other nodes. In the present study the numerical integration has been performed by
placing five quadrature points in each subregion.

The absolute and the relative tolerances A and R in Equation (38) have been set equal to 10−7,
whereas tolerances LTA and LTR in Equation (42) have been set equal to 10−4.

Copyright q 2008 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng (2008)
DOI: 10.1002/cnm



ANALYSIS OF ADIABATIC SHEAR BANDS BY A MESHLESS METHOD

Figure 2. Subdomain �i
S associated with the node at yi and subregions for integration given by

boundaries of intersecting subdomains.

Table I. ASB initiation times, maximum errors �0 (Equation (49)), speeds of the elastic unloading wave,
and the ASB width, obtained with the MLPG6 method for different numbers of nodes, compared with

those obtained in [32] with the FE and the MSPH methods.

Number of nodes ASB initiation Speed of the unloa- ASB width
(particles for MSPH) time (�s) �0 ding elastic wave (�m)

161 60.42 0.606 2510 13.67
201 60.46 0.473 2500 12.39
301 60.45 0.378 2487 10.32
401 60.45 0.378 2487 10.32

FE 201 60.55 — 2473 12.54
MSPH 442 60.56 0.0590 2473 10.32

In the absence of an analytical solution, computed results are compared with the numerical
solution obtained by the FE code developed in [31] with a nonuniform mesh given by

y j =
(
j−1

200

)5

, j =1,2, . . .,201 (48)

and with the MSPH numerical solution obtained in [32] with 442 particles; in [31, 32] the time
integration has been performed with the subroutine LSODE taken from the package ODEPACK,
and the number of nodes and particles was large enough to get a converged solution of the problem.
The following error measure

�(y, t)= s(y, t)

sFE(y, t)
−1, �0= sup

0�t�T
0�y�1

|�(y, t)| (49)

has been considered, where sFE is the reference converged FE solution obtained with the nodal
distribution (48), and T =60.8�s.

In Table I the ASB initiation times at the point y=0, for different values of N in Equation (45),
are compared with those obtained in [32] with the FE and the MSPH methods. An ASB is assumed
to initiate at a point when the shear stress there has dropped to 80% of its peak value at that point,
and the material point is deforming plastically. This criterion reflects the observation [33] that the
torque required to twist thin-walled tubes drops precipitously upon the initiation of an ASB. It
is evident from the results listed in Table I that there is no difference between values obtained
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by using 301 and 401 nodes. The percentage error in the presently computed value of the ASB
initiation time with 301 nodes is

100×
∣∣∣∣∣1− tMLPG6

ASB

tFEASB

∣∣∣∣∣
0.20 (50)

From an examination of values of �0 defined by Equation (49) and given in Table I, it is clear
that the maximum error decreases with an increase in the number of nodes. The primary reason
for a rather large value of �0 is the slight difference in the ASB initiation times. Because of the
earlier initiation of an ASB in the present study, the shear stress at y=0 has dropped drastically at
t=60.5�s but not in the FE solution. As the presently computed ASB initiation time approaches
that obtained with the FEM, the difference in the two spatial variations of the shear stress, the
particle velocity, and the temperature rise decreases and the value of �0 decreases. We note that,
for the present problem, the FEM gives a converged value of the ASB initiation time with 201
nonuniformly spaced nodes and requires the least amount of CPU time out of the FE, the MSPH,
and the MLPG methods. For most linear elastic problems the MLPG method requires more CPU
time than the FEM but gives results of the same accuracy with fewer nodes. Here, for the problem
involving the localization of deformation into a narrow band, the MSPH and the MLPG6 methods
require more nodes (particles) than the FEM. We note that the FE solution of the problem computed
with 201 nodes with coordinates given by Equation (45) is virtually identical to that obtained with
nodal positions given by Equation (48). Thus, the slight difference in results computed with the
MLPG6 and the FE methods is not due to the spatial locations of nodes. We have experimented
with using multiquadratic basis functions in the MLPG6 formulation and found that they work well
when nodes are uniformly distributed and, at least for the present problem, are not advantageous.
We also used MLPG1 formulation with weight functions in the MLS basis functions taken as the
test functions. This resulted in asymmetric mass matrix and neither reduced the CPU time required
to numerically solve the problem nor improved the accuracy of results. All results presented below
have been computed with N =301 in Equation (45).

Figure 3(a) depicts the time history of evolution of the nondimensional shear stress s at y=0;
Figure 3(b) depicts the same results for 60.3�s�t�60.9�s and reveals that the collapse in the
shear stress at y=0 occurs during the 0.15�s time interval that starts at t=60.45�s; the beginning
of the collapse at this instant signifies the initiation of an ASB at t=60.45�s. The dramatic drop in
the shear stress at y=0 results in an elastic unloading shock wave that propagates outwards from
the specimen center; this is shown in Figure 4(b) and (c), where the spatial variation of the shear
stress and the velocity are plotted at different times. The nondimensional wave speed computed
from the shear stress data is 2487, which is very close to the analytical value

√
�/�=2473.38.

It takes about 0.8�s for the wave to reach y=1 from where it is reflected back with a negative
value of the shear stress; the reflected waves at different times are shown in Figure 4(b) and (c).
Values of the nondimensional wave speed computed from solutions with different node numbers
are compared in Table I with those from the MSPH and the FE methods. It is clear that with
an increase in the number of nodes, the presently computed speed of the elastic unloading wave
approaches the analytical value and also that computed with the MSPH and the FE methods. We
note that results plotted in Figure 4 when adjusted for the difference in the ASB initiation time
agree very well with those computed with the FE and the MSPH methods.

In Figure 5(a) the spatial distribution of the temperature rise at four different times is shown,
and in Figure 5(b) the same result is plotted for 0�y�5×10−3. One can see that for t�60.4�s
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Figure 3. Time history of the nondimensional shear stress at the specimen center
(a) 0�s�t�61.1�s and (b) 60.3�s�t�60.9�s.

the temperature at y=0 rises slowly and that it increases more near the origin than at points away
from y=0. During the 0.3�s time interval between t=60.4 and 60.7�s the temperature near the
origin rises sharply; in the same time interval the shear stress in the same region collapses. The
average rate of rise in temperature during this 0.3�s interval equals 3×107 or 2.7×109◦C/s.
The monotonic increase in the rate of temperature rise suggests that in the shear-banded region
the rate of increase in the plastic strain rate is higher than the rate of decrease in the shear stress.
Eventually, most of the heat generated within the ASB is conducted out of the edges of the ASB,
and the temperature within the shear-banded region does not increase much. For a typical steel,
Batra and Chen [36] found that 95% of the heat produced due to plastic working is conducted
out of the shear-banded region. The sudden jump in the rate of increase in the temperature at
t=60.5�s is shown in Figure 6(a) and (b). For a heterogeneous material Batra and Love [37]
regarded a sudden jump in the rate of temperature rise as the ASB initiation criterion, and for a
tungsten/nickel–iron composite found its value to be of the order of 107◦C/s.

Recalling that the temperature is higher where plastic deformation is larger, and assuming that
the edge of the ASB is located at the point where the temperature rise is 40% of its peak value, the
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Figure 4. (a) Spatial distribution of the nondimensional shear stress at times 0, 20, 40, 60.4 and 60.7�s;
spatial distribution of (b) the shear stress and (c) the velocity at different times during the localization

phenomenon. Curves are plotted at 0.2�s interval.
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Figure 5. Spatial distribution of the nondimensional temperature rise at times 0, 20, 40, 60.4 and
60.7�s: (a) 0�y�1 and (b) 0�y�0.005.

width of the ASB determined from the numerical data equals 2×H×0.0020=10.32�m, which
is close to the experimental value of ∼10�m in [33]. Values of ASB width so computed from
solutions with different node numbers are compared in Table I with those from the MSPH and the
FE methods. We note that our definition of the edge of the ASB is arbitrary; one could equally
well define it as the point where the plastic strain equals 90% of its peak value at the ASB center.
Of course, different definitions of the ASB edge yield varying values of the ASB width.

We have plotted in Figure 7 for three values of time t the spatial distribution of k that describes
nondimensional work hardening of the material and is nearly equal to the plastic strain. It is clear
that the material distortion within the shear band region is extremely large, and severe deformations
occur within a very narrow region.

4.3. Remarks

For the simple shearing problem analyzed here, the Lagrangian FE mesh is not distorted, and the
FEM gives very good results. Moreover, because of the Kronecker delta property of the FE basis
functions, essential boundary conditions are easily satisfied, and it is possible to integrate in time
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Figure 6. Time history of the temperature rise at the specimen center for
(a) 0�s�t�61.4�s and (b) 60.3�s�t�61.1�s.

the semidiscrete system of ordinary differential equations by using the subroutine LSODE, which
computes the norms for the corrector iterations and the local truncation error on the nodal values.
The MLPG method employing the MLS basis functions, because of the necessity of checking the
convergence of the actual nodal values that differ from the nodal unknowns, cannot use LSODE.
A possibility is to use in the MLPG method multiquadratic RBFs [38] that possess the Kronecker
delta property. It is shown in [15] that the SSPH basis functions that compute derivatives of the
trial solution without differentiating basis functions for the trial solution improve the accuracy of
the numerical solution for linear elastostatic problems.

Although adjacent nodes can be placed arbitrarily close to each other in the FEM without
affecting significantly the number of iterations required for the solution to converge within one time
step, it is not so in the MLPG and the MSPH methods. For the present formulation of the problem
a wide variation in the distance between two adjacent nodes affects noticeably the convergence of
the solution.

For two-dimensional problems, one can still use a Lagrangian FE mesh, but the mapping from
the reference to the current configuration can become singular when elements have been severely

Copyright q 2008 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng (2008)
DOI: 10.1002/cnm



ANALYSIS OF ADIABATIC SHEAR BANDS BY A MESHLESS METHOD

0.0 0.2 0.4 0.6 0.8 1.0

1.2

1.3

1.4

1.5

1.6

y

k

0

40.0

60.7

Figure 7. Spatial distribution of the work hardening parameter k for t=0, 40 and 60.7�s.

distorted; therefore, the time step required for stable integration can be reduced immensely and
computations cannot be performed in a reasonable CPU time. In the MLPG method, no nodal
connectivity is required; therefore, one expects that satisfactory results can be computed for two-
dimensional ASB problems. When the point where an ASB initiates is unknown nodal locations
can be adaptively adjusted [39] to delineate an ASB. This work is left for a future study.

Differences and similarities between the MLPG and the FE methods for a transient linear
thermoelastic problem are given in [18]. For the present nonlinear problem the MLPG6 method
requires considerably more CPU time than the FEM. The reduction in the data preparation time for
two- and three-dimensional problems may alleviate the cost associated with the higher CPU time.

An advantage of studying one-dimensional ASB problems is that one can readily delineate the
effect of different material and geometric parameters, see [40].

APPENDIX A: FUNCTIONS �

Expressions for functions � appearing in Equations (34) are given below. For �h(û)>0

�22(û) = a

bm
(1−auTŴ)−1−1/m(uTŝ)1+1/m

(
1+u

Tŵ
�0

)−n/m

(A1)

�23(û) = 1

bm
(1+m)

⎛
⎝(1−auTŴ)−1/m(uTŝ)1/m

(
1+ u

Tŵ

�0

)−n/m

−m

⎞
⎠ (A2)

�24(û) = − n

bm�0
(1−auTŴ)−1/m(uTŝ)1+1/m

(
1+ u

Tŵ

�0

)−(n+m)/m

(A3)

�32(û) = − a�

bm
(1−auTŴ)−1−1/m(uTŝ)1/m

(
1+ u

Tŵ

�0

)−n/m

(A4)
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�33(û) = − �

bm
(1−auTŴ)−1/m(uTŝ)−1+1/m

(
1+ u

Tŵ

�0

)−n/m

(A5)

�34(û) = �n

bm
(1−auTŴ)−1/m(uTŝ)1/m

(
1+ u

Tŵ
�0

)−(n+m)/m

(A6)

�42(û) = a

bm
(1−auTŴ)−1−1/m(uTŝ)1+1/m

(
1+u

Tŵ
�0

)−n(1+m)/m

(A7)

�43(û) = 1

b

(
1+ u

Tŵ

�0

)−n(1+m)/m

×
⎛
⎝ (1+m)(1−auTŴ)−1/m(uTŝ)1/m

m
−
(
1+u

Tŵ

�0

)n/m
⎞
⎠ (A8)

�44(û) = − n

bm�0
(1−auTŴ)−1/m(uTŝ)

(
1+ u

Tŵ
�0

)−(n+m+mn)/m

×
⎛
⎝(1+m)(uTŝ)1/m−m(1−auTŴ)1/m

(
1+ u

Tŵ
�0

)n/m
⎞
⎠ (A9)

When �h(û)�0 these functions identically vanish.
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