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Abstract We propose a new and simple technique called
the Symmetric Smoothed Particle Hydrodynamics (SSPH)
method to construct basis functions for meshless methods
that use only locations of particles. These basis functions are
found to be similar to those in the Finite Element Method
(FEM) except that the basis for the derivatives of a function
need not be obtained by differentiating those for the function.
Of course, the basis for the derivatives of a function can be
obtained by differentiating the basis for the function as in
the FEM and meshless methods. These basis functions are
used to numerically solve two plane stress/strain elasto-static
problems by using either the collocation method or a weak
formulation of the problem defined over a subregion of the
region occupied by the body; the latter is usually called
the Meshless Local Petrov–Galerkin (MLPG) method. For
the two boundary-value problems studied, it is found that the
weak formulation in which the basis for the first order deriv-
atives of the trial solution are derived directly in the SSPH
method (i.e., not obtained by differentiating the basis function
for the trial solution) gives the least value of the L2-error norm
in the displacements while the collocation method employing
the strong formulation of the boundary-value problem has the
largest value of the L2-error norm. The numerical solution
using the weak formulation requires more CPU time than the
solution with the strong formulation of the problem. We have
also computed the L2-error norm of displacements by varying
the number of particles, the number of Gauss points used to
numerically evaluate domain integrals appearing in the weak
formulation of the problem, the radius of the compact sup-
port of the kernel function used to generate the SSPH basis,
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the order of complete monomials employed for constructing
the SSPH basis, and boundary conditions used at a point on a
corner of the rectangular problem domain. It is recommended
that for solving two-dimensional elasto-static problems, the
MLPG formulation in which derivatives of the trial solution
are found without differentiating the SSPH basis function be
adopted.

Keywords Symmetric smoothed particle hydrodynamics
(SSPH) basis · MLPG · Error norm · Strong and weak
formulations · Stress concentration

1 Introduction

The meshless Smoothed Particle Hydrodynamics (SPH)
method, proposed by Lucy [1] to study three-dimensional
(3D) astrophysics problems, has been successfully applied to
analyze transient fluid and solid mechanics problems.
However, it has two shortcomings, namely inaccuracy at
particles on the boundary and the tensile instability. Many
techniques have been developed to alleviate these two defi-
ciencies, among which are the Corrected Smoothed Parti-
cle Method (CSPM) [2,3], the Reproducing Kernel Particle
Method (RKPM) [4–6] and the Modified Smoothed Particle
Hydrodynamics (MSPH) method [7–10]. The MSPH method
has been successfully applied to study wave propagation in
functionally graded materials [9], capture the stress field near
a crack-tip, and simulate the propagation of multiple cracks
[10] in a linear elastic body.

However, the MSPH method requires that all derivatives of
the kernel function used to generate values of the trial solu-
tion and its derivatives at a point be non-constants, which
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restricts the choice of the kernel function. Furthermore, the
matrix to be inverted for finding kernel estimates of the trial
solution and its derivatives is asymmetric. In [11] we pro-
posed the Symmetric Smoothed Particle Hydrodynamics
(SSPH) method which made the matrix to be inverted sym-
metric, reduced the storage requirement and the CPU time,
eliminated the requirement that the kernel function must not
be a constant, and more importantly, gave a lower error in
the numerical solution than that obtained with the MSPH
method. Also requirements on the kernel function used to
generate basis functions with the SSPH method were com-
pared with those for the RKPM and the MLS [12] method,
and errors in interpolating an exponential function with the
three sets of basis functions were computed. The SSPH basis
functions together with the collocation method or the strong
formulation of the problem were used to solve an elasto-
static problem. However, the collocation method requires the
computation of 2nd order derivatives for an elastic problem.
Said differently, the basis functions must be at least twice
differentiable. One can reduce this differentiability require-
ment by employing a weak formulation of the problem as is
done in the Finite Element Method (FEM) and some mesh-
less methods such as the Element Free Galerkin [13] and
the Meshless Local Petrov–Galerkin (MLPG) [14]. As far
as we can ascertain, the first order derivatives of the trial
solution have been computed by differentiating the shape
or the basis functions. However, in the SSPH basis func-
tions presented in [11] and further improved upon here, one
can find the spatial derivatives of the trial solution with-
out differentiating the basis functions. That is, basis func-
tions for the spatial derivatives are different from those for
the trial solution and the former are not derivatives of the
latter.

We note that the idea of approximating derivatives of a
function without differentiating the basis functions has been
introduced by Kim and Liu [15] and Kim et al. [16] for
the MLS method, and by Li and Liu [17,18] who used the
wavelet functions and developed the hierarchical basis for
the meshless method. Similar ideas can also be found in
[19,20]. Here we start with the Taylor series expansion of
a function as is often done in the SPH method, and address
the question of whether or not solving for derivatives of
a function without differentiating the basis functions leads
to lower errors in the numerical solution of boundary-value
problems. For this purpose, we study two elasto-static prob-
lems and compare L2-error norms of displacements com-
puted with three methods, namely the collocation method,
and the MLPG method with spatial derivatives of the trial
solution obtained with and without differentiating the SSPH
basis functions. It is found that indeed the MLPG formula-
tion with spatial derivatives of the trial solution computed
without differentiating the SSPH basis functions gives the
least value of the L2-error norm of displacements, and the

collocation method has the largest value of this error norm.
It is thus concluded that it is better to use the weak form with-
out differentiating the SSPH basis functions to solve elasto-
static problems. Since the weak and the strong formulations
of an elasto-static problem have, respectively, first and sec-
ond order derivatives of displacements, one can decrease the
order of complete monomials used to construct the SSPH
basis functions when using the weak formulation and thereby
economize on the CPU time to compensate somewhat for the
increase in the CPU time required to numerically evaluate
domain integrals. Numerical results show that the weak for-
mulation without differentiating the SSPH basis functions
and using complete monomials of degree one still gives a
lower value of the L2-error norms in displacements than
the collocation method for which the SSPH basis functions
are generated by employing complete monomials of degree
two.

Ferreira et al. [21] have analyzed beam and plate prob-
lems with the collocation method and the radial basis func-
tions (RBFs) but have not compared approximate solutions
computed with the weak and the strong formulations. Qian
et al. [22] have compared approximate solutions for higher-
order plate theories found with two MLPG formulations first
by taking the test function equal to the kernel or the weight
function used to generate basis function by the MLS method
and then by setting the test function equal to a MLS basis
function. They found that the second formulation, which
equals the Galerkin formulation of the problem over a sub-
domain of the body, gives lower errors in the computed
displacements and stresses than the first one. Batra et al.
[23] have employed the same two MLPG formulations to
study axisymmetric transient heat conduction in a bimetal-
lic disk. Xiao and McCarthy [24] have employed a local
weak form of the equilibrium equations governing infin-
itesimal deformations of a linear elastic body, the RBFs,
and taken the Heaviside function as the test function. The
RBFs possess the Kronecker delta property; therefore no
special algorithm is needed to satisfy essential boundary
conditions.

The rest of the paper is organized as follows. Section 2
describes the SSPH basis functions. In Sect. 3, the strong and
the weak form of equations of equilibrium for a 2D elastic
problem are summarized. Numerical results for plane stress
deformations of a rectangular plate with essential boundary
conditions applied on one edge and natural boundary condi-
tions on the remaining three edges are presented in Sect. 4.
The effect of using different number of particles, the integra-
tion rule to evaluate domain integrals, and boundary condi-
tions imposed at a particle on a corner of the plate etc. are
delineated. Subsequently, the stress concentration near a cir-
cular hole in a semi-infinite elastic plate with a hole at the
center is analyzed by the three techniques. Conclusions of
this work are summarized in Sect. 5.
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2 Symmetric smoothed particle hydrodynamics basis
functions

For a function f (x) having continuous derivatives up to
(n + 1)th order, the value of the function at a point ξ =
(ξ1, ξ2, ξ3) located in the neighborhood of x = (x1, x2, x3)

can be approximated through the finite Taylor series
expansion

f (ξ1, ξ2, ξ3) =
n∑

m=0

1

m!
[
(ξ1 − x1)

∂

∂x1
+ (ξ2 − x2)

∂

∂x2

+ (ξ3 − x3)
∂

∂x3

]m

f (x1, x2, x3), (2.1)

where the symbol ! denotes factorial with 0! = 1. Neglecting
the third and the higher order terms, and introducing two
matrices, P(ξ , x) and Q(x) we write Eq. (2.1) as

f (ξ) = P(ξ , x) Q(x), (2.2)

where

Q(x) =
[

f (x),
∂ f (x)

∂x1
,
∂ f (x)

∂x2
,
∂ f (x)

∂x3
,

1

2

∂2 f (x)

∂x2
1

,

1

2

∂2 f (x)

∂x2
2

,
1

2

∂2 f (x)

∂x2
3

,
∂2 f (x)

∂x1∂x2
,
∂2 f (x)

∂x2∂x3
,

∂2 f (x)

∂x1∂x3

]T

, (2.3)

P(ξ − x) =
[

1, ξ1 − x1, ξ2 − x2, ξ3 − x3, (ξ1 − x1)
2 ,

(ξ2 − x2)
2 , (ξ3 − x3)

2 , (ξ1 − x1) (ξ2 − x2) ,

(ξ2 − x2) (ξ3 − x3) , (ξ1 − x1) (ξ3 − x3)

]
.

Elements of matrix Q(x), the kernel estimate of the func-
tion, its first derivatives and its second derivatives at x =
(x1, x2, x3) are the unknown variables to be found from
Eq. (2.2). As will become clear later, elements of matrix
P(ξ , x) can be associated with shape functions used in the
FEM.

In the MSPH method [7], we find the matrix Q(x) by
multiplying both sides of Eq. (2.2) with a positive valued
kernel function W (ξ , x) of compact support, the first and the
second derivatives of the kernel function, and integrating the
resulting equations over the compact support of the kernel
function. The matrix so obtained that operates on the matrix
Q(x) is asymmetric and in order for it be non-singular, the
first and the second derivatives of the kernel function W (ξ , x)

must not be constants. This restricts the choice of the kernel
function. In order to be able to use a wider class of kernel
functions and have the matrix pre-multiplying the matrix

x
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)2(g

)3(g

)4(g

)5(g

)7(g
)8(g

)6(g

( ))(xNg

Fig. 1 Distribution of particles in the compact support of the kernel
function W (ξ , x) associated with the point x = (x1, x2, x3)

Q(x) symmetric, we proposed the SSPH method [11]. In it,
we multiply both sides of Eq. (2.2) with W (ξ , x) P(ξ , x)T

and obtain

f (ξ) W (ξ , x) P(ξ , x)T

= P(ξ , x) Q(x)W (ξ , x) P(ξ , x)T ,

=
[
P(ξ , x)T W (ξ , x) P(ξ , x)

]
Q(x). (2.4)

In the compact support of the kernel function W (ξ , x) asso-
ciated with the point x = (x1, x2, x3), shown in Fig. 1, let
there be N (x) particles. In the global numbering system, let
the particle number of the j th particle in the compact support
of W (ξ , x) be g( j). We evaluate Eq. (2.4) at every particle
in the compact support of W (ξ , x) and sum each side over
these particles to arrive at

N (x)∑

j=1

f
(
ξ g( j)
)

W
(
ξ g( j), x

)
P
(
ξ g( j), x

)T

=
N (x)∑

j=1

[
P
(
ξ g( j), x

)T
W
(
ξ g( j), x

)
P
(
ξ g( j), x

)]
Q(x),

(2.5)

where ξ g( j) denotes coordinates of particle g( j). We notice
that the difference between Eq. (2.5) and the corresponding
equation in [11] is that Eq. (2.5) is obtained by summing
values of functions at the particles whereas that in Ref. [11]
is derived by integrating each side over the compact support
of the function W (ξ , x). That is, unlike the approach followed
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in Ref. [11], in Eq. (2.5) the mass and the mass density
associated with each particle are not needed. With the
definitions

H(ξ , x)

=
[
PT
(
ξ g(1), x

)
, PT
(
ξ g(2), x

)
, · · · , PT

(
ξ g(N (x)), x

)]
,

W(ξ , x)

=

⎡

⎢⎢⎢⎢⎢⎢⎣

W
(
ξ g(1), x

)
0 · · · 0

0 W
(
ξ g(2), x

)
· · · 0

...
...

. . . 0

0 0 0 W
(
ξ g(N (x)), x

)

⎤

⎥⎥⎥⎥⎥⎥⎦
,

F(x)T (ξ , x)

=
[

f
(
ξ g(1)
)

, f
(
ξ g(2)
)

, . . . , f
(
ξ g(N (x))

)]
, (2.6)

Eq. (2.5) becomes

H(ξ , x) W(ξ , x) F(x)(ξ , x)

= H(ξ , x) W(ξ , x) HT (ξ , x) Q (x) . (2.7)

Values of elements of matrices H(ξ , x), W(ξ , x) and
F(x)(ξ , x) depend, respectively, upon values of the matrix
P(ξ , x), the kernel function W (ξ , x) and the function f at all
particles located in the compact support of W (ξ , x) associ-
ated with point x. Equation (2.7) can be rewritten as

C(ξ , x) Q(x) = D(ξ , x) F(x)(ξ , x), (2.8)

where C(ξ , x) = H(ξ , x) W(ξ , x) HT (ξ , x), D(ξ , x) =
H(ξ , x) W(ξ , x).

It is obvious that the matrix C(ξ , x) defined above is
symmetric. That is why we call this technique the SSPH
method. The set of simultaneous linear algebraic equations
in Eq. (2.8) can be solved for the unknown elements of the
matrix Q(x). The symmetry of the matrix C(ξ , x) reduces
storage requirements and the CPU time needed to solve
Eq. (2.8) for Q(x). It is interesting to note that none of the
matrices in Eq. (2.8) involves derivatives of the kernel func-
tion. Thus a much larger class of functions can be used as
the kernel function which improves the practicality and the
usefulness of the method.

In order to show that the matrix C(ξ , x) is non-singular,
we write it as

C(ξ , x) =
[

W (g(1)) PT (g(1)), W (g(2)) PT (g(2)), . . . ,

W (g(N (x))) PT (g(N (x)))

]
⎡

⎢⎢⎢⎣

P(g(1))

P(g(2))
...

P(g(N (x)))

⎤

⎥⎥⎥⎦

(2.9)

where W (g(1))≡ W (ξ g(1), x) and PT (g(1))≡ PT (ξ g(1), x).
Thus C(ξ , x) equals the product of a 10 × N (x) matrix and a
N (x) × 10 matrix. By the Binet–Cauchy Theorem [25], the
determinant of the matrix C(ξ , x) is given by

Det[C(ξ , x)]

=
N (x)∑

n1, n2, . . . , n10 = 1
n1 < n2 < · · · < n10
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Det
[
W (g(n1)) PT (g(n1)), W (g(n2))

× PT (g(n2)), . . . , W (g(n10))

× PT (g(n10))
]

×Det

⎡

⎢⎢⎢⎣

P(g(n1))

P(g(n2))
...

P(g(n10))

⎤

⎥⎥⎥⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=
N (x)∑

n1, n2, . . . , n10 = 1
n1 < n2 < · · · < n10
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�
k=n1,n2,...,n10

W (g(k)) × Det

⎡

⎢⎢⎢⎣

P(g(n1))

P(g(n2))
...

P(g(n10))

⎤

⎥⎥⎥⎦

2
⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(2.10)

Here n1, n2, . . . , n10 are any ten particles in the ascend-
ing order from 1 to N (x) that are in the compact support
of W (ξ , x). Because the polynomial functions in Eq. (2.3)
are linearly independent and the kernel function W is pos-
itive everywhere in its compact support, the determinant of
matrix C(ξ , x) is not zero. Thus the necessary condition for
the matrix C(ξ , x) to be non-singular is that the number of
particles in the compact support of the kernel function equals
at least the number of linearly independent monomials in
Eq. (2.3). Whether the matrix C(ξ , x) is singular or not also
depends on the distribution of particles in its compact sup-
port. In general, it must be ensured that at least three particles
in the compact support of the kernel function do not have the
same x1, x2 and x3 coordinates. The proof of the statement
that the matrix C(ξ , x) is non-singular is given below for the
1D case.

For a 1D problem,

P (ξ − x) =
[
1, (ξ1 − x1), (ξ1 − x1)

2
]
,
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and using Vandermonde’s rule [26], Eq. (2.10) reduces to

Det[C(ξ , x)]

=
N (x)∑

n1, n2, n3 = 1
n1 < n2 < n3

{
�

k=n1,n,n3

W (g(k))
[(

ξ
g(n2)
1 − ξ

g(n1)
1

)

×
(
ξ

g(n2)
1 − ξ

g(n3)
1

) (
ξ

g(n1)
1 − ξ

g(n3)
1

)]2}
.

For ξ
g(n1)
1 �= ξ

g(n2)
1 �= ξ

g(n3)
1 , the determinant will not equal

zero. Thus for the matrix C(ξ , x) to be nonsingular, the nec-
essary and sufficient condition is that the compact support of
the kernel function include at least three different particles.

For non-singular matrix C (ξ , x), the solution of
Eq. (2.8) is

Q(x) = C(ξ , x)−1 D(ξ , x) F(x)(ξ , x)

= K(x)(ξ , x) F(x)(ξ , x), (2.11)

where K(x) (ξ , x) = C(ξ , x)−1D (ξ , x). We note that
Eq. (2.11) is the same as Eq. (7.2) in [15] which is derived
from the fast version of the generalized MLS method. Thus
values of the function and of its derivatives at the point x
are expressed in terms of values of the function at particles
that lie in the compact support of the kernel function W (ξ , x)

associated with the point x.
For the matrix S defined by

S=

1 · · · g(1) · · · g(2) · · · g(N (x)) · · · M

1
2
...

N (x)

⎡

⎢⎢⎢⎢⎣

0 · · · 1 · · · 0 · · · 0 · · · 0

0 · · · 0 · · · 1 · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · 0 · · · 1 · · · 0

⎤

⎥⎥⎥⎥⎦
,

(2.12)

we note that IN (x) = SST , where IN (x) is the N (x) × N (x)

identity matrix. Quantities on the top and on the left of the
matrix are the column number and the row number, respec-
tively, and M equals the total number of particles in the entire
domain of interest. Writing Eq. (2.11) as

Q(x)=K(x)(ξ , x) F(x)(ξ , x)=K(x)(ξ , x) IN (x)F(x)(ξ , x),

=
(

K(x)(ξ , x)S
) (

ST F(x)(ξ , x)
)

, (2.13)

we have

K(x)(ξ , x)S

=

1 · · · g(1) · · · g(2) · · · g(N (x)) · · · M

1
2
...

10

⎡

⎢⎢⎢⎢⎣

0 · · · K (x)
1g(1) · · · K (x)

1g(2) · · · K (x)
1g(N (x)) · · · 0

0 · · · K (x)
2g(1) · · · K (x)

2g(2) · · · K (x)
2g(N (x)) · · · 0

...
. . .

...
. . .

...
. . .

...
. . .

...

0 · · · K (x)
10g(1) · · · K (x)

10g(2) · · · K (x)
10g(N (x)) · · · 0

⎤

⎥⎥⎥⎥⎦

ST F(x)(ξ , x)

1 · · · g(1) · · · g(2) · · · g(N (x)) · · · M

=
[

0 · · · f
(
ξ g(1)
)

· · · f
(
ξ g(2)
)

· · · f
(
ξ g(N (x))

)
· · · 0

]T

Because of columns of zeros in the matrix product K(x)

(ξ , x)S, we modify the zero elements in the matrix ST F(x)

(ξ , x) as follows while not changing the right hand side of
Eq. (2.13):

ST F(x)(ξ , x)

1 · · · g(1) · · · g(2) · · · g(N (x)) · · · M

=
[

f
(
ξ1) · · · f

(
ξ g(1)
)

· · · f
(
ξ g(2)
)

· · · f
(
ξ g(N (x))

)
· · · f

(
ξ M
)]T

Thus, Eq. (2.13) can be written as

Q(x) = K(ξ , x) F(ξ) (2.14)

where

K(ξ , x) = K(x)(ξ , x)S,

F(ξ) =
[

f
(
ξ1
)

, f
(
ξ2
)

, . . . , f
(
ξ M
)]T

.

Alternatively, we write Eq. (2.14) as

QI (x) =
M∑

J=1

K I J FJ , I = 1, 2, . . . , 10,

where FJ = f (ξ J ). The value of the function and its deriv-
atives at the point x are now expressed in terms of values of
the function at all particles in the entire domain.

Three components of Eq. (2.14) when written explicitly
are

f (x) = Q1(x) =
M∑

J=1

K1J FJ ,

∂ f (x)

∂x1
= Q2(x) =

M∑

J=1

K2J FJ , (2.15)

∂2 f (x)

∂x2
1

= 2Q5(x) =
M∑

J=1

2K5J FJ .

In the terminology of the FEM functions K1J , J =
1, 2, . . . , M can be viewed as shape functions for the point
x. Similarly, functions K2J , J = 1, 2, . . . , M and 2K5J ,

J = 1, 2, . . . , M can be regarded as shape functions for
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∂ f (x)/∂x1 and ∂2 f (x)/∂x2
1 , respectively. Thus shape

functions for f (x), its first derivative and its second deriva-
tive at the position x are different. Recall that in the FEM

∂α+β+γ

∂xα
1 ∂xβ

2 ∂xγ
3

f (x) =
M∑

J=1

∂α+β+γ

∂xα
1 ∂xβ

2 ∂xγ
3

NJ FJ (2.16)

For α = β = γ = 0, Eq. (2.16) giving the approximate value
of the function in the FEM is exactly of the same form as that
in the SSPH method. However, expressions for approximate
values of the first and the second derivatives of the function
at the point x in the SSPH method are different from those in
the FEM. In order to compute approximate values of deriv-
atives of the function in the SSPH method, we do not need
to differentiate the basis functions. Instead we use another
set of basis functions. Values of coefficients in Eq. (2.15)
for finding approximate values of the function f (x), its first
derivative and its second derivative at the point x are found
simultaneously.

In the MLS method, the RKPM and the FEM one can
also use a different set of shape functions to approximate the
trial solution and its derivatives, but it increases the number
of unknowns at a node or a particle. Here the number of
unknowns per particle remains the same but one does need
to have more particles in the compact support of the kernel
function associated with the point x to simultaneously find
basis for the function and its spatial derivatives in order for
the matrix C(ξ , x) defined by Eq. (2.9) to be non-singular.
This can be accomplished by enlarging either the radius of
the compact support of the kernel function or the number of
particles in the domain which generally reduces the error in
approximating the trial solution.

As in the FEM, one can determine approximate values of
the derivatives of the function f at the point x by differenti-
ating with respect to xi both sides of Eq. (2.15)1.

For the SSPH method, the estimates of a function, and its
first and second order derivatives are consistent up to orders
m, (m − 1) and (m − 2), respectively, if up to m order terms
are retained in the Taylor series expansion (2.1) of the func-
tion.

The SSPH basis functions (2.14) have been derived with-
out using any connectivity among the particles. Therefore,
like the MLS basis functions [27] these can be used as basis
to solve an initial-boundary-value problem. We note that like
the MLS basis functions the SSPH basis functions (2.14) do
not exhibit the Kronecker delta property.

3 Formulation of 2D elasto-statics problems

In rectangular Cartesian coordinates, equations of equilib-
rium for 2D deformations of a linear elastic body occupying

the domain � are

σi j, j + bi = 0, in �, i = 1, 2, (3.1)

where a repeated index implies summation over the range of
the index, bi is the body force per unit volume which we take
to be zero, σi j is the Cauchy stress, and a comma followed
by the index j denotes partial differentiation with respect to
x j . The boundary conditions may be written as

ui = ūi on 	u

ti ≡ σi j n j = t̄i on 	t
(3.2)

ūi is the prescribed displacement on 	u , and t̄i the prescribed
surface traction on 	t , n = [n1, n2]T is the unit outward
normal to the boundary 	t . These two boundary conditions
are the well-known essential and natural boundary conditions,
respectively.

The constitutive relation for a linear elastic isotropic
homogeneous material is

σ = Dε (3.3)

where ε = [ε11, ε22, 2ε12]T is the strain tensor, σ =
[σ11, σ22, σ12]T is the stress tensor, D given by

D = E0

1 − ν2
0

⎡

⎣
1 ν0 0
ν0 1 0
0 0 1−ν0

2

⎤

⎦ (3.4)

is the matrix of elastic constants in which

E0 = E
1−ν2 , ν0 = ν

1−ν
for plane strain

E0 = E, ν0 = ν for plane stress
(3.5)

Here E is Young’s modulus and ν the Poisson ratio.
The strain tensor ε is defined by

ε = Lu (3.6)

where the differential operator matrix L and the displacement
vector u are given by

L =
⎡

⎢⎣

∂
∂x1

0
0 ∂

∂x2
∂

∂x2

∂
∂x1

⎤

⎥⎦ , u =
[

u1

u2

]
(3.7)

Equations (3.1)–(3.3) and (3.6) constitute a set of two partial
differential equations for the two unknown components of
displacements u1 and u2. We discuss below three ways of
finding an approximate solution of these equations by using
the SSPH basis functions.

3.1 The collocation method or approximate solution using
the strong form of differential equations

We assume that there are M scattered particles located in the
domain �. In the collocation method, Eqs. (3.1), (3.3) and
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(3.6) are satisfied at every one of the M particles. Thus we
have
(

∂2

∂x2
1

+ 1 − ν0

2

∂2

∂x2
2

)
uI

1 + 1 + ν0

2

∂2

∂x1∂x2
uI

2 = 0,

1 + ν0

2

∂2

∂x1∂x2
uI

1 +
(

1 − ν0

2

∂2

∂x2
1

+ ∂2

∂x2
2

)
uI

2 = 0. (3.8)

These partial differential equations are transformed to alge-
braic equations by using the SSPH basis functions. For the 2D
problem, Eq. (2.14) giving the SSPH basis functions reduces
to

QI (x) =
M∑

J=1

K I J FJ , I = 1, 2, . . . , 6, (3.9)

and second derivatives of the function f (x) are given by

∂2 f (x)

∂x2
1

= 2Q4(x) =
M∑

J=1

2K4J FJ

∂2 f (x)

∂x2
2

= 2Q5(x) =
M∑

J=1

2K5J FJ (3.10)

∂2 f (x)

∂x1∂x2
= Q6(x) =

M∑

J=1

K6J FJ

Replacing the function f (x) in Eq. (3.10) by u1(x) and u2(x),
we evaluate second order derivatives of u1(x) and u2(x) in
terms of values of u1 (x) and u2 (x) at the M particles in
the domain �. Substituting expressions for the second order
derivatives of the displacement vector in Eq. (3.8) we get the
following system of algebraic equations.

M∑

J=1

[
2K4J + (1 − ν0)K5J

]
u J

1 + 1 + ν0

2

M∑

J=1

K6J u J
2 = 0,

1 + ν0

2

M∑

J=1

K6J u J
1 +

M∑

J=1

[
(1 − ν0) K4J + 2K5J

]
u J

2 = 0.

(3.11)

Equations (3.11) can be written in the matrix form as

M∑

J=1

K′
I J uJ = 0, (3.12)

where

K′
I J =

[
2K4J + (1 − ν0) K5J

1+ν0
2 K6J

1+ν0
2 K6J (1 − ν0) K4J + 2K5J

]
.

The matrix K′
I J is symmetric, but the whole matrix K′ is

not symmetric.
For a particle on the boundary 	u where the essential

boundary condition (3.2)1 is prescribed, Eq. (3.12) for that

particle is replaced by

M∑

J=1

K′
I J uJ = ūI (3.13)

where

K′
I J =

[
K1J 0

0 K1J

]
, ūI =

[
ū I

1

ū I
2

]
.

Similarly, Eq. (3.12) for particles with the assigned natural
boundary condition (3.2)2 is replaced by

M∑

J=1

K′
I J uJ = t̄ I , (3.14)

where

K′
I J = E0

1 − ν2
0

×
[

n1 K2J + 1−ν0
2 n2 K3J

1−ν0
2 n2 K2J +ν0n1 K3J

ν0n2 K2J + 1−ν0
2 n1 K3J

1−ν0
2 n1 K2J +ν0n2 K3J

]
,

t̄ I =
[

t̄ I
1

t̄ I
2

]
.

Equations (3.12)–(3.14) are a set of simultaneous linear
algebraic equations that can be solved for displacements of
all M particles.

3.2 Approximate solution using a weak form of governing
equations

We adopt the Meshless Local Petrov–Galerkin (MLPG)
formulation [14] to find an approximate solution of the
boundary-value problem governed by differential Eqs. (3.1)
and (3.2). It differs from the EFG method in the following
two respects. The weak form is derived over a subdomain
of the body, and there is no background mesh employed to
numerically evaluate domain integrals appearing in the weak
formulation. As before we consider M particles scattered in
domain � and denote the 2D vector function of compact sup-
port �I , contained in �, associated with particle I by W I

i
where the subscript i(i = 1, 2) denotes its component along
the xi -coordinate axis. We take W I

1 and W I
2 to be the Gauss

function defined by

W (ξ−x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G

(h
√

π )
λ

(
e−|ξ−x|2/h2 − e−ρ2

)

|ξ−x|�ρh
0

|ξ−x|>ρh

(3.15)

where h is the smoothing length, ρ the scaling factor, λ the
dimensionality of the space, and G the normalizing constant
determined by the condition that the integral of the kernel

123



534 Comput Mech (2008) 41:527–545

function over the domain equals 1.0. The Gauss kernel func-
tion is nonzero in the region |ξ − x| � ρh, which is a line
in 1D with length equal to 2ρh, a circle in 2D of radius ρh,
and a sphere in 3D of radius ρh. Taking the inner product of
both sides of Eqs. (3.1) and (3.2) with the test functionW I

i ,
integrating the resulting scalar equations over their respective
domains, and combining them together we get

∫

�I

σi j, j W I
i d� − α

∫

	 I
u

(ui − ūi ) W I
i d	 = 0, (3.16)

where α is a penalty parameter, 	 I
u = ∂�I ∩ 	u , and ∂�I is

the boundary of �I . From Fig. 2, it is clear that 	 I
u vanishes

for inner particles and also for those particles on the boundary
that are well inside 	t .

We note that the collocation method can be considered as
a special case of Eq. (3.16) with W I

i taken as the Dirac-delta
function centered at the point x. However, the collocation
method precedes the MLPG formulation of a boundary-value
problem.

The application of the divergence theorem to the derivative
term in Eq. (3.16) yields

∫

∂�I

σi j n j W I
i d	 −

∫

�I

σi j W I
i, j d� − α

∫

	 I
u

(ui − ūi )

× W I
i d	 = 0. (3.17)

Let ∂�I ∩ 	 = 	 I
u + 	 I

t , where 	 I
t = ∂�I ∩ 	t and 	 I

u =
∂�I ∩ 	u . Note that the kernel function W I

i vanishes on the
part of ∂�I not shared by 	. Thus

∫

∂�I

σi j n j W I
i d	 =

∫

∂�I ∩	

σi j n j W I
i d	. (3.18)
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1Ω∂4Ω∂

3Ω∂

2Ω∂

Ω

3

u
Γ

1

t

Γ
1

Fig. 2 Sub-domains and their boundaries for particles 1, 2, 3 and 4

Substitution from Eq. (3.18) into Eq. (3.17) gives

∫

�I

σi j W I
i, j d� + α

∫

	 I
u

ui W I
i d	 −

∫

	 I
u

σi j n j W I
i d	

=
∫

	 I
t

t̄i W
I
i d	 + α

∫

	 I
u

ūi W I
i d	 (3.19)

Or, in matrix form,

∫

�I

(LM)T DLu d� + α

∫

	 I
u

Mu d	 −
∫

	 I
u

MNDLu d	

=
∫

	 I
t

Mt̄ d	 + α

∫

	 I
u

Mū d	 (3.20)

where

N =
[

n1 0 n2

0 n2 n1

]
and M =

[
W I 0
0 W I

]
.

Equation (3.20) is the weak form of differential Eqs. (3.1)
and boundary conditions (3.2). The order of derivatives of
displacements is reduced from two to one in the weak form
by introducing the first order derivatives of the test function.

As mentioned above, values of Lu in terms of those of
u at the M particles in the domain � can be found either
by differentiating the SSPH basis functions or by directly
evaluating them as a part of the SSPH basis functions in
which case basis functions for Lu and u are different. We
use these two techniques to find an approximate solution
from Eq. (3.20).

3.2.1 Approximate solution without differentiating the
SSPH basis functions

Replacing the function f (x) in Eq. (2.15) by u1(x) and u2(x)

we get

u =
M∑

J=1

{[
K1J 0

0 K1J

]
uJ
}
,

Lu =
M∑

J=1

⎧
⎨

⎩

⎡

⎣
K2J 0

0 K3J

K3J K2J

⎤

⎦ uJ

⎫
⎬

⎭.

(3.21)

Substitution for Lu in Eq. (3.20) gives

M∑

J=1

K′
I J uJ = fI , (3.22)
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where

K′
I J =

∫

�I

(LM)T DT d� + α

∫

	 I
u

MR d	−
∫

	 I
u

MNDT d	,

(3.23)

fI =
∫

	 I
t

Mt̄ d	 + α

∫

	 I
u

Mū d	, (3.24)

R =
[

K1J 0
0 K1J

]
, T =

⎡

⎣
K2J 0

0 K3J

K3J K2J

⎤

⎦ .

The set of simultaneous linear algebraic Eqs. (3.22) can be
solved for displacements of all particles. Subsequently,
strains at any point can be computed by using Eqs. (2.15)
and (3.6).

3.2.2 Approximate solution using derivatives of SSPH basis
functions

In the FEM, the MLPG method and the RKPM, derivatives
of the trial solution are usually obtained by differentiating
the shape functions. Differentiating both sides of Eq. (2.14)
with respect to x gives

∂

∂xα

Q (x) = ∂

∂xα

K (ξ , x) F (ξ) . (3.25)

Replacing the function f (x) in Eq. (3.25) with u(x) yields

Lu =
M∑

J=1

⎧
⎨

⎩

⎡

⎣
(∂K/∂x1)1J 0

0 (∂K/∂x2)1J
(∂K/∂x2)1J (∂K/∂x1)1J

⎤

⎦uJ

⎫
⎬

⎭. (3.26)

Thus Eq. (3.20) can be written as Eq. (3.22) except that now
the matrix T is given by

T =
⎡

⎣
(∂K/∂x1)1J 0

0 (∂K/∂x2)1J
(∂K/∂x2)1J (∂K/∂x1)1J

⎤

⎦ .

In this method, after the matrix K has been found, additional
computations are needed to solve for derivatives of the matrix
K with respect to x1 and x2.

It should be pointed out that the test function W I
i used

in Eq. (3.16) may be different from the kernel function used
in Eq. (2.14) to construct the SSPH basis functions. Here,
we use the same Gauss function defined in Eq. (3.15), but
with different scaling factor ρ; we take ρ = 1.0 for the
kernel function in Eq. (3.16), but use a larger value for it in
Eq. (2.14) in order for the matrix C (ξ , x) to be non-singular.
In the example problems given below, we study the effect of
the value of ρ in the kernel function used to construct the
SSPH basis functions.
Evaluation of Integrals in Eqs. (3.23) and (3.24)

2
x

1
x

1L

2L
22

11

uu

uu

=
=

22

11

tt

tt

=
=

Fig. 3 A plate subjected to prescribed displacements at the left edge
and surface tractions at the right edge; the top and the bottom surfaces
are traction free

For the 2D problems studied herein we take the function
W (ξ , x) to be the Gauss function defined in Eq. (3.15), set
smoothing length h for particle I equal to� which is the
smallest distance of particle I from its neighboring particles.
Recalling that the Gauss function is also taken as the test func-
tion, the sub-domain �I is a circle of radius ρh for particle
I well inside the domain and a sector of a circle for particle
I either close to or on the boundary of the domain �. The
Gauss quadrature rule, with nG integration points in the radial
direction and 4nG quadrature points in the angular direction,
is employed to evaluate domain integrals in Eqs. (3.23) and
(3.24). Integrals along the boundary are evaluated with nG

Gauss points.

4 Example problems

4.1 Plane stress deformations of a plate

We use the preceding formulation of an elasto-statics prob-
lem to study plane stress deformations of a plate of length
L1 = 1.0 m and width L2 = 0.2 m, with essential boundary
conditions applied at the left edge and surface tractions at the
remaining three edges; cf. Fig. 3. That is

u1 = ū1, u2 = ū2 on the left surface,

t1 = 0, t2 = 0 on the bottom and the top surfaces, (4.1)

t1 = t̄1, t2 = t̄2 on the right surface.

The prescribed displacements at the left edge, and surface
tractions at the right edge are calculated from the following
analytical solution [28] that satisfies equations of equilibrium
with zero body force.

[
u1

u2

]
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 2F0
E0

(
x2
L2

− 0.5
) [

3 x1
L2

(
2 L1

L2
− x1

L2

)

+ (2 + ν0)
x2
L2

(
x2
L2

− 1
)]

2F0
E0

[(
x1
L2

)2 (
3 L1

L2
− x1

L2

)

+3ν0

(
L1
L2

− x1
L2

) (
x2
L2

− 0.5
)2 + 4+5ν0

4
x1
L2

]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2)
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⎡

⎣
σ11

σ22

σ12

⎤

⎦ =

⎡

⎢⎢⎣

−12 F0
L2

(
L1
L2

− x1
L2

) (
x2
L2

− 0.5
)

0

−6 F0
L2

x2
L2

(
x2
L2

− 1
)

⎤

⎥⎥⎦ (4.3)

Surface tractions t̄1 and t̄2 are determined from t̄1 = σ11n1 +
σ12n2, t̄2 = σ21n1+σ22n2. One can think of this test problem
as a sophisticated patch test. Alternatively, this technique can
be used to verify a code, e.g. see [29].

Values assigned to material parameters of the plate are

E = 226.9 GPa, ν = 0.33

The parameter F0 in Eqs. (4.2) and (4.3) is set as 106 N.
The penalty parameter α in the weak formulation given in
Eq. (3.16) is taken to be 105 E0/L1. The problem is solved
with the collocation method, i.e. Eqs. (3.12)–(3.14), and by
using the weak formulation, Eq. (3.20), with the trial solution
expressed in terms of the SSPH basis functions. In the latter
approach, we either use Eq. (3.21)2 or Eq. (3.26) for Lu.

Uniformly distributed 16 × 4 particles are placed in the
plate. The scaling factor ρ for the kernel function used to
generate the SSPH basis is taken as 3.0, and nG is set equal
to 10.

The deformed shape of the plate is depicted in Fig. 4
with displacements in both x1 and x2 directions magnified
100 times for the analytical and the numerical solutions. The
labels “strong”, “weak1” and “weak2” denote, respectively,
results computed with the collocation method, weak formu-
lation with Lu found without differentiating the SSPH basis
functions, and the weak formulation with Lu computed by
differentiating the SSPH basis functions. It is clear that, even
with the coarse distribution of particles, results computed
by using the weak formulation agree very well with the

analytical solution but those obtained by using the collocation
method differ noticeably from the analytical solution. In an
attempt to give a quantitative measure of the error in the
numerical solutions, we define the following relative error
norm, E , in the displacements.

E =
⎡

⎢⎣

∣∣∣
√∫

�
(ucompute)T · ucomputed� −

√∫
�

(uanalytical)T · uanalyticald�

∣∣∣
√∫

�
(uanalytical)T · uanalyticald�

⎤

⎥⎦ (4.4)

In order to evaluate integrals in Eq. (4.4) over the entire
domain, we use a background mesh of triangular elements
and the Gauss integration rule with 13 integration points in
each triangle. Since the background mesh is only used for
post-processing of results, it does not affect the meshless
nature of the computational method. The relative error norms
of displacements are −0.710, −2.012 and −1.628 for the
results given by the strong, weak1 and weak2 approaches.
Thus the collocation method using the 2nd order partial dif-
ferential equations gives the highest error, and the weak1
formulation that does not involve differentiating the SSPH
basis functions has the least value of the error norm in the
displacements.

We note that when the problem is solved with the colloca-
tion method, particles 1, 2, 3 and 4 located clockwise starting
at the northeast corner belong to two boundaries. For exam-
ple, particle 3 is on both the bottom and the left surfaces, and
boundary conditions for it are

u1 = ū1, u2 = ū2 on the left surface
t1 = 0, t2 = 0 on the bottom surface

(4.5)

However, only two of these four equations can be used for this
particle. Results given above are for the case of the particle
satisfying the two essential boundary conditions in Eq. (4.5).
For the six possible choices of boundary conditions at the
particle 3, the relative error norms in the displacements listed
in Table 1 suggest that the relative error in the displacements
is virtually the same.

Fig. 4 Shapes of the deformed
plate computed with four
solution techniques (the two
displacements are magnified
100 times)

Analytical
Strong
Weak1
Weak2

123



Comput Mech (2008) 41:527–545 537

Table 1 The relative error norms of displacements computed by
different combinations of boundary conditions given in Eq. (4.5)

u1 = ū1 u1 = ū1 u1 = ū1 u2 = ū2 u2 = ū2 t1 = 0
u2 = ū2 t1 = 0 t2 = 0 t2 = 0 t1 = 0 t2 = 0

log E −0.7097 −0.7092 −0.7094 −0.6955 −0.7020 −0.7049

For particles 1 and 2, there are no essential boundary
conditions to be satisfied. For example, particle 1 lies on the
right and the top surfaces, and pertinent boundary conditions
are

σ21 = 0, σ22 = 0 on the top surface
σ11 = 0, σ12 = 0 on the right surface

(4.6)

Because of the symmetry of the stress tensor, there are three
conditions to be satisfied but we can choose only two equa-
tions out of the three listed in Eq. (4.6). Results discussed
above are with σ11 = 0 and σ22 = 0. The relative error norm
in displacements for boundary conditions σ12 = 0, σ22 = 0
is −0.6319, that for σ11 = 0, σ12 = 0 equals −0.7501, and
for σ11 = 0 and σ22 = 0 it is −0.7097. The difference in the
error norms is much larger than that when different combi-
nations of boundary conditions at particle 3 were employed.
One possible reason for boundary conditions σ11 = 0 and
σ12 = 0 to give the smallest value of the error norm is that
σ22 = 0 for the analytical solution, and has very small val-
ues in the numerical solution. Thus all three boundary con-
ditions in Eq. (4.6) are satisfied when we impose σ11 = 0
and σ12 = 0 at particle 1. It is difficult to propose a crite-
rion for selecting the most appropriate boundary conditions
for a particle at a corner. However, one can safely say that
the essential boundary conditions be satisfied first. We have
listed in Table 2 values of error norms for different number
of particles in the plate. It is clear that boundary conditions
σ11 = 0 and σ12 = 0 yield the smallest value of the error
norm. Results presented and discussed below are with these
boundary conditions at particle 1.

For the uniform 16×4 distribution of particles in the plate
Figs. 5 and 6 depict, respectively, the variation of the dis-
placement u2 along the bottom surface, and the dimension-
less stress σ11/(F0/L2) along the top surface of the plate for
the analytical and the three numerical solutions. These also

Table 2 Effect of the number of particles on the relative error norms of
displacements computed by different combinations of natural boundary
conditions at particle 1

σ11 = 0, σ12 = 0 σ12 = 0, σ22 = 0 σ11 = 0, σ22 = 0

16 × 4 −0.7501 −0.6319 −0.7097

31 × 7 −1.215 −1.146 −1.195

61 × 13 −1.814 −1.776 −1.804

91 × 19 −2.166 −2.140 −2.159
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Fig. 5 Comparison of the displacement u2 along the bottom surface of
the plate computed by the strong and the two weak formulations with
that obtained from the analytical solution
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Fig. 6 Comparison of the dimensionless stress σ11 L2/F0 along the top
surface of the plate computed by the strong and the two weak formula-
tions with that obtained from the analytical solution

evince that the collocation method using the strong form of
the problem formulation gives the largest deviation in the dis-
placement and the axial stress from their analytical values.
The maximum error in u2 for solutions with the strong, the
weak1 and the weak2 formulations equals 19.51, 1.06 and
2.34%.

For Poisson’s ratio = 0.499999, the variation on the bottom
surface of the displacement u2 plotted in Fig. 7 illustrates
that there is no volumetric locking in any one of the three
formulations.
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Fig. 7 Comparison of the displacement u2 along the bottom surface
of the plate computed by the strong and the two weak formulations
with that obtained from the analytical solution when the Poisson ratio
is increased to ν = 0.499999

4.1.1 Effect of number of Gauss points in the radial
direction, nG

When a weak formulation is used to analyze the problem, the
number of Gauss points used to numerically evaluate domain
integrals in Eq. (3.23) will very likely influence the error in
the computed solution of the problem. Very few integration
points will not evaluate these integrals accurately, and too
many Gauss points will increase the CPU time even though
they will give accurate values of integrals. Figure 8 shows

Number of Gauss points in radial direction

ol
g

E
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-2.1
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-1.4
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Weak 2

Fig. 8 Variation of the relative error norm of displacements with the
number of Gauss points in the radial direction

the change in the relative error norm of displacements with
an increase in the number, nG , of Gauss points in the radial
direction. In every case 4 nG Gauss points are employed in
the angular direction, and nG Gauss points for integration
on a boundary. For the two weak formulations, the relative
error norm of displacements decreases with an increase in
the value of nG . However, the decrease is monotonic for the
weak1 formulation and somewhat oscillatory for the weak 2
formulation. When nG is increased from 10 to 32 the relative
error norm in displacements decreases by 0.36 and 0.49%
for the weak1 and the weak 2 formulations, respectively; thus
ten Gauss points in the radial direction should suffice for all
practical purposes.

4.1.2 Effect of the scaling factor ρ for the kernel function
used to generate the SSPH basis functions

When generating the SSPH basis functions enough parti-
cles should be included in the kernel function’s compact
support in order for the matrix C(ξ , x) to be non-singular.
Thus for a 2D problem requiring the evaluation of 2nd order
derivatives for the collocation method, the scaling factor ρ

should be large enough to have at least six particles in the
kernel function’s compact support. The effect of the scaling
factor ρ on the relative error norm of displacements is illus-
trated by plots given in Fig. 9. For each one of the three
numerical solutions, the relative error norm in displacements
first decreases rapidly with an increase in the value of ρ,
reaches its minimum value before becoming stable for ρ

greater than 3.5. A larger value of ρ is not recommended
because the CPU time required to compute SSPH basis func-
tions increases with an increase in the value of ρ. Henceforth,

ρ
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Fig. 9 Variation of the relative error norm of displacements with the
scaling factor, ρ
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Fig. 10 Comparison of the displacement u2 along the bottom surface
for different orders (m = 2 and m = 1) of monomials used to generate
SSPH basis functions

we fix the scaling factor to be 4.0 rather than 3.0 used in
results presented above.

4.1.3 Effect of the number, m, of the terms retained in the
Taylor series expansion

In the collocation method, Eq. (3.8) involves the second
order derivatives of displacements. Thus in the SSPH basis

at least up to 2nd order terms must be retained in the Taylor
series expansion, Eq. (2.1), i.e., m = 2. For a 2D problem,
the matrix C(ξ , x) defined in Eq. (2.8) is 6 × 6. However,
the weak formulations involve only first order derivatives of
displacements and we may retain only three terms (m = 1)

in the Taylor series resulting in a 3 × 3 C(ξ , x) matrix.
Figure 10 gives the variation of the displacement u2 along
the bottom surface computed by the two weak formulations
with m = 1 and m = 2, the collocation method, and the
analytical solution. It can be seen that the results from the
weak 2 formulation with m = 1 and from the collocation
method are worse than those computed with the weak1 for-
mulation with m = 1 or 2. In fact the weak1 formulation that
does not necessitate differentiating the SSPH basis functions
gives very good values of displacements even when m = 1.
For the weak1 formulation the relative error norm of displace-
ments changes from −1.743 to −1.980 when m is increased
from 1 to 2, and for the weak 2 formulation the corresponding
values of the error norms are −0.683 and −1.638. However,
when comparing results computed from the three formula-
tions, we use the same number, 6, of terms in the Taylor series
expansion, Eq. (2.1).

4.1.4 Effect of the number of particles

In Fig. 11, we have exhibited the variation of the displacement
u2 on the bottom surface of the plate for uniform particle
placements of 16 × 4, 31 × 7, 61 × 13 and 91 × 19. For each

Fig. 11 Effect of particle
number on the displacement u2
along the bottom surface of the
plate computed with the a strong
formulation, b weak1
formulation without
differentiating the SSPH basis
functions, and c weak2
formulation with differentiating
the basis functions

x1 (m)

u 2
m(

m
)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

Analytical
16x4
31x7
61x13
91x19

x1 (m)

u 2
m(

m
)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

Analytical
16x4
31x7
61x13
91x19

x1 (m)

u 2
m(

m
)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

Analytical
16x4
31x7
61x13
91x19

(a) (b)

(c)

123



540 Comput Mech (2008) 41:527–545

one of the three numerical solutions, the maximum difference
in the computed and the analytical values of u2 decreases
with an increase in the number of particles. For the 61 × 13
uniform locations of particles, the displacement computed
from the collocation method is virtually indistinguishable
from that for the analytical solution. However, the two weak
formulations give accurate values of the displacement even
for 16 × 4 particles.

Figure 12 reveals the variation of the relative error norm
with the logarithm of the distance between two adjacent par-
ticles. The weak1 formulation that does not require differen-
tiating the SSPH basis functions always gives the smallest
relative error norm of displacements while the collocation
method using the strong form of equations gives the largest.
The higher accuracy of the weak1 formulation is obtained
at the cost of additional CPU time consumed in evaluating
numerically the domain integrals. It can be seen that the con-
vergence rates for the three methods are nearly the same.

4.2 Stress concentration in a plate

We use the three methods to analyze deformations in a homo-
geneous and isotropic linear elastic semi-infinite plate with
a circular hole at its center and loaded as shown in Fig. 13.
As for the previous problem surface tractions computed from
the analytical solution

σrr = σ0

2

(
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r2

)
+ σ0

2

(
1 + 3

b4

r4 − 4
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)
cos 2θ

σθθ = σ0

2

(
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r2

)
− σ0

2

(
1 + 3

b4

r4

)
cos 2θ (4.7)
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Fig. 12 Effect of the particle distance on the relative error norm of
displacements computed with the strong and the two weak formulations

Fig. 13 Schematic sketch of a plate with a central hole and loaded in
tension at two opposite edges
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(4.8)

are applied to boundaries of the plate. In Eq. (4.7) and (4.8),
(r, θ) are the cylindrical coordinates of a point with the ori-
gin at the center of the hole, and u1 and u2 are components,
respectively, of the displacement vector u along the horizon-
tal and the vertical directions. Due to the symmetry of the
problem about the horizontal and the vertical centroidal axes,
we analyze deformations of a quarter of the finite domain
shown in Fig. 14a, and assume that a plane strain state of
deformation prevails in the plate. Boundary conditions in
rectangular Cartesian coordinates are listed below:

u1 = 0, t2 = 0 on boundary 1
t1 = 0, t2 = 0 on boundary 2
t1 = 0, u2 = 0 on boundary 3
t1 = t̄1, t2 = t̄2 on boundaries 4 and 5

(4.9)

Surface tractions t̄1 and t̄2 on boundaries are determined from
t̄1 = σ11n1 + σ12n2, t̄2 = σ21n1 + σ22n2 where n is a unit
outward normal to the boundary, t is the traction vector, and
values of σ11, σ22 and σ12 are found from the analytical solu-
tion (4.7) by using tensor transformation rules.

Figure 14b depicts the placement of 188 particles in the
domain of study with 11 particles on the quarter of the cir-
cular hole. The distribution of particles gets coarser with an
increase in the distance from the circular hole. The smoothing
length hi = �i where �i is the smallest distance between
particle i and other particles in the compact support of the
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Fig. 14 a Schematic sketch of a quarter of the plate used in the simu-
lation. b Locations of particles in the domain studied

kernel function associated with particle i . The scaling factor
ρ is taken to be 4.0. The penalty parameter is set as 105 E0/3.
Values assigned to material parameters of the plate and the
tensile traction are

E = 226.9 GPa, ν = 0.33, σ0 = 1 GPa

Figure 15 shows contour plots of the two displacement
components derived from the analytical solution and the three
numerical solutions. For the collocation method, the maxi-
mum of the absolute values of deviations from the analyt-
ical solution of displacements u1 and u2 equal 0.183 and
0.405 mm, respectively. For the weak1 formulation the corre-
sponding values are 0.065 and 0.047 mm, and for the weak 2
formulation they equal 0.088 and 0.075 mm, respectively. For
the solution computed with the collocation method and the
weak 2 formulation, the largest deviation in the value of u1

occurs at a point near x2 = 0, while the largest difference in
u2 occurs at a point close to x1 = 0. However, for results com-
puted with the weak1 formulation, places where the largest
differences in the values of u1 and u2 occur are close to the
circular hole. The relative error norms of displacements are

−1.926, −3.149 and −2.293 for the three numerical meth-
ods.

Along the x2-axis, the analytical solution gives

u2|θ=π/2
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2
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r2 + 3

2

b4

r4 . (4.10)

Thus, the stress concentration factor equals 3.0, and is inde-
pendent of values assigned to the elastic constants. Varia-
tions of the displacement u2 for the four solutions along the
x2-axis are exhibited in Fig. 16. It is clear that at every point
on the x2-axis the displacement u2 given by the weak1 for-
mulation is closer to the analytic solution than that obtained
from the other two methods. Figure 17 displays numerical
results of the dimensionless stress σ11/σ0 along the x2-axis.
Again results from the weak1 formulation are closest to those
derived from the analytical solution. The stress concentra-
tion factors determined from solutions with the collocation
method and the weak1 and the weak 2 formulations equal
3.173, 3.002 and 3.148, respectively.

Figure 18 exhibits the placement of 686 particles with 21
particles on the quarter of the circle, and Fig. 19 compares the
displacement u2 computed with this placement of particles
with that found from the analytical solution of the problem.
The results are much closer to the analytical solution com-
pared to those given by 188 particles. The relative error norms
of displacements are −2.243, −3.260 and −2.691 for results
computed with the collocation method, and the weak1 and
the weak2 formulations, respectively, indicating that the solu-
tion is improved by increasing the number of particles. The
corresponding values of the non-dimensional stress σ11/σ0

along the x2-axis, exhibited in Fig. 20, reveal that the four
sets of values are very close to each other. The stress concen-
tration factors, 3.084, 2.996 and 3.037, predicted by the three
numerical solutions are very close to the analytical value of
3.0. The weak1 formulation not requiring the differentiation
of the SSPH basis functions still gives the best prediction of
the stress concentration factor with only 0.13% difference
between the numerical and the analytical values.

4.3 Comments on the comparison of solutions with the
meshless method and the FEM

We have not developed our own FE code to solve either one
of the two aforestated problems. There are several commer-
cial codes that can be used to find an approximate solution
of these problems. However, it will not be fair to compare
the CPU time needed for a commercial code and our code
using the meshless method since commercial codes have
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Fig. 15 Contour plots of a
analytical values of u1 and u2,
and of the difference between
the numerical and the analytical
solutions computed with b the
strong formulation, and the
weak formulations c without
and d with differentiating the
SSPH basis functions
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been optimized while our code is basically a research tool.
Our experience [22,30–35] in solving numerically boundary-
value and initial-boundary-value problem suggests that at

present the FEM is more efficient to analyze such problems
than a meshless method. It is primarily due to a large num-
ber of Gauss points required to numerically evaluate domain
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Fig. 16 Comparison of the displacement u2 along the x2-axis in a plate
with a circular hole at its center computed by the strong and the two
weak formulations with that obtained from the analytical solution
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Fig. 17 Comparison of the non-dimensional stress σ11/σ0 along the
x2-axis in a plate with a circular hole computed by the strong and the
weak formulations with that obtained from the analytical solution

integrals. Advantages of meshless methods include savings in
personnel effort required to generate a mesh, and a better res-
olution of problems involving singularities. The radial basis
functions (e.g. see [24]) satisfying the Kronecker delta prop-
erty facilitate the satisfaction of essential boundary
conditions when using a meshless method but still require
more CPU time than the FEM.

5 Conclusions

We have presented a SSPH method to find basis functions
using only locations of particles and termed them the SSPH

Fig. 18 Placement of 686 particles in the domain with 21 particles on
the quarter of the circle
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Fig. 19 Comparison of the displacement u2 along the x2-axis in a
plate with a circular hole computed by the strong and the two weak
formulations with that obtained from the analytical solution

basis. For approximating the function itself these basis are
similar to those used in the finite element method (FEM).
However, the two sets of basis differ when spatial deriva-
tives of the function are to be approximated. Whereas in
the FEM spatial derivatives of the function are derived by
differentiating the basis functions, those in the SSPH method
can be obtained without differentiating the SSPH basis func-
tions. Rather one uses a kernel function different from that
employed to deduce the SSPH basis functions. This is advan-
tageous since it requires less CPU time and weak formula-
tions using them yield more accurate solutions. In the
proposed SSPH method approximate values of the function
and its derivatives can be found simultaneously by solving a
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Fig. 20 Comparison of the non-dimensional stress σ11/σ0 along the
x2-axis in a plate with a circular hole computed by the strong and the
two weak formulations with that obtained from the analytical solution

system of linear algebraic equations. Since only coordinates
of particles are used to find the SSPH basis functions, the
method is meshless like the moving least squares method,
the RKPM and the MSPH.

The SSPH basis functions are employed to numerically
solve two elliptic boundary-value problems by using either
the collocation method or the weak formulation of the prob-
lems. Whereas the collocation method is based on the strong
form of the elliptic boundary-value problem in the sense that
the 2nd order partial differential equations are satisfied at dis-
crete particles, the weak formulation involves derivatives of
order one only. These 1st order derivatives are obtained either
by differentiating the SSPH basis functions or without dif-
ferentiating them; the former is termed weak2 and the latter
weak1 formulation. Numerical experiments with two elasto-
static problems have revealed that, for the same placement of
particles, the error in the numerical solution computed with
the weak1 formulation is least of the errors in the three solu-
tions. The weak formulation requires more CPU time than
the collocation method because of the need to numerically
evaluate domain integrals appearing in the weak formulation
of the problem.

Numerical experiments have also been carried out to
delineate the effect of the number of particles, the least
spacing between any two adjacent particles, the order of
complete monomials used to generate the SSPH basis func-
tions, the number of Gauss points employed to evaluate
domain integrals, and the radius of the compact support of the
kernel function used to generate the SSPH basis functions.
These numerical experiments suggest that when evaluating
integrals over a circular domain, one should use at least 10
and 40 Gauss points in the radial and the circumferential
directions. Since in our numerical experiments the number of

Gauss points in the circumferential direction always equaled
four times those in the radial direction, the suggested num-
ber of Gauss points in the circumferential direction is not
necessarily the optimum. A good value of the scaling factor
to be used in the kernel function for the SSPH basis is 4.0.
When employing the weak formulation of 2nd order elliptic
boundary-value problems, one can retain only three terms
in the Taylor series expansion of a function to generate the
SSPH basis since results from them are as good as those when
six terms are kept in the Taylor series expansion.

Based on the results of two numerical examples we rec-
ommend that the weak form without differentiating the SSPH
basis functions be adopted for solving linear elastic problems.
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