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The reliable prediction of failure in laminated plates using stress based failure theories requires accurate
evaluation of stresses. Noting that stresses are likely to be singular near laminate edges, we explore here
whether or not a third order shear and normal deformable plate theory (TSNDT) and the commonly used
stress recovery scheme (SRS) enables one to accurately compute stresses near edges of a composite
laminate deformed statically with surface tractions applied on its major surfaces. In the TSNDT the three
displacement components at a point are expressed as complete polynomials of degree three in the thick-
ness coordinate. For laminated plates, we use a single layer TSNDT and the SRS to compute
through-the-thickness distribution of transverse normal and transverse shear stresses. However, for
monolithic plates stresses are obtained directly from the constitutive relations. Using in-house developed
software based on the finite element (FE) formulation of the problem, we study seven example problems
for plates subjected to different boundary conditions at the edges and various loads such as combined
normal and tangential tractions uniformly distributed on the major surfaces, non-uniform pressure act-
ing on a part of the major surface, and sinusoidal normal tractions. For each problem studied stresses
computed using the TSNDT are compared with those obtained by analyzing 3-dimensional (3-D) linear
elastic deformations with either the FE commercial software, ABAQUS, or the analytical solution reported
in the literature. The significance of the present work is in investigating whether or not the TSNDT and
the SRS give accurate values of stresses near edges laminates. It is found that for some thick laminates
(span/thickness = 5), stress distributions near an edge predicted by the TSNDT coupled with the SRS differ
by 40% from those computed by analyzing the 3-D deformations.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

A great deal of research has been devoted to developing theo-
ries for analyzing deformations of plates. The assumptions made
in the classical plate theory (CPT) or the Kirchhoff [1] thin plate
theory are: (i) a straight line perpendicular to the mid-surface
(transverse normal) before deformation remains straight and nor-
mal to the mid-surface after deformation, and (ii) the plate thick-
ness remains unchanged. These assumptions imply that the
transverse normal and shear strains are zero. The condition of null
transverse normal strain is usually identically satisfied by modify-
ing the stress–strain relation. This theory may not give accurate
distributions of transverse normal and shear stresses and strains
for moderately thick plates (thickness/span > 1/10). This
shortcoming is partially overcome by using a stress recovery
scheme (SRS) in which equilibrium equations are integrated along
the thickness direction to compute transverse normal and shear
stresses by starting from the surface tractions applied on one of
the major surfaces of the plate. Many works have successfully
applied the SRS to determine stresses at interior points of a plate.

Rather than making kinematic assumptions (i.e., assuming a
displacement field) for a plate Cosserat and Cosserat [2] regarded
a plate as a surface with a director (3-dimensional vector) attached
to each point of the plate. Deformations of the director account for
transverse shear and transverse normal deformations of the plate.
Constraining the director to be always a unit vector that stays nor-
mal to the mid-surface of the plate is equivalent to using the
Kirchhoff plate theory. This theory is usually called the direct plate
theory since no assumptions on through-the-thickness variations
of displacements are made. Ericksen [3] has studied plane waves
in plates by using such a theory. Koiter and Simmonds [4],
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Naghdi [5], Antman [6], Leissa [7] and Carrera [8] amongst others
have reviewed the literature on plate theories. There are numerous
other review articles and books on plate theories that are not men-
tioned here for the sake of brevity.

Mindlin and Medick [9] expressed the three displacement com-
ponents at a point as an infinite series in terms of two functions
one of which is the Legendre polynomials of the thickness coordi-
nate, z, and the other a function of the in-plane coordinates, (x,y),
of a point on the plate mid-surface. They used the principle of vir-
tual work to derive equations for the plate theory of different
order. The plate theory in which terms up to the order zK are kept
is usually called the Kth order theory. They used the 2nd order the-
ory to study vibrations of a plate. It is hard to characterize the order
of the plate theory when trigonometric functions in the z-coordi-
nate rather than the Legendre polynomials are used to expand
displacements.

Teresi and Tiero [10] deduced plate theories by seeking stationary
points in suitable subspaces of the functional spaces in which the
potential energy, the complementary energy and the Hellinger–
Prange–Reissner (HPR) functionals are defined. For an isotropic
plate they showed that these methods give different values of
the flexural and shear rigidities. Advantages of using the HPR prin-
ciple include making independent assumptions on the stress and
displacement fields, and exactly satisfying traction boundary con-
ditions prescribed on the major surfaces of the plate. Vidoli and
Batra [11] and Batra and Vidoli [12] used the HPR principle to
deduce plate theories of different orders for piezoelectric and
orthotropic linear elastic plates. When constitutive relations for
the plate theory are derived by using the HPR principle, they called
the plate theory ‘‘mixed’’. However, when these equations are
deduced from the assumed displacement field and the constitutive
relations of the 3-dimensional (3-D) linear elasticity theory, they
called it ‘‘compatible’’. We note that most plate theories studied
in the literature are compatible. Batra and Vidoli [12] showed that
for infinitesimal deformations of a very thick cantilever beam
(length/thickness = 2) the mixed plate theory gives stress distribu-
tions in close agreement with the analytical solution of the prob-
lem than that from the compatible plate theory of the same
order. Batra et al. [13] used the plate theories of different orders
up to K = 5 to study wave propagation in thick plates.

As has been pointed by Carrera [14] and also evidenced by
numerical solutions provided by Qian et al. [15,16] the order of
the plate theory that gives stresses and displacements close to
those predicted by the 3-D linear elasticity theory (LET) depends
upon the problem being studied, i.e., the plate geometry, applied
loads, and initial and boundary conditions. Said differently, there
is no universal plate theory that gives accurate results for all plate
problems. Truncating the series expansion for the displacements
and stresses introduces errors that are not easy to quantify a priori.

Due to their high specific properties, laminated composite
structures are widely used in construction, automobile, aerospace
and marine applications. In general, the theories developed for
analyzing deformations of laminated composite structures can be
divided into two major categories, namely, equivalent single layer
(ESL) theories and layerwise zig-zag theories. In the ESL the dis-
placement field assumed is the same as in a monolithic plate, thus
the number of unknowns is independent of the number of layers in
the laminate. The challenge is to satisfy the continuity of surface
tractions at interfaces between adjoining layers. The simplest ESL
theory is the classical laminated plate theory (CLPT) [17] which
is an extension of the CPT to thin laminated plates. For thick lam-
inated plates, higher order ESL theories [18–20] can provide more
accurate response than that predicted by the CLPT. However, the
transverse normal and transverse shear stresses computed using
ESL theories may not be accurate and continuous across the inter-
face between the adjoining layers. This is remedied using a SRS.
The layerwise zig-zag theories [21–26] satisfy the continuity of
surface tractions at the layer interfaces but introduce considerably
more unknowns into the problem.

Carrera in a review paper [27] has pointed out that the first
zig-zag theory for multi-layered structures was proposed by
Lekhnitskii [22] who studied deformations of laminated composite
beams. Ren [28,29] extended Lekhnitskii’s theory to study defor-
mations of anisotropic plates. Ren and Owen [30] applied this the-
ory to study vibrations and buckling of laminated plates. Following
the Reissner–Mindlin plate theory, Ambartsumian [31,32] pro-
posed a zig-zag theory to analyze deformations of layered anisotro-
pic plates and shells. Whitney [33] extended Ambartsumian’s
theory to general anisotropic symmetric and nonsymmetric plates,
and Rath and Das [34] further extended Whitney’s work to doubly
curved shells for dynamic problems. For more details and historic
evaluation of various ESL and zig-zag theories, readers should
study review papers by Carrera [27], Ambartsumian [35,36],
Ghugal and Shimpi [37], Reddy [38], and Reddy and Arciniega [39].

The SRSs employed by various investigators can be classified, in
general, as one-step and two-step methods [40]. In the one-step
method, the in-plane stresses are obtained using constitutive rela-
tions and the plate theory displacements, and the transverse stres-
ses are computed by integrating the equilibrium equations over
the laminate thickness. For example, Pagano [41] obtained
closed-form solutions for inter-laminar stresses in a simply sup-
ported laminated plate by integrating equilibrium equations of
the 3-D elasticity over the plate thickness. He first obtained analyt-
ical expressions for intra-laminar stresses based on the CLPT and
differentiated them with respect to spatial coordinates to compute
derivatives of stresses for use in the equilibrium equations. The
inter-laminar stresses thus computed agreed well with the analyt-
ical solution of the problem based on the 3-D linear elasticity the-
ory (3-D LET). Rohwer [42] also showed that solving the equations
of equilibrium locally yields acceptable values of transverse shear
stresses with the CLPT or a higher order plate theory. The
two-step methods use iterative techniques to compute
inter-laminar transverse stresses. For example, Noor et al. [43,44]
used a predictor–corrector approach with the first order shear
deformable theory (FSDT) [8] to compute transverse stresses from
the equilibrium equations. In the predictor phase, the in-plane
stresses are obtained using the FSDT with a shear corrector factor,
and the transverse stresses are determined from the equilibrium
equations and the corresponding strain energies are computed.
The corrector phase uses predicted values of either the strain
energy due to shear deformations or shear stresses to refine either
the shear correction factor or through-the-thickness distributions
of displacements, respectively, until the convergence is obtained.
Malik and Noor [45] employed a slightly different predictor–cor-
rector approach in which displacements and strains are refined
until the convergence is obtained and then using the constitutive
relations in-plane stresses are obtained, and from the equilibrium
equations transverse stresses are computed. Chaudhuri and Seide
[46] rather than using the 3-D equations of equilibrium used 1-D
quadratic shape functions through the thickness of each layer to
compute transverse shear stress distributions in the laminate.
Engelstad et al. [47], Byun and Kapania [48] and Hartman et al.
[49] extended the use of one-step SRSs to geometrically
non-linear problems while Park et al. [50] used a two-step SRS sim-
ilar to that employed by Noor et al. [43] to predict inter-laminar
stresses in laminated panels undergoing finite rotations.

Here we study static infinitesimal deformations of laminated
composite plates using the compatible third-order shear and nor-
mal deformable theory (TSNDT). The assumed displacement field
is continuous through the laminate thickness. For a monolithic
plate, we find stresses directly from the constitutive relations.
However, for multi-layered plates, we obtain in-plane stresses



Fig. 1. Geometry and coordinate system for a laminated plate.
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from the constitutive relations and compute transverse stresses by
using the one-step SRS. No shear correction factor is used. We
numerically solve equations of the plate theory by the finite ele-
ment method (FEM) with our in-house code, and compare com-
puted results with the corresponding analytical solutions or FE
results based on the 3-D LET obtained with the commercial soft-
ware ABAQUS. It is found that for some laminates the SRS coupled
with the TSNDT displacement field gives stresses at points near the
laminate edges that differ by as much as 40% from their analytical
values. However, stresses at interior points are quite accurate and
differ by at most 7% from their analytical values. Thus studying
failure and damage initiation and propagation in laminated com-
posites using an ESL may not be desirable even though it is compu-
tationally less expensive.

2. Formulation of the problem

Consider a laminated plate, shown in Fig. 1, composed of N lay-
ers of not necessarily the same thickness. Each ply is made of a
homogeneous, orthotropic and linear elastic material with adja-
cent layers assumed to be perfectly bonded to each other. Let
ðX1;X2;X3Þ denote fixed rectangular Cartesian coordinate axes in
the reference (undeformed) configuration of the laminated plate
such that X3 ¼ 0 represents the mid-surface, h the total thickness,
and a and b lengths of sides along the X1- and the X2-directions,
respectively. The vertical positions of the bottom and the top sur-
faces of layer k are denoted by hk and hkþ1, respectively, with k = 1
and k = N representing the bottom and the top layer of the
laminate.

Let x be the position vector of a point p in the current configu-
ration that occupied place X in the reference configuration. The
displacement u and components of the infinitesimal strain tensor
2ij at p are given, respectively, by u ¼ x� X and

�ij ¼
1
2

@ui

@Xj
þ @uj

@Xi

� �
ði; j ¼ 1;2;3Þ ð1Þ

For infinitesimal deformations studied herein, displacements in Eq.
(1) can also be differentiated with respect to x rather than X. In the
TSNDT the displacement, ui, at a point is expressed as a complete
polynomial of degree 3 in X3 that can be obtained by Taylor series
expansion of ui in the thickness coordinate, X3, up to order 3, i.e.,

uiðX1;X2;X3Þ ¼ uijðX1;X2ÞAjðX3Þ ði ¼ 1;2;3; j ¼ 0;1;2;3Þ

Aj ¼ X j
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Unless stated otherwise, a repeated index implies summation over
the range of the index. We substitute for ui from Eq. (2) into Eq. (1)
to get

� ¼ ZiðX3ÞLdiðX1;X2Þ ði ¼ 0;1;2;3Þ ð3Þ

where

� ¼ �11 �22 �33 2�23 2�13 2�12½ �T ð3:1Þ

and

d0 ¼ u10 u20 u30½ �T ; d1 ¼ u11 u21 u31½ �T ;
d2 ¼ u12 u22 u32½ �T and d3 ¼ u13 u23 u33½ �T

ð3:2Þ

are, respectively, vectors of the displacement, the slope, the curva-
ture and the curvature gradient at a point on the laminate
mid-surface. The 12-dimensional vector d ¼ ½d0;d1;d2;d3� is called
the vector of generalized displacements at a point on the plate
mid-surface. The matrices Zi (i = 0, 1, 2, 3) and the operator matrix
L in Eq. (3) are defined in the Appendix A, respectively, by Eqs. (A.1)
and (A.2).

As for the components of the strain tensor, components of the
Cauchy stress tensor are written as a 6-dimensional (6-D) vector

r ¼ r11 r22 r33 r23 r13 r12½ �T ð4Þ

The constitutive relation (Hooke’s law) for a linear elastic material
is

rij ¼ Cijmn2mn;Cijmn ¼ Cmnij ¼ Cjimn; ði; j;m;n ¼ 1;2;3Þ ð5Þ

Here C is the fourth-order elasticity tensor having 21 independent
components for a general anisotropic material. For an orthotropic,
a transversely isotropic and an isotropic material, the independent
components of C reduce, respectively, to 9, 5 and 2.

With respect to the material principal axes Eq. (5) for an ortho-
tropic material of layer k becomes
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where quantities for the kth layer are indicated by the superscript k.
In the global coordinate axes ðX1;X2;X3Þ Cijmn are computed by
using the tensor transformation rules for the stress and the strain
tensors, and the 6 � 6 matrix may be fully populated; e.g. see
[39]. For the TSNDT, the elastic constants in Eq. (6) are the same
as those used in the LET, i.e., they are not modified to satisfy
�33 ¼ 0 as is often done in the CPT.

We use the principle of minimum potential energy, given by Eq.
(7), to derive equations governing static deformations of the plate:

dP ¼ 0 ð7Þ

Here, d is the variational operator, and P is the potential energy of
the plate which in the absence of body forces is given by

P ¼ 1
2

XN

k¼1

Z
Xk
2k
� �T

rkdXk �
Z

A
uT�fdA ð8Þ
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in which Xk represents the region occupied by the kth layer, and A is
the part of the bounding surface of the plate on which surface trac-
tion, �f, is specified. Points on the remainder of the boundary of the
domain, X, occupied by the plate have either null tractions (i.e., are
on a free surface) or have displacements prescribed on them. The
work done by reaction forces at points of the boundary where dis-
placements are prescribed is not included in Eq. (8) because there
variations in the prescribed displacements are null. Thus equilib-
rium equations are derived from

dP ¼
XN

k¼1

Z
Xk

d2k
� �T

rkdXk �
Z

A
duT�fdA ¼ 0 ð9Þ

We substitute in Eq. (9) for rk in terms of 2k from Eq. (6), and sub-
stitute for 2k in terms of the generalized displacements defined on
the laminate mid-surface from Eq. (3). Also, we substitute for u in
terms of di (i = 0, 1, 2, 3) from Eq. (2). In the resulting expression
for dP, we integrate with respect to X3 over the plate thickness to
obtain the following integral equation:

dP ¼
Z b

0

Z a

0
ddT

i LT DijLdjdX1dX2 �
Z

A
ddT

i Xi
3
�fdA ¼ 0ði; j ¼ 0;1;2;3Þ

ð10Þ
where Dij ¼
XN

k¼1

Z hkþ1

hk

ZT
i CkZjdX3 ð10:1Þ

The mid-surface, R ¼ ½0; a� � ½0; b�, of the plate is discretized into a
FE mesh of Ne disjoint 8-node iso-parametric elements where the
region Re occupied by the element e is given by,
Re ¼ ½Xe

1;X
eþ1
1 � � ½X

e
2;X

eþ1
2 �. Thus dP equals the sum of integrals over

each element. The 12-dimensional vector d of generalized displace-
ments at a point in an element is expressed in terms of values of d at
the 8-nodes using the FE basis functions. Thus the total number of
unknowns in the problem equals 12Nnode where Nnode equals the
number of nodes. We note that in the FE formulation of the corre-
sponding 3-D problem, the number of unknowns equals 3N�node.
Since N�node � Nnode, the total number of unknowns for the TSNDT
will be much less than that for the 3-D problem. Following the stan-
dard procedure, we obtain from Eq. (10) a system of algebraic equa-
tions. Requiring that the resulting equations hold for all choices of
ddi ði ¼ 0;1;2;3Þ we obtain the following equilibrium equations
(see details in Appendix B):

KU ¼ F ð11Þ

In Eq. (11) K is the global stiffness matrix, U the global vector of
generalized nodal displacements, and F the global load vector;
expressions for these matrices are given as Eq. (B.7) in Appendix
B. The vector F of generalized forces at nodes is work equivalent
to surface tractions applied on the top, the bottom, and the edge
surfaces of the plate. For a FE mesh of Nnode nodes, before applying
essential boundary conditions, the length of vector U equals 12
Nnode since a node has 12 degrees of freedom.

We consider five types of boundary conditions (BCs) specified at
a point on a plate edge. For example, at the edges X1 = 0 and a, the
definitions of these BCs in the 3-D LET and their equivalent in
terms of variables of the TSNDT are given in Table 1.

In Table 1 the index i takes values 0, 1, 2 and 3, and

Mi
1n ¼

Z h=2

�h=2
Xi

3r1ndX3 ðn ¼ 1;2;3Þ ð12Þ

Displacement (or essential) boundary conditions applied at points
on a plate edge are satisfied while solving algebraic Eq. (11).
3. Numerical solution of example problems

We analyze static deformations of monolithic and laminated
orthotropic plates with values of their material properties with
respect to the material principal axes given by either Data set 1
or Data set 2 and compare computed results with those obtained
by using the 3-D LET and either analytical techniques or the com-
mercial FE software, ABAQUS, with a uniform 100 x 100 x 10 FE
mesh (336,633 DoF) of 8-node brick elements.

Data set 1:

E1 ¼ 172:5 GPa; E1=E2 ¼ 25; E3 ¼ E2; G12 ¼ G13 ¼ 0:5E2;

G23 ¼ 0:2E2; m12 ¼ m13 ¼ m23 ¼ 0:25

Data set 2:

E1¼251 GPa; E2¼48 GPa; E3¼7:5 GPa; G12¼13:6 GPa;
G13¼12 GPa; G23¼4:7 GPa; m12¼0:036; m13¼0:25; m23¼0:171

Here E denotes Young’s modulus, G the shear modulus and m
Poisson’s ratio. When discussing results below we use the more
common notation and replace X1;X2 and X3 by x, y and z, respec-
tively, and u1; u2 and u3 by u, v and w, respectively.

The in-plane stresses ðrxx;ryy;rxyÞ are obtained directly from
the constitutive relations and displacements found using the plate
theory. Through-the-thickness variations of the transverse shear
ðrxz;ryzÞ and the transverse normal ðrzzÞ stresses have been com-
puted by using the constitutive relation for monolithic plates and
by employing the stress-recovery scheme (SRS) for laminated
plates; these are denoted by C and SRS, respectively, in the plots.
In the SRS, the three equilibrium equations are integrated with
respect to z starting from the bottom face with surface tractions
prescribed there as ‘‘initial conditions’’. At interfaces between
two adjoining layers, the displacement and the traction continuity
conditions are satisfied; the former because we have used the sin-
gle layer theory and the latter during integration of equilibrium
equations with respect to z. The difference between surface trac-
tions thus computed and the applied surface tractions on the top
surface is an indicator of the error in the numerical solution of
the problem. In the SRS scheme, the spatial gradients of the
in-plane stresses are found first by computing the stresses at the
3 � 3 quadrature points in each FE on the mid-surface, fitting a
complete quadratic polynomial to the stress values at the
9-points by the least squares method, and then differentiating
the polynomial function with respect to x and y. We note that for
a quadratic serendipity element, Barlow [52] found that the opti-
mal stress points coincide with the 2 � 2 Gauss points for the
Lagrange quadratic element.
3.1. Convergence of the solution with FE mesh refinement

For six uniform n �m FE meshes with n and m elements along
the x- and the y-axes, respectively, we have listed in Table 2a val-
ues of the non-dimensional deflection, �wð0:5a; 0:5b;0Þ; at the cen-
troid of the mid-surface, the axial stress, �rxxð0:5a;0:5b;0:5hÞ; at the
centroid of the top surface and the transverse shear stress,
�rxzð0:1a; 0:5b;0Þ; near the edge x = 0 on the mid-surface of a
0�/90�/0� laminated square plate with all edges clamped and
loaded only by a uniformly distributed tensile traction, q0, on the
top surface. The corresponding results for the plate with simply
supported BCs on edges y = 0 and b and the BC classified as D in
Table 1 on the other two edges are presented in Table 2b. We note
that the transverse shear stress is computed by using the SRS. The
displacement and stresses are non-dimensionalized as:
�w ¼ wðh3

=b4ÞE2=q0 and f�rxx; �rxzg ¼ frxx;rxzg=q0. The lamination
scheme denoted by a1=a2= . . . =aN for a laminate having N layers



Table 1
Nomenclature for boundary conditions specified at X1 = 0 or a.

Notation Name BCs in the 3-D LET BCs in the TSNDT

A Clamped u1 ¼ 0; u2 ¼ 0; u3 ¼ 0 u1i ¼ 0; u2i ¼ 0; u3i ¼ 0
B Simply supported r11 ¼ 0; u2 ¼ 0; u3 ¼ 0 Mi

11 ¼ 0; u2i ¼ 0; u3i ¼ 0
C – u1 ¼ 0; u2 ¼ 0; r13 ¼ 0 u1i ¼ 0; u2i ¼ 0; Mi

13 ¼ 0
D – u1 ¼ 0; r12 ¼ 0; u3 ¼ 0 u1i ¼ 0; Mi

12 ¼ 0; u3i ¼ 0
F Traction free r11 ¼ 0; r12 ¼ 0; r13 ¼ 0 Mi

11 ¼ 0; Mi
12 ¼ 0; Mi

13 ¼ 0

Table 2a
Convergence of solutions for a clamped 0�/90�/0� laminated plate (a/h = 10, a = b).

Mesh �wð0:5a;0:5b;0Þx100 %Diff. �rxxð0:5a;0:5b;0:5hÞ %Diff. �rxzð0:1a;0:5b;0Þ %Diff.

15 � 15 0.5212 – 33.076 – 4.364 –
17 � 17 0.5213 0.02 33.100 0.07 4.349 �0.34
19 � 19 0.5213 0.00 33.116 0.05 4.313 �0.83
21 � 21 0.5213 0.00 33.128 0.04 4.364 1.17
23 � 23 0.5214 0.02 33.136 0.02 4.388 0.55
25 � 25 0.5214 0.00 33.145 0.03 4.391 0.07

Table 2b
Convergence of solutions for a 0�/90�/0� laminated plate (a/h = 10, a = b) with simply supported BCs on edges y = 0, b and the BC type D on the other two edges.

Mesh �wð0:5a;0:5b;0Þx100 %Diff. �rxxð0:5a;0:5b;0:5hÞ %Diff. �rxzð0:1a;0:5b;0Þ %Diff.

15 � 15 0.6026 – 38.802 – 4.968 –
17 � 17 0.6026 0.00 38.829 0.07 4.942 �0.53
19 � 19 0.6026 0.00 38.848 0.05 4.895 �0.96
21 � 21 0.6026 0.00 38.862 0.04 4.979 1.69
23 � 23 0.6026 0.00 38.872 0.03 4.998 0.38
25 � 25 0.6026 0.00 38.881 0.02 4.995 �0.06
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with layers 1 and N being the bottom and the top layers, respec-
tively, indicates that fibers in the kth layer are oriented at an angle
ak measured counter clockwise from the x- axis. The values of elas-
tic constants for orthotropic material of the plate are given by Data
set 1 and values assigned to other parameters are h = 30 mm,
a/h = 10, a = b, and q0 = 10 MPa. Numbers in the column ‘‘Diff.’’
denote the change in the value from that obtained with the imme-
diate previous FE mesh.

It is clear that for both problems the 23 � 23 FE mesh gives con-
verged values of the computed quantities since the change in their
values in going from the 23 � 23 to the 25 � 25 FE mesh is rather
minuscule. At least for these two problems studied, the deflection
and the in-plane axial stress converge faster than the transverse
shear stress with the mesh refinement and the convergence rate
does not depend much upon the BCs. Note that we have used the
ESL theory for the laminated plate. Unless mentioned otherwise,
we will use the 25 � 25 uniform FE mesh which corresponds to
23,712 nodal degrees of freedom (DoF) to obtain numerical solu-
tions using the TSNDT for the example problems studied.

We now study seven example problems for monolithic and
laminated plates subjected to a variety of traction boundary condi-
tions on their major surfaces and five different BCs defined in
Table 1 on their edges in order to test the applicability of the
TSNDT and the SRS to evaluate stresses at points near the plate
edges for a wide range of problems.

3.2. Normal uniform surface traction on isotropic plate

3.2.1. Transverse normal and shear stresses from the SRS
We analyze deformations of a clamped square isotropic plate

with h = 1 cm, a/h = 10, values of material parameters given by
E ¼ 210 GPa; m ¼ 0:3, and a uniformly distributed normal tensile
traction, q0 ¼ 10 MPa; applied only on the top surface. In Fig. 2(a)
we have displayed through-the-thickness distributions of the axial
stress, rxx, and the transverse normal stress, rzz, along the trans-
verse normal passing through the centroid of the plate and com-
puted using the constitutive relations and the TSNDT
displacement field, and the FE solution based on the 3-D LET. The
two sets of results agree well with each other. For the TSNDT,
the transverse normal stress obtained from the constitutive rela-
tion does not exhibit the ‘‘boundary layer’’ phenomenon near the
top and the bottom surfaces of the plate. Furthermore, the com-
puted value of rzz differs from the normal traction applied at the
point (0.5a,0.5b,0.5h) by 22%. However, this difference is reduced
to 0.84% and the ‘‘boundary layer’’ effect is accurately captured
when the transverse normal stress is computed using the SRS.
We note that through-the-thickness distribution of rzz computed
from the constitutive relation and the TSNDT displacement field
is quite different from that found using the 3-D LET. The difference
between the deflection, w, and the axial stress, rxx, at the centroid
of the top surface obtained with the uniform 100 � 100 � 10 and
the uniform 150 � 150 � 15 FE meshes (1,094,448 DoF) is 0.04%
and 0.6%, respectively. In Fig. 2(b) we have displayed
through-the-thickness variation of the transverse shear stress,
rxz; along the transverse normal passing through the point
(0.1a,0.5b,0) near the edge x = 0. It is evident that results from
the TSNDT agree well with those from the 3-D LET solution both
when the stress is obtained from the constitutive relation and
the SRS with the maximum difference of 1.52% at z = 0.

We note that for a very thick (length/thickness = 2) cantilever
beam Batra and Vidoli [12] found that a 7th order shear and nor-
mal deformable plate theory derived from the mixed variational
principle gave accurate values of stresses including the boundary
layer phenomenon without using the SRS.

3.2.2. Effect of plate aspect ratio on the order of plate theory
In order to ascertain for what aspect ratios of the plate, the

TSNDT gives accurate values of stresses, we have studied
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deformations of the square plate for a/h = 10, 5, 3.33, 2.5 and 2. In
Tables 3a and 3b (4a and 4b) we have listed values of the
non-dimensional deflection at the centroid of the mid-surface,
�w ¼ wð0:5a;0:5b;0Þðh3

=b4ÞE=12q0ð1� m2Þ and the axial stress,
�rxx ¼ rxxð0:5a;0:5b;0:5hÞ a=hð Þ2=q0 at the centroid of the top sur-
face of the clamped (simply supported) plate predicted by the
TSNDT and computed with a 6th order shear and normal
deformable plate theory (SSNDT) [15] using two local meshless
Petrov–Galerkin formulations, namely MLPG1 and MLPG5, along
with their differences with respect to the 3-D LET solutions [15].

It is found that for a=h P 5; the TSNDT solutions agree well with
those from the SSNDT and from the 3-D LET. For thicker plates,
stresses from the SSNDT are in better agreement with those from
the 3-D LET than those from the TSNDT. The maximum difference

between values of axial stress, �rxx ¼ rxxð0:5a;0:5b;0:5hÞ a=hð Þ2=q0;

obtained from the TSNDT and the 3-D LET is about 11% (9%) when
a/h = 2 and all edges of the plate are clamped (simply supported).

3.2.3. Effect of plate aspect ratio on strain energies of different modes
of deformation

We now study the effect of the plate aspect ratio on strain ener-
gies of different modes of deformation of the clamped plate with
a = 10 cm. The total strain energy, W, of deformation is given by

W ¼
X6

i¼1

Wi; ð13Þ
where

W1 ¼
1
2

XN

k¼1

Z
Xk

rk
xx2k

xxdXk; W2 ¼
1
2

XN

k¼1

Z
Xk

rk
yy2k

yydXk;

W3 ¼
XN

k¼1

Z
Xk

rk
xy2k

xydXk; W4 ¼
XN

k¼1

Z
Xk

rk
xz2k

xzdXk;

W5 ¼
XN
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Z
Xk

rk
yz2k

yzdXk; W6 ¼
1
2

XN

k¼1

Z
Xk

rk
zz2k

zzdXk: ð13:1Þ

Thus W1, W2 and W3 equal strain energies of deformation due to
in-plane deformations, and W4, W5 and W6 due to transverse
deformations.

We first verify the computation of the strain energy for a thick
square plate with a/h = 5 and a = 10 cm by comparing its value
with that of the work done by external forces; both should be equal
for a static elastic problem. The strain energy of deformation, W, of
the plate is found to be 257.63 and 263.25 mJ when the transverse
stresses are obtained from the constitutive relations and the SRS,
respectively. For stresses obtained using the SRS, the correspond-
ing strain tensor is computed by pre-multiplying the stress tensor
with the compliance matrix; and W4, W5 and W6 are evaluated
using the recovered stresses and strains. The work done by the
external forces equals 263.09 mJ. Thus, the error in computation
of the strain energy is 2.08% and �0.06% when the transverse stres-
ses are obtained from the constitutive relations and the SRS,



Table 3a
Non-dimensional deflection, �w, of the centroid of the clamped plate.

a/h 3-D LET [15] SSNDT + MLPG1 [15] %Diff. SSNDT + MLPG5 [15] %Diff. TSNDT %Diff.

10 0.1486 0.1468 1.21 0.1476 0.67 0.1486 0.03
5 0.2124 0.2112 0.56 0.2103 0.99 0.2119 0.24
3.33 0.3129 0.3119 0.32 0.3064 2.08 0.3116 0.43
2.5 0.4471 0.4470 0.02 0.4408 1.41 0.4451 0.46
2 0.6114 0.6125 �0.18 0.6050 1.05 0.6090 0.40

Table 3b
Non-dimensional stress, �rxx , at the centroid of the top surface of the clamped plate.

a/h 3-D LET [15] SSNDT + MLPG1 [15] %Diff. SSNDT + MLPG5 [15] %Diff. TSNDT %Diff.

10 0.1440 0.1432 0.56 0.1450 �0.69 0.1448 �0.56
5 0.1613 0.1617 �0.25 0.1589 1.49 0.1658 �2.76
3.33 0.1877 0.1895 �0.96 0.1836 2.18 0.1979 �5.43
2.5 0.2235 0.2274 �1.74 0.2224 0.49 0.2419 �8.25
2 0.2725 0.2887 �5.94 0.2725 0.00 0.3021 �10.86

Table 4a
Non-dimensional deflection, �w, of the centroid of the simply supported plate.

a/h 3-D LET [15] SSNDT + MLPG1 [15] %Diff. SSNDT + MLPG5 [15] %Diff. TSNDT %Diff.

10 0.4249 0.4220 0.68 0.4275 �0.61 0.4249 0.00
5 0.4803 0.4798 0.10 0.4793 0.21 0.4804 �0.03
3.33 0.5710 0.5717 �0.12 0.5589 2.12 0.5716 �0.11
2.5 0.6952 0.6967 �0.22 0.6807 2.09 0.6965 �0.19
2 0.8487 0.8511 �0.28 0.8304 2.16 0.8522 �0.41

Table 4b
Non-dimensional stress, �rxx , at the centroid of the top surface of the simply supported plate.

a/h 3-D LET [15] SSNDT + MLPG1 [15] %Diff. SSNDT + MLPG5 [15] %Diff. TSNDT %Diff.

10 0.2900 0.2887 0.45 0.2920 �0.69 0.2910 �0.35
5 0.2976 0.2984 �0.27 0.3020 �1.48 0.3023 �1.59
3.33 0.3099 0.3129 �0.97 0.3110 �0.35 0.3209 �3.56
2.5 0.3283 0.3333 �1.52 0.3286 �0.09 0.3472 �5.75
2 0.3568 0.3640 �2.02 0.3692 �3.48 0.3877 �8.65

Table 5
Components of strain energy of deformation (mJ) of the plate.

Component 3-D LET TSNDT (C) %Diff. TSNDT (SRS) %Diff.

W1, W2 56.50 55.61 1.57 – –
W3 14.41 14.35 0.44 – –
W4, W5 63.96 62.35 2.51 64.33 �0.58
W6 8.29 7.36 11.27 9.01 �8.71
Total, W 263.62 257.63 2.27 263.25 0.14
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Fig. 3. Variation with the aspect ratio of the normalized values of the strain
energies of deformation due to bending, transverse shear and transverse normal
deformations for a monolithic clamped plate subjected to uniformly distributed
tensile normal traction on the top surface.
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respectively. This provides another check on the accuracy of the
computed results.

We have compared in Table 5 each component of the strain
energy computed with the TSNDT solution with that from the
3-D LET solution. The energies computed using stresses obtained
from constitutive relations and the SRS, respectively, are displayed
in columns ‘‘TSNDT (C)’’ and ‘‘TSNDT (SRS)’’, and their differences
with respect to the 3-D LET solution are listed in columns ‘‘Diff.’’.
The strain energies of deformation predicted by the TSNDT match
well with those from the 3-D LET solution. The maximum differ-
ence between the results from the two theories is about 11% for
the strain energy of transverse normal deformation. However, its
contribution to the total strain energy is very small as compared
to that of other deformation modes. We also note that the strain
energies of transverse shear deformation are more accurately cap-
tured when the SRS is used, the strain energy due to transverse
shear stresses is about 12% more than that due to in-plane axial
stresses and the SRS does not provide much better value of W6 than
that given by the TSNDT (C).

In Fig. 3 we have illustrated for a plate with a = b = 10 cm and
subjected to the uniform traction, q0, on its top surface only, the
effect of the aspect ratio on strain energies of bending
(W1 + W2 + W3), transverse shear (W4 + W5) and transverse normal
(W6) deformations. It is found that with an increase in the aspect
ratio, the strain energy of the bending deformation increases and
that of the transverse shear and the transverse normal deforma-
tions decreases. The strain energies of transverse deformation have
been computed using the SRS. For a/h = 5, the transverse shear and
the transverse normal deformation modes account for 48.9% and
3.4% of the total strain energy, respectively. However, for
a/h > 30, the transverse shear deformations become negligible
and the bending deformations dominate.
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Fig. 4. For an orthotropic plate subjected to equal and opposite uniform tangential tractions on the top and the bottom surfaces (a) deformed shapes of the section y = b/2
computed using the TSNDT and the 3-D LET, and (b) an enlarged view on a scale 500 times that in Fig. (a) of the deformation of the segment PQ. The deformed shape P0Q0 of PQ
is a polynomial of degree 3.
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3.3. Equal and opposite uniform tangential tractions applied on the top
and the bottom surfaces of a 0� composite plate

3.3.1. Through-the-thickness distribution of stresses
We study deformations of an orthotropic square plate clamped

at the left edge with the remaining three edges traction free, and
having h = 1 cm, a/h = 10, values of material parameters listed in
Data set 2, and equal and opposite uniform tangential tractions
of magnitude q0 = 10 MPa applied on the top and the bottom
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Fig. 5. For the cantilever orthotropic plate subjected to equal and opposite uniform
distributions of (a) rxxðx;0:5b; zÞ for x/a = 0.07, 0.5 and 0.93, and (b) rxzðx;0:5b; zÞ for x/a
surfaces. The inset in Fig. 4 schematically illustrates the problem
studied which is similar to the beam problem studied by Batra
and Vidoli [12] who used a variable order shear and normal
deformable theory. As depicted in Fig. 4, the deformed shapes of
the section y = b/2 predicted by the TSNDT and the 3-D FEM are
in excellent agreement with each other. The magnitude of dis-
placement at points P and Q is found to be 1.62 mm.

Fig. 5(a) and (b) depict through-the-thickness distributions of
the axial stress, rxx, and the transverse shear stress, rxz, at various
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locations near and away from the edges x = 0 and a. Values of rxx

obtained using the TSNDT match well with those found by analyz-
ing 3-D deformations with 2% maximum difference between them
at ð0:93a;0:5b;0Þ. The transverse shear stress, rxz, computed from
the constitutive relation differs from the corresponding 3-D LET
solution by as much as 44.7% at points on the line defined by
x ¼ 0:07a; y ¼ 0:5b near the clamped edge x = 0 and its value at
points of intersection of this line with the two major surfaces dif-
fers from the applied tangential traction by 16.4%. These differ-
ences reduce to 3.5% and 10.8% for points on the line
x ¼ 0:93a; y ¼ 0:5b near the traction free edge x = a. However,
when rxz is computed using the SRS the tangential traction bound-
ary conditions on the top and the bottom surfaces are exactly sat-
isfied and the maximum differences between the two values from
the TSNDT and the 3-D LET solutions reduce to 7.9% and 1.4% along
the transverse normals passing through the points ð0:07a; 0:5b;0Þ
and ð0:93a;0:5b;0Þ, respectively; these maximum differences
occur at points on the plate mid-surface. Thus the transverse shear
stress at a point near the clamped edge is less accurate than that at
the corresponding point near the free edge even when the SRS is
employed.

3.3.2. Effect of plate aspect ratio on strain energies of different modes
of deformation

We depict in Fig. 6 the strain energies of different deformation
modes of the plate with values of material parameters listed in
Data set 1. We also analyze plane strain deformations of the plate
by setting displacements in the y-direction of all nodes equal to
zero (this is equivalent to studying deformations of a beam) and
display in Fig. 6 the strain energies of different deformation modes
along with the corresponding results based on a 7th order shear
and normal deformable plate theory reported by Batra and Vidoli
[12]. These results reveal that under similar loading and boundary
conditions, the ratio of strain energies of different deformation
modes of the cantilever plate equal those of the cantilever beam.
It is evident that the TSNDT coupled with the SRS accurately pre-
dicts strain energies due to different deformation modes for the
problem studied. The differences in the strain energies due to
bending and transverse shear deformations for a/h = 2 computed
from the TSNDT and those predicted by the 7th order shear and
normal deformable plate theory equal, respectively, 1.85% and
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and traction free on remaining edge(s), and subjected to equal and opposite
uniform tangential tractions on the top and the bottom surfaces. Results from the
7th order plate theory are plotted using the data digitized from [12].
5.58%. The contribution from the transverse shear deformations
to the total strain energy of the beam is about 25% for a/h = 2
and becomes negligible for a/h = 20. The strain energy due to trans-
verse normal deformations is negligible because of uniform tan-
gential tractions applied on the two major surfaces.

3.4. Combined tangential and normal uniform surface tractions on
clamped 45� composite plate

We now analyze deformations of a clamped square plate with
fibers oriented at 45� to the x-axis, having h = 2.5 cm, a/h = 10, val-
ues of material parameters listed in Data set 2 and only the top sur-
face loaded by uniformly distributed normal ðqzÞ and tangential
ðqxÞ tractions each of magnitude 10 MPa; the problem studied is
schematically shown in inset of Fig. 7. In Fig. 7 we have depicted
on the right and the left vertical axes, respectively, scales for the
x- and the z- displacements along the line y = b/2 on the
mid-surface of the plate, i.e., uðx;0:5b;0Þ and wðx;0:5b; 0Þ, respec-
tively. It is observed that the transverse normal displacement, w,
is one order of magnitude larger than the in-plane axial displace-
ment, u. Also, displacements predicted by the TSNDT are in excel-
lent agreement with the corresponding FE solutions of the 3-D LET
equations with the maximum difference between two solutions
being less than 0.12%.

In Fig. 8(a) and (b), we have displayed through-the-thickness
distributions of the in-plane and the transverse stresses, respec-
tively, at arbitrary points in the plate away from the edges. The
results from the TSNDT at these points agree well with the corre-
sponding FE solutions of the 3-D LET equations. It can be observed
from the plots of Fig. 8(b) that the prescribed tangential traction
boundary conditions are well satisfied on the top and the bottom
surfaces of the plate. The errors in the computation of the tangen-
tial traction at the point (0.167a,0.167b,0.5) on the top surface are
0.23% and 0.98% when the stresses are computed from the consti-
tutive relations and the SRS, respectively. The transverse normal
stress predicted from the TSNDT deformations using the constitu-
tive relation does not exhibit the ‘‘boundary layer’’ phenomenon
near the major surfaces and the computed value at the centroid
of the top surface differs from the applied traction by 10.6%.
However, this difference is reduced to 0.31% only and the ‘‘bound-
ary layers’’ near the major surfaces are well captured when the
stress is computed using the SRS.
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In Fig. 9(a) and (b) we have portrayed through-the-thickness
distributions of the transverse shear stress, rxz, and the transverse
normal stress at various sections near the edge x = 0. It is observed
from Fig. 9(a) that the distribution of the transverse shear stress at
the section x = 0.05a computed from the TSNDT using the constitu-
tive relation differs at most by 5.6% from the 3-D FE solution and
the tangential traction boundary conditions on the major surfaces
are not well satisfied. When the SRS is employed to compute trans-
verse stresses, this difference reduces to 1.5% and the tangential
traction boundary conditions on the top and the bottom surfaces
are accurately satisfied. However, the shear stress distribution at
the section x = 0.1a that is away from the edge x = 0 obtained using
the TSNDT agrees well with that derived from the 3-D LET solution
(3.3% maximum difference at (0.1a,0.5b,0)) whether the stress is
computed from the constitutive relations or the SRS. The results
plotted in Fig. 9(b) reveal that rzz at two locations near the edge
x = 0 computed from the constitutive relation do not satisfy the
normal traction boundary conditions on the major surfaces and
do not exhibit ‘‘boundary layer’’ effect as predicted by the 3-D
LET. The transverse normal stresses at these locations, i.e.,
x = 0.05a and 0.1a, computed using the SRS accurately satisfy the
normal traction boundary conditions on the top surface with
0.11% and 0.14% errors, respectively. However, they differ from
the FE solutions of the corresponding 3-D LET equations by as
much as 25.7% and 10.9%, respectively, at z = �0.35 h.
(a)

(b)

Fig. 8. For a clamped 45� composite plate subjected to uniform normal and tangential tra
and �rxy ð0:25a;0:25b; zÞ, and (b) �rxz ð0:167a;0:167b; zÞ; �ryz ð0:167a;0:167b; zÞ; and �rzz ð
3.5. Non-uniform pressure applied only on the top surface of clamped
45� composite plate

We study the problem defined in Section 3.4 but with the fol-
lowing non-uniform pressure applied on plate’s top surface with
a = 22 cm and a/h = 10.

PðrÞ¼ P0ð�0:0005r4þ0:01r3�0:0586r2�0:001rþ1Þ; r<10:6 cm
0; r P 10:6 cm

(

ð14Þ

Here r is the distance in cm from the centroid of the top surface, and
P0 = 10 MPa. We note that the polynomial function given by Eq. (14)
represents a typical distribution of pressure on the plate surface due
to an underwater explosion, e.g., see [51]. This pressure profile is
schematically depicted in the inset of Fig. 10, and Eq. (14) is taken
from Ref. [55].

The two distributions of the displacement, wðx; b=2; 0Þ; of
plate’s mid-surface along the line y = b/2 found by using the
TSNDT and by solving the 3-D LET equations plotted in Fig. 10 dif-
fer from each other by less than 0.02%. In Fig. 11(a) and (b), we
have displayed through-the-thickness distributions of the
in-plane and the transverse stresses, respectively, at arbitrarily
chosen points away from the plate edges. For this problem also,
the through-the-thickness stress distributions computed using
the SRS and the FEM applied to solve the 3-D LET equations agree
ctions on its top surface, through-the-thickness distribution of (a) �rxx ð0:5a;0:5b; zÞ
0:5a;0:5b; zÞ. The stresses are normalized by q0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

x þ q2
z

p
.
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well with each other and the transverse normal stress shows the
‘‘boundary layer’’ phenomenon. The difference in the normal trac-
tion at the centroid of the top surface of the plate computed from
the constitutive relations and the SRS equals �11.6% and �0.77%,
respectively.

In Fig. 12 we have displayed the applied normal traction and the
distribution of the transverse normal stress on the top surface
along the y = b/2 computed from the TSNDT and the 3-D LET. The
transverse normal stress computed from the TSNDT using the con-
stitutive relation and the SRS satisfies the normal traction bound-
ary condition on the top surface with maximum errors of 11.86%
and 1.63%, respectively, in the region between x = 0.1a and
x = 0.9a. At (0.056a,0.5b,0.5h), these errors increase to 38% and
5%, and become even larger with a decrease in the distance from
the edge x = 0. The transverse normal stress at points located at a
distance smaller than 10% edge-length computed using the SRS is
found to be more accurate than that obtained from the 3-D LET
and the FEM. We note that in the displacement based FE formula-
tion, the stresses at nodes are not accurately computed. Hence, we
obtain the value of rzz at a clamped edge using the least square fit
to that evaluated at integration points in the element adjacent to
the edge. At the risk of repetition, we mention that for the
8-node serendipity element, Barlow proved that stresses at the
2 � 2 quadrature points have the least error [52]. At the edge
x = 0, rzz computed from the 3-D LET and the TSNDT using the con-
stitutive relation as well as the SRS does not equal zero even
though the applied normal traction there is zero. We note that
the 3-D LET solution has been found by using the 100 � 100 � 10
FE mesh of uniform 8-node brick elements. Stresses are computed
at the 2 � 2 � 2 quadrature points in each element, first extrapo-
lated to the top surface, and then from there to the entire surface.
We have not experimented with different FE meshes to see if the
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mesh refinement especially near the clamped edges will better sat-
isfy the traction boundary conditions at points close to clamped
edges. In Fig. 13 we have depicted through-the-thickness distribu-
tion of rxz at the section x = 0.05a. The stress obtained from the
constitutive relation is not accurate and does not satisfy the tan-
gential traction boundary conditions on the major surfaces. The
difference in maximum value of rxz at z = 0 thus obtained and that
given by the 3-D LET is 5.5%. This difference reduces to 2.4% when
rxz is computed using the SRS.
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3.6. Angle-ply 45�/0�/45� laminated plate subjected to uniform normal
traction on the top surface

We study deformations of a clamped square angle-ply
45�/0�/45� laminate with h = 3 cm (each layer is 1 cm thick),
a/h = 10, having values of material constants listed in Data set 2
and subjected to a uniform normal tensile traction, q0 ¼ 10 MPa,
only on its top surface. In Fig. 14(a) and (b) we have displayed
along the transverse normal passing through the plate centroid
through-the-thickness distributions of the in-plane axial stresses
obtained from the constitutive relations and the transverse normal
stress computed using the SRS, respectively. Values of stresses rxx
and ryy computed from the constitutive relations differ from those
given by the solution of the 3-D LET equations by a maximum of
6.95% and 6.25% at the interface of the top and the middle layer.
In Fig. 14(c) we have depicted through-the-thickness variations
of the transverse shear stresses, rxz and ryz, computed from the
TSNDT using the SRS and those obtained from the 3-D FEM along
the transverse normal passing through points (0.1a,0.5b,0) and
(0.5a,0.1b,0), respectively. The two sets of results agree well with
2.16% and 5.67% maximum difference in rxz and ryz, respectively,
at z = 0 on the respective sections. Since transverse stresses com-
puted from the constitutive relations for a laminated plate are
not accurate and continuous across the interface between two
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adjacent layers, they are not plotted in Fig. 14. We note that the
3-D FE solution is obtained with a uniform 60 � 60 � 6 mesh of
8-node brick elements in each layer (thus a total 234,423 DoFs).

3.7. Cross-ply 0�/90�/0� laminated plate subjected to sinusoidal tensile
normal traction on the top surface

We study deformations of a thick symmetric cross-ply 0�/90�/0�
laminated square plate having a/h = 5 with equally thick layers,
values of material parameters listed in Data set 1, with the traction
free bottom surface and subjected to a sinusoidal distributed ten-
sile normal traction given by Eq. (15) on the top surface.

qðx; yÞ ¼ q0 sinðpx=aÞ sinðpy=bÞ ð15Þ

The edges y = 0 and b are simply supported and the edges x = 0 and
a are either clamped or simply supported (BCs A or B in Table 1). In
Fig. 15(a) and (b) we have displayed through-the-thickness distri-
butions of the transverse shear stress, ryz; near the edge x = 0 and
along the line y = b/2 on the mid-surface of the laminate obtained
with the TSNDT using the SRS and the corresponding solution given
by Vel and Batra [53] who obtained an analytical solution of the
problem based on the 3-D LET using the generalized Eshelby–
Stroh formalism. The plots in Fig. 15 are labeled as AA and BB,
respectively, for BCs A and B prescribed on edges x = 0 and a. It is
evident from the plots of Fig. 15(a) that the SRS captures the pres-
ence of ‘‘boundary layers’’ near the major surfaces of the laminate
with clamped opposite edges. This ‘‘boundary layer’’ is absent when
all edges of the laminate are simply supported. The results plotted
in Fig. 15(b) show that the TSNDT accurately predicts the distribu-
tion of the transverse shear stress along the span of the laminate.
Here also the stress at an edge is computed by using the least
square fit to its values at integration points in the element adjacent
to the edge. The maximum difference between the values of ryz

obtained from the TSNDT and the 3-D analytical solution is 7.2%
and occurs at the clamped edges x = 0 and a.

In Fig. 16 we have displayed the effect of BCs on
through-the-thickness variation of the transverse normal stress
near the edge x = 0 of the laminate. Here, one more case is consid-
ered in which the edges y = 0 and b are simply supported and the
other two edges are traction free (indicated by the plot marked
as FF in Fig. 16). The transverse normal stress also exhibits the
‘‘boundary layer’’ effect for the BCs other than all edges simply sup-
ported. The results from the TSNDT match well with the analytical
solution when edges x = 0 and a are simply supported or traction
free. When these edges are clamped, the TSNDT does not accu-
rately predict the stress distribution and the maximum difference
between the two solutions is 41% at z = 0.27 h. The percentage
errors between the computed traction on the top surface at the
point (0.075a,0.5b,0.5h) using the SRS and the applied traction
are 0.56%, 0.28% and 2.48% for BCs AA, BB and FF, respectively.

3.8. Cross-ply 0�/90� laminated plate subjected to sinusoidally
distributed tensile normal traction on the top surface

We now study deformations of a thick anti-symmetric cross-ply
0�/90� laminated square plate with a/h = 5 (both layers are equally
thick), material properties given by Data set 1 and subjected to the
sinusoidally distributed tensile normal traction given by Eq. (15)
only on its top surface. The edges y = 0 and b are simply supported
and four different BCs denoted by A, B, C and D (see Table 1) are
specified on the edges x = 0 and a. In Fig. 17 we have plotted
through-the-thickness distributions of the transverse shear stress,
ryz; near the edge x = 0 obtained from the TSNDT using the SRS and
that reported by Vel and Batra [53].



-0.5 

-0.4 

-0.3 

-0.2 

-0.1 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 z/
h 

yz  (0.05a, 0, z) 

AA (TSNDT [SRS]) 

BB (TSNDT [SRS]) 

CC (TSNDT [SRS]) 

DD (TSNDT [SRS]) 

AA (Analytical [53]) 

BB (Analytical [53]) 

CC (Analytical [53]) 

DD (Analytical [53]) 

Fig. 17. For a 0�/90� composite plate subjected to the loading of Eq. (15) on its top surface, through-the-thickness distribution of �ryz ð0:05a;0:5b; zÞ for four BCs. The stress is
normalized by its maximum value. Analytical solutions are plotted using the data digitized from [53].

P.H. Shah, R.C. Batra / Composite Structures 131 (2015) 397–413 411
It is evident that the through-the-thickness distribution of the
shear stress at a point near the boundary depends upon the type
of the BC. When the edges x = 0 and a are prescribed with A or D
BCs, the ‘‘boundary layer’’ phenomenon is observed near the bot-
tom surface of the plate. The TSNDT coupled with the SRS accu-
rately predicts the distribution when the edges x = 0 and a are
clamped (A) or simply supported (B). The maximum difference
between the TSNDT and the analytical solutions equals 7.6%,
18.18% and 40.27% for AA, CC and DD BCs and it occurs at
z = �0.25h, �0.1h and 0.27h, respectively. This difference can be
reduced either by using a layerwise theory or by employing a
higher order shear and normal deformable plate theory or by using
the Hellinger–Prange–Reissner variational principle to drive the
plate theory. We note that for a simply supported 0�/90�/0� lami-
nated beam loaded by sinusoidal normal traction, Batra and Xiao
[54,56] found accurate values of the transverse shear stresses at
the edge by using a layerwise TSNDT.

Remarks

We note that Tornabene et al. [57] used the Murakami function
for laminated plates while computing the transverse shear and
transverse normal stresses using the SRS. We have not used this
function to find out if it will facilitate computation of boundary
layer effects near the major surfaces of a laminated plate.

4. Conclusions

A third order shear and normal deformable plate theory
(TSNDT) has been used for analyzing static infinitesimal deforma-
tions of composite laminated plates made of linear elastic ortho-
tropic materials. The finite element method (FEM) is used to
obtain numerical solutions for seven example problems using the
TSNDT and considering the laminate as a single layer. No shear cor-
rection factor is used. For monolithic plates, stresses are obtained
directly from the constitutive relations. However, for
multi-layered plates transverse shear and normal stresses are com-
puted using a stress recovery scheme (SRS).

For monolithic plates, in-plane stresses and transverse shear
stresses at points situated at a distance greater than 10%
edge-length are accurately computed directly from the constitu-
tive relations without using the SRS. However, near an edge they
are not accurate and differ at some points by about 45% from the
corresponding 3-D linear elasticity theory (LET) solutions for some
cases of applied tractions and boundary conditions at the edges.
Also the transverse normal stress computed on the major surfaces
differs from the applied normal traction by about 10–20%, and the
‘‘boundary layer’’ phenomenon near these surfaces is not captured.
However, when the SRS is employed the transverse normal stresses
satisfy the traction boundary conditions on the major surfaces with
less than 3% error, exhibit the ‘‘boundary layer’’ effect as predicted
by the 3-D LET, and through-the-thickness stress distributions in
the vicinity of an edge are accurately computed. For problems
involving tangential tractions on the major surfaces of the plate,
results from the TSNDT differ by less than 3% from those predicted
by a 6th order shear and normal deformable plate theory and the
3-D LET for span/thickness P5. For a thick plate with span/thick-
ness = 2, this difference increases to about 11%.

For laminated plates, through-the-thickness distribution of
transverse stresses near an edge is found to depend on the type
of boundary condition (BC) specified on that edge. For a plate with
two opposite edges simply supported and the other two edges
either clamped or traction free, transverse stresses in the vicinity
of the clamped or the free edge exhibit ‘‘boundary layer’’ effect
near the major surfaces which is found to be absent when all edges
of the plate are simply supported. For a moderately thick lami-
nated plate (span/thickness = 10), the SRS accurately predicts the
stress distributions near an edge. For a thick laminated plate
(span/thickness = 5), the SRS accurately predicts the stress distri-
butions in the vicinity of an edge ((distance from the
edge)/span = 0.05) when all edges are simply supported.
However, for some other BCs up to 40% maximum difference
between the results from the TSNDT coupled with the SRS and
the 3-D LET occur near an edge.

For a clamped square plate made of an isotropic material and
loaded only on the top surface by normal tractions the strain
energy of transverse shear deformations equals 48.9% and 21.5%
for aspect ratios of 5 and 10, respectively. However, for a cantilever
plate made of an orthotropic material with E1/E2 = 25, E2/E3 = 1
loaded by equal and opposite tangential tractions along the fiber
direction, the strain energy of transverse shear deformations
equals 7.95% and 2.29%, respectively, for aspect ratios of 5 and 10.

The present work establishes the applicability of the TSNDT
coupled with the SRS in predicting accurate responses of the com-
posite laminated plates for a wide range of problems without using
a shear correction factor and with an advantage of requiring con-
siderably less degrees of freedom than those needed for solving
the problem with the FEM and using the 3-D LET. However, at
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points near clamped and free edges of a laminate, one needs to
check the accuracy of the computed stresses by studying the corre-
sponding 3-D problem especially for failure/damage initiation and
propagation.
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Appendix A

The matrices Zi (i = 0, 1, 2, 3) and the operator matrix L appear-
ing in Eq. (3) are given by Eqs. (A.1) and (A.2), respectively.

Zi ¼

Xi
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0 Xi
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3 0 0 0 0 0
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Appendix B

The degrees of freedom associated with the ith node are indi-
cated by adding a superscript i to variables in Eq. (3.2). That is,

di
0 ¼ ui

10 ui
20 ui

30

� 	T
; di

1 ¼ ui
11 ui

21 ui
31

� 	T
;

di
2 ¼ ui

12 ui
22 ui

32

� 	T and di
3 ¼ ui

13 ui
23 ui

33

� 	T
ðB:1Þ

Thus the vector of generalized variables dj ðj ¼ 0;1;2;3Þ of a point
in an element e can be expressed in terms of the 24-D vector

de
j ¼ ½d

1
j ;d

2
j ; . . . ;d8

j � containing values of dj at the 8-nodes of the ele-
ment as follows:

dj ¼ Ude
j ðj ¼ 0;1;2;3Þ ðB:2Þ

where U is a (3 � 24) matrix containing shape functions
ðw1;w2; . . . ;w8Þ associated with the 8 nodes of the element given by

U ¼ w1I w2I . . . w8I½ �; ðB:2:1Þ

in which I is a (3 � 3) identity matrix.
Substituting for dm ðm ¼ 0;1;2;3Þ from Eq. (B.2) into Eq. (10),

the first variation of the total potential energy of a typical element
is given by
dPe ¼ d�de
i

T Ke
ij

�de
j � d�de

i
TðTþe

i þ T�e
i þ Pþe

i þ P�e
i þ Qþe

i þ Q�e
i Þ ¼ 0

ði; j ¼ 0;1;2;3Þ ðB:3Þ

The elemental stiffness matrices Ke
ij and the elemental load vectors

T�e
i ; P�e

i ; Q�e
i ði; j ¼ 0;1;2;3Þ appearing in Eq. (B.3) are given by

Ke
ij ¼

Z Xeþ1
2

Xe
2

Z Xeþ1
1

Xe
1

BT DijBdX1dX2; where B ¼ LU ðB:4Þ

T�e
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2

Xe
2

Z Xeþ1
1

Xe
1

Xi
3U

T f�dX1dX2;

P�e
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Z Xeþ1
2

Xe
2

Z h=2

�h=2
Xi

3U
T p�dX3dX2;

Q�e
i ¼

Z Xeþ1
1

Xe
1

Z h=2

�h=2
Xi

3U
T q�dX3dX1 ðB:5Þ

where fþ and f� are the surface tractions prescribed on the top and
the bottom surfaces, respectively; and pþ; p�; qþ and q� are the
surface tractions prescribed on the edge surfaces, X1 = a, X1 = 0,
X2 = b and X2 = 0, respectively.

Recalling that variations in generalized displacements are arbi-
trary except at nodes where they are prescribed, we get the follow-
ing equilibrium equations for an FE:
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where

Fe
i ¼ Tþe

i þ T�e
i þ Pþe

i þ P�e
i þ Qþe

i þ Q�e
i ði ¼ 0;1;2;3Þ ðB:6:1Þ

Eq. (B.6) are assembled using the standard technique to obtain Eq.
(11) given in Section 2.

The expressions for K, U, and F in Eq. (11) are given by

K ¼

K00
1
2 ðK01 þ KT

10Þ 1
2 ðK02 þ KT

20Þ 1
2 ðK03 þ KT

30Þ
1
2 ðK10 þ KT

01Þ K11
1
2 ðK12 þ KT

21Þ 1
2 ðK13 þ KT

31Þ
1
2 ðK20 þ KT

02Þ 1
2 ðK21 þ KT

12Þ K22
1
2 ðK23 þ KT

32Þ
1
2 ðK30 þ KT

03Þ 1
2 ðK31 þ KT

13Þ 1
2 ðK32 þ KT

23Þ K33

2
666664

3
777775

U ¼

U0

U1

U2

U3

2
6664

3
7775; F ¼

F0

F1

F2

F3

2
6664

3
7775

ðB:7Þ

in which U0;U1;U2 and U3 are the global vectors of generalized dis-
placements, slopes, curvature, and curvature gradients,
respectively.
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