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Abstract

The collocation multiquadric radial basis functions are used to analyze static deformations of a simply supported functionally

graded plate modeled by a third-order shear deformation theory. The plate material is made of two isotropic constituents with their

volume fractions varying only in the thickness direction. The macroscopic response of the plate is taken to be isotropic and the effec-

tive properties of the composite are derived either by the rule of mixtures or by the Mori–Tanaka scheme. Effects of aspect ratio of

the plate and the volume fractions of the constituents on the centroidal deflection are scrutinized. When Poisson�s ratios of the two
constituents are nearly equal, then the two homogenization techniques give results that are close to each other. However, for widely

varying Poisson�s ratios of the two constituents, the two homogenization schemes give quite different results. The computed results

are found to agree well with the solution of the problem by an alternative meshless method.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

An advantage of a plate made of a functionally

graded material (FGM) over a laminated plate is that

material properties vary continuously in a FGM but

are discontinuous across adjoining layers in a laminated

plate. It eliminates at least the delamination mode of

failure. Furthermore, in an FGM, material properties
can be tailored to optimize the desired characteristics,

e.g., minimize the maximum deflection for a given type

of loads and boundary conditions, or maximize the first

frequency of free vibration of the structure. Even though

material properties may vary continuously in all three
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directions, here we limit ourselves to analyzing static

deformations of a FG plate with material properties var-

ying only in the thickness direction.

Several investigators, e.g., see [1–4], have analyzed

deformations of a FG plate either by using a plate the-

ory or three-dimensional equations of linear elasticity

for an inhomogeneous body. Exact solutions for static

and dynamic deformations of a FG plate are given in
[5–8]. Here we use a meshless method and a third-order

shear deformation plate theory. We note that Qian et al.

[9–11] used the meshless local Petrov–Galerkin method

(MLPG) and either two-dimensional equations of ther-

moelasticity or a higher-order shear and normal deform-

able plate theory of Batra and Vidoli [12] to analyze

static and dynamic deformations of a FG plate. The

MLPG method does not need even a background mesh
but requires integration over a local subdomain and the

determination of basis functions by say the moving least
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squares method [13]. Thus, it is computationally expen-

sive. Here we use the collocation method and the mult-

iquadric radial basis functions which neither require a

mesh nor the numerical evaluation of integrals over

any subdomain. The goal here is to show that this mesh-

less method gives results close to the analytical solution
of the problem for a FG plate. No attempt has been

made to review all of the literature on meshless methods,

plate theories, homogenization techniques to deduce

effective properties of a composite from those of its con-

stituents, methods of manufacturing a FG plate, and pa-

pers dealing with the analysis of FG plates.

Meshless methods for finding an approximate solu-

tion of a boundary-value problem include the element-
free Galerkin [14], hp-clouds [15], the reproducing

kernel particle [16], the smoothed particle hydrodynam-

ics [17], the diffuse element [18], the partition of unity

finite element [19], the natural element [20], meshless

Galerkin using radial basis functions [21], the meshless

local Petrov–Galerkin [22], the collocation technique

employing radial basis functions [23], and the modified

smoothed particle hydrodynamics [24]. Of these, the last
three and the smoothed particle hydrodynamics method

do not require any mesh whereas others generally need a

background mesh for the evaluation of integrals appear-

ing in the weak formulation of the problem. Ferreira

[25,26] has used the collocation method with the radial

basis functions to analyze several plate and beam prob-

lems. The applicability of the method is extended here to

analyze static deformations of a thick FG plate with a
third-order shear deformation plate theory (TSDT).

The paper is organized as follows. Section 2 briefly re-

views the finite point multiquadric method of solving an

elliptic linear boundary-value problem. Equations for a

TSDT are derived in Section 3, and two homogenization

techniques for determining effective material properties

of a composite are summarized in Section 4. Section 5

discusses results and Section 6 gives conclusions.
2. The finite point multiquadric method

Consider the following linear elliptic boundary-value

problem defined on a smooth domain X:

LuðxÞ ¼ sðxÞ; x 2 X;

BuðxÞ ¼ f ðxÞ; x 2 oX;
ð2:1Þ

where oX is the boundary of X, L and B are linear dif-

ferential operators, and s and f are smooth functions

defined on X and oX respectively. We select NB points

(x(j), j = 1, . . . , NB) on oX and (N � NB) points

(x(j), j = NB + 1, NB + 2, . . . , N) in the interior of X. Let

uhðxÞ ¼
XN
j¼1
ajgðkx� xðjÞk; cÞ ð2:2Þ
be an approximate solution of the boundary-value prob-

lem where a1, a2, . . . , aN are constants to be determined,

kx � x(j)k is the Euclidean distance between points x and
x(j), c is a constant, and g is a function of kx � x(j)k and
c. Different forms of functions g and names associated

with them are

Multiquadrics :

gjðxÞ ¼ ðkx� xðjÞk2 þ c2Þ1=2;
Inverse Multiquadrics :

gjðxÞ ¼ ðkx� xðjÞk2 þ c2Þ�1=2;
Gaussian:

gjðxÞ ¼ e�c
2kx�xðjÞk2 ;

Thin plate splines :

gjðxÞ ¼ kx� xðjÞk2 log kx� xðjÞk:

ð2:3Þ

Substitution from (2.2) into (2.1) and evaluating the

resulting form of Eq. (2.1)2 at the NB points x(j),
j = 1, 2, . . . , NB, and of Eq. (2.1)1 at (N � NB) points

x(j), j = NB + 1, NB + 2, . . . , N give the following N alge-

braic equations for the determination of a1, a2, . . . , aN.XN
j¼1
ajLgðkx� xðjÞk; cÞ

�����
x¼xðiÞ

¼ sðxðiÞÞ;

i ¼ NB þ 1;NB þ 2; . . . ;N ;XN
j¼1
ajBgðkx� xðjÞk; cÞ

�����
x¼xðiÞ

¼ f ðxðiÞÞ;

i ¼ 1; 2; . . . ;NB:

ð2:4Þ

Depending upon the value of the parameter c and the

form of function g, the set of Eqs. (2.4) that determines

a1, a2, . . . , aN may become ill-conditioned; e.g. see [27].

Also, the computational effort involved in solving (2.4)

for a1, a2, . . . , aN varies with the choice of the function

g. Once Eqs. (2.4) have been solved for a�s, then the
approximate solution of the problem is given by (2.2).
3. Review of the third-order shear deformation plate

theory

The displacement field in the TSDT is given by

ðx; y; zÞ ¼ u0ðx; yÞ þ z/x � c1z3 /x þ
ow
ox

� �
;

vðx; y; zÞ ¼ v0ðx; yÞ þ z/y � c1z3 /y þ
ow
oy

� �
;

wðx; y; zÞ ¼ w0ðx; yÞ;

ð3:1Þ

where c1 = 4/(3h2), h is the plate thickness, z is the coor-

dinate in the thickness direction, and the xy-plane of the

rectangular Cartesian coordinate system is located in the

midplane of the plate. Functions /x and /y describe
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rotations about the x- and the y-axes of a line that is

along the normal to the midsurface of the plate, u0, v0
and w0 give displacements of a point on the midsurface

of the plate along the x-, y- and z-axes respectively. The

constant c1 is determined by requiring that the trans-

verse shear strain vanishes on the top and the bottom
surfaces of the plate. Batra and Vidoli [12] have pro-

posed a mixed higher-order shear and normal deforma-

ble plate theory in which natural boundary conditions

prescribed on the top and the bottom surfaces of the

plate are exactly satisfied.

From the strain–displacement relations appropriate

for infinitesimal deformations, we obtain

exx
eyy
2exy
2eyz
2ezx

8>>>>><>>>>>:

9>>>>>=>>>>>;
¼

eð0Þxx
eð0Þyy
2eð0Þxy
2eð0Þyz
2eð0Þzx

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
þ z

eð1Þxx
eð1Þyy
2eð1Þxy
2eð1Þyz
2eð1Þzx

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
þ z3

eð2Þxx
eð2Þyy
2eð2Þxy
2eð2Þyz
2eð2Þzx

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
;

ð3:2Þ

where

eð0Þxx
eð0Þyy
2eð0Þxy
2eð0Þyz
2eð0Þzx

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

ou0
ox
ov0
oy

ou0
oy þ

ov0
ox

ow0
oy þ /y

ow0
ox þ /x

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
;

eð1Þxx
eð1Þyy
2eð1Þxy
2eð1Þyz
2eð1Þzx

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

o/x
ox
o/y
oy

o/x
oy þ

o/y
ox

0

0

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
;

eð2Þxx
eð2Þyy
2eð2Þxy
2eð2Þyz
2eð2Þzx

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼ �c1

o/x
ox þ

o2w0
ox2

o/y
oy þ

o2w0
oy2

o/x
oy þ

o/y
ox þ 2 o2w0

oxoy

3
z

ow0
oy þ /y

� 

3
z

ow0
ox þ /x

� �

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
: ð3:3Þ

The form (3.1) of the displacement field implies that the

transverse normal strain ezz vanishes identically, and

eyz = 0 = ezx at z = ± h/2.

Equations for the plate theory are derived by using

the principle of virtual work. That is,Z
X
½rxxdexx þ ryydeyy þ 2rxydexy þ 2ryzdeyz þ 2rzxdezx	dV

¼
Z
oX
ðfxduþ fydvþ fzdwÞdA; ð3:4Þ
where rxx, ryy, rxy, ryz, rzx are components of the stress,

and fx, fy, fz are surface tractions acting on the bounding

surfaces of the plate. Note that body forces have been

neglected.

Substitution from (3.2) and (3.3) into (3.4), integra-

tion of the resulting equation with respect to z from
�h/2 to h/2, and recalling that du, dv, dw, d/x and d/y

are arbitrary except at points where u, v, w, /x and /y

are prescribed, we obtain the following equations for

the plate theory:

oNxx

ox
þ oNxy

oy
¼ 0;

oNxy

ox
þ oNyy

oy
¼ 0;

oQx
ox

þ
oQy
oy

þ f ¼ 0;

oMxx

ox
þ oMxy

oy
� Qx ¼ 0;

oMxy

ox
þ oMyy

oy
� Qy ¼ 0;

ð3:5Þ
where

Mab ¼ Mab � c1P ab;

Qa ¼ bQa � 3c1Ra; a; b ¼ x; y;

ðN ab;Mab; P abÞ ¼
Z h=2

�h=2
ð1; z; z3Þrab dz;

ðbQa;RaÞ ¼
Z h=2

�h=2
ð1; z2Þraz dz;

f ¼ f þ
z þ f �z ;

ð3:6Þ

f þ
z and f �

z equal normal surface tractions acting on the

top and the bottom surfaces of the plate. In this plate
theory, f 
x and f 
y must identically vanish on the top

and the bottom surfaces of the plate.

Expressions for Mab, Nab, Pab, Qa and Ra in terms of

strains can be derived by substituting into (3.6) from

the following stress–strain relation for an isotropic

material:

rxx
ryy
rxy
ryz
rzx

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

Q11 Q12 0 0 0

Q12 Q11 0 0 0

0 0 Q33 0 0

0 0 0 Q33 0

0 0 0 0 Q33

26666664

37777775
exx
eyy
2exy
2eyz
2ezx

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
;

ð3:7Þ

where

Q11 ¼ E=ð1� m2Þ; Q12 ¼ mE=ð1� m2Þ; Q33 ¼ E=2ð1þ mÞ;
ð3:8Þ

E is the effective Young�s modulus and m the effective

Poisson�s ratio at a point in a FG plate.

Substitution for strains in terms of displacements
from (3.3) into (3.7), for stresses from (3.7) into (3.6),
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for Mab, Nab etc. from (3.6) into (3.5) yield equilibrium

equations in terms of the generalized displacements u0,

v0, w0, /x and /y; these equations are summarized in

Appendix A. An approximate solution of these equa-

tions and the pertinent boundary conditions is found

by using the meshless method described in Section 2.
That is, we assume that

uh0ðxÞ ¼
XN

j¼1
auj gðkx� xðjÞk; cÞ;

vh0ðxÞ ¼
XN

j¼1
avjgðkx� xðjÞk; cÞ; etc:

ð3:9Þ

These expressions are substituted in equilibrium equa-

tions listed in Appendix A, and also in relevant bound-

ary conditions.

Boundary conditions at a simply supported edge,

x = a, are

w0ða; yÞ ¼ 0; v0ða; yÞ ¼ 0; /yða; yÞ ¼ 0;

Nxxða; yÞ ¼ 0; Mxxða; yÞ ¼ 0:
ð3:10Þ

Boundary conditions imposed at a rigidly clamped edge,

y = b, are

u0ðx; bÞ ¼ 0; v0ðx; bÞ ¼ 0; w0ðx; bÞ ¼ 0;

/xðx; bÞ ¼ 0; /yðx; bÞ ¼ 0:
ð3:11Þ
4. Homogenization of material properties

We assume that the plate is made of two randomly
distributed isotropic constituents, the macroscopic re-
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Fig. 1. Through-the-thickness distribution of the volume fraction o
sponse of the composite is isotropic, and the composi-

tion of the composite varies only in the z-direction.

Qian and Batra [28] have studied free vibrations of a

FG plate with material properties varying smoothly in

two directions. The volume fraction of constituent 1 is

given by

V 1 ¼
1

2
þ z
h

� �p
: ð4:1Þ

Thus V1 = 0 at the bottom surface z = �h/2 and

V1 = 1 at the top surface z = h/2 of the plate. Fig. 1 de-

picts the through-the-thickness distribution of the vol-

ume fraction of phase 1 for different values of p.

Two homogenization techniques are used to find

the effective properties at a point. According to the rule

of mixtures, the effective property P, at a point is given
by

P ¼ P 1V 1 þ P 2V 2; ð4:2Þ

where V1 and V2 = 1 � V1 are the volume fractions of

constituents 1 and 2 respectively, and P1 and P2 are val-

ues of P for the two constituents.

According to the Mori–Tanaka [29] homogenization
method the effective bulk modulus, K, and the effective

shear modulus, G, of the composite are given by

K � K1

K2 � K1

¼ V 2

1þ ð1� V 2Þ K2�K1

K1þ4
3
G1

;

G� G1

G2 � G1

¼ V 2

1þ ð1� V 2Þ G2�G1

G1þf1

;

ð4:3Þ
.5 0.6 0.7 0.8 0.9 1

ion of phase 1 

f phase 1 for different values of the exponent p in Eq. (4.1).
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where f1 ¼ G1ð9K1þ8G1Þ
6ðK1þ2G1Þ

. The effective values of Young�s

modulus, E, and Poisson�s ratio, m, are found from

E ¼ 9KG
3K þ G ; m ¼ 3K � 2G

2ð3K þ GÞ : ð4:4Þ
5. Computation and discussion of results

The results for a simply-supported FG plate com-

prised of aluminum (E1 = 70GPa, m1 = 0.3) and a cera-

mic (E2 = 151GPa, m2 = 0.3) are firstly compared and
then for an aluminum/silicon carbide plate; for SiC,

E = 427GPa, m = 0.17. The first composite material is re-

ferred to as FGM1 and the second as FGM2. Computed

results for the FGM2 plate are compared with the solu-

tion of Qian et al. [9]. In the Tables and Figures to fol-

low, the vertical or transverse displacement w, the axial

stress rxx, the thickness coordinate z, and the pressure q

applied on the top surface of the plate have been non-
dimensionalized as follows:

�w ¼ w=h; �rxx ¼ rxx=q; �q ¼ q=E1h
4; �z ¼ z=h:

Henceforth the superimposed bar has been dropped. Re-

sults are presented for a square plate and equal number
0 1 2 3 4 5
-h/ 2

0    

+h/2

E/10    Pa11
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-h/ 2
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ν
(a)

Fig. 2. Through-the-thickness variations of the effective Young�s modulus,
Tanaka scheme for (a) FGM1 and (b) FGM2 plates with p = 0, 1, 2 and 6 i
of collocation points uniformly spaced in the x- and the

y-directions are used. We employ multiquadrics radial

basis functions defined by Eq. (2.3) 1 with c equal to

either 1=
ffiffiffiffiffiffi
Na

p
or 2=

ffiffiffiffiffiffi
Na

p
where Na is the number of col-

location points in either x- or y-direction.

Fig. 2a and b depicts, for p = 0, 1, 2 and 6 in Eq. (4.1),
the through-the-thickness variations of the effective

Young�s modulus, and the effective Poisson�s ratio as

computed by the rule of mixtures and the Mori–Tanaka

scheme for the FGM2 plates. For both FGM1 and

FGM2 plates, and with p = 2, values of the effective

moduli obtained from the rule of mixture differ noticea-

bly from those derived from the Mori–Tanaka scheme;

the difference between the two sets of moduli for other
values of p are less evident.

For Na = 11 and 19, we have compared in Table 1 the

centroidal deflections of a simply supported square

FGM1 plate. For p = 0, 0.5, 1.0, 2.0 and 1, the centroi-

dal deflection computed with Na = 11 differs from that

computed with Na = 19 by less than 1.5%. Furthermore,

these deflections differ from those computed by the

MLPG code of Qian, Batra and Chen [9] by less than
3%; the difference being smaller for Na = 19. Results pre-

sented below have been computed with Na = 15.
0 1 2 3 4 5
/ 2

    

/2

E/10    Pa11

0.15 0.2 0.25 0.3 0.35
/ 2

/2

ν
(b)

and Poisson�s ratio computed by the rule of mixtures and the Mori–

n Eq. (4.1).



Table 1

For Na = 11 and 19, comparison of the centroidal deflection of a simply supported square FGM1 plate with effective elastic moduli computed by the

rule of mixtures and the Mori–Tanaka scheme

Exponent, p in Eq. (4.1) Non-dimensional centroidal deflection

Effective properties

by rule of mixtures

Effective properties

by Mori–Tanaka scheme

MLPG code of Qian,

Batra and Chen

0 0.02050 (0.02080) 0.02050 (0.02080) 0.02118

0.5 0.02620 (0.02650) 0.02760 (0.02790) –

1.0 0.02940 (0.02970) 0.03050 (0.03090) 0.03150

2.0 0.03230 (0.03240) 0.03300 (0.03330) 0.03395

Metal 0.04430 (0.0448) 0.04430 (0.04480) 0.04580

Load parameter = 1, aspect ratio a/h of plate = 20, c ¼ 2ffiffi
ð

p
NaÞ

. Results for Na = 19 are in parentheses.

Table 2

For a/h = 5, Na = 15, and load parameter = 1, comparison of the centroidal deflection of a simply supported square FGM1 and FGM2 plates with

effective elastic moduli computed by the rule of mixtures and the Mori–Tanaka scheme

Exponent, p in Eq. (4.1) Non-dimensional centroidal deflection

Effective properties

by rule of mixtures

Effective properties

by Mori–Tanaka scheme

MLPG code of Qian,

Batra and Chen

(a) FGM1

0.0 0.02477 0.02477 0.02436

0.5 0.03135 0.03293 –

1.0 0.03515 0.03666 0.03634

2.0 0.03883 0.04009 0.03976

Metal 0.05343 0.05343 0.05253

(b) FGM2

0.0 �0.007676 �0.00909 �0.00902
0.5 �0.011973 �0.01871 –

1.0 �0.015967 �0.02381 �0.02391
2.0 �0.021603 �0.02903 �0.02918
Metal �0.053426 �0.05343 �0.05253
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For thick (a/h = 5) FGM1 and FGM2 simply sup-

ported square plates, Table 2 compares the centroidal

deflections with effective moduli derived by the two

homogenization schemes. It is transparent that the two

homogenization schemes give results that are close to

each other for the FGM1 plate but are quite different

for the FGM2 plate. Note that Poisson�s ratios of the
two constituents of the FGM1 plate are nearly equal
but are quite different for the FGM2 plate. Note that

for each plate, the presently computed centroidal deflec-
Table 3

For c ¼ 1=
ffiffiffiffiffi
15

p
and 2=

ffiffiffiffiffi
15

p
, comparison of the centroidal deflection of a simpl

by the Mori–Tanaka scheme

a/h MLPG, 8 · 8 grid Present formulation; c

p = 0 p = 1.0 p = 2.0 Metal p = 0 p = 1.0

5 0.02436 0.03634 0.03976 0.05252 0.02475 0.03663

15 0.02115 0.03152 0.03401 0.04583 0.02170 0.03222

25 0.02123 0.03158 0.03404 0.04569 0.02277 0.03385

45 0.02158 0.03203 0.03456 0.04655 0.02679 0.03990

75 0.02190 0.03252 0.03501 0.04728 0.03677 0.05495

125 0.02225 0.03304 0.03562 0.04802 0.09117 0.13876

Load factor = �1.
tion compares very well with that obtained by the

MLPG code of Qian, Batra and Chen [9] that uses the

Mori–Tanaka homogenization scheme. Results com-

puted with the MLPG method agreed very well with

the analytical solution of Vel and Batra [5,6].

In order to delineate the effect of the parameter c in

Eq. (2.3)1, we have compared in Table 3 centroidal

deflections of the square FGM1 plate for c ¼ 1=
ffiffiffiffiffi
15

p

and c ¼ 2=
ffiffiffiffiffi
15

p
with those computed from the MLPG

code of Qian, Batra and Chen [9]. These results evince
y supported square FGM1 plate with effective elastic moduli computed

¼ 1ffiffi
ð

p
NaÞ

c ¼ 2=
ffiffiffiffiffiffi
Na

p

p = 2.0 Metal p = 0 p = 1.0 p = 2.0 Metal

0.04000 0.05339 0.02476 0.03666 0.04009 0.05342

0.03470 0.04681 0.02090 0.03103 0.03354 0.04510

0.03630 0.04911 0.02062 0.03061 0.03305 0.04448

0.04237 0.05779 0.02057 0.03054 0.03295 0.04437

0.05721 0.07932 0.02062 0.03061 0.03302 0.04448

0.13020 0.19668 0.02069 0.03072 0.03314 0.04464



Table 4

Comparison of the stress rxx at the centroids of the top and the bottom surfaces of a simply supported square FGM1 plate with effective elastic

moduli computed by the Mori–Tanaka scheme from the present formulation and the MLPG code of Qian, Batra and Chen [9]

Index p or aspect ratio a/h MLPG, 8 · 8 grid Present formulation

rxx(�h/2) rxx(h/2) rxx(�h/2) rxx(h/2)

p = 0 (ceramic) 0.29175 �0.29200 0.28650 �0.28650
p = 1 0.22617 �0.37875 0.17815 �0.38428
p = 2 0.24497 �0.40650 0.21278 �0.45899
p =1 (metal) 0.29175 �0.29200 0.28650 �0.28650
a/h = 5 0.22540 �0.38812 0.20232 �0.43643
a/h = 10 0.22420 �0.37760 0.19812 �0.42737
a/h = 15 0.22502 �0.37742 0.19738 �0.42577
a/h = 20 0.22617 �0.37875 0.19719 �0.42537
a/h = 200 0.02331 �0.38980 0.19841 �0.42800
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Fig. 3. Through-the-thickness variation of the axial stress, rxx, in a simply supported FGM1 plate for different values of the exponent p in Eq. (4.1).
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that c ¼ 2=
ffiffiffiffiffi
15

p
should be used for thin plates. For

plates with a/h 6 15, c ¼ 1=
ffiffiffiffiffi
15

p
gives good results and

the accuracy of the computed centroidal deflection dete-

riorates with an increase in the aspect ratio. We note

that Fasshauer�s [23] suggestion of using c ¼ 2=
ffiffiffiffiffiffi
Na

p
is

supported by our numerical experiments.

For different values of the index p in Eq. (4.1) and the

aspect ratio a/h, Table 4 compares the axial stress, rxx,
at centroids of the top and the bottom surfaces of the

simply supported square FGM1 plate. The stress com-

puted from the present formulation compares well with

that obtained from the MLPG code of Qian, Batra and

Chen [9].

Fig. 3 exhibits through-the-thickness variation of the

non-dimensional axial stress rxx. Except for very large

or very small values of p, the axial stress varies smoothly
through the plate thickness. For p = 0.2, there is a sharp
gradient in rxx near the bottom surface of the plate, and

for p = 300 there is a steep gradient in rxx near the top

surface. This is caused by the sharp variation in the

material properties near the top and the bottom surfaces

of the plate for p = 0.2 and 300.
6. Conclusions

The meshless collocation method, the multiquadric

radial basis functions and a third-order shear deforma-

tion theory have been used to analyze static deforma-

tions of functionally graded square plates of different

aspect ratios. Two homogenization techniques, namely,

the rule of mixture and the Mori–Tanaka scheme, have

been used to find effective moduli of the composite.
Computed results are found to agree well with those
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obtained from the meshless local Petrov–Galerkin

(MLPG) code of Qian, Batra and Chen. Both the collo-

cation and the MLPG methods result in asymmetric

‘‘stiffness’’ matrices. The CPU time required to solve

the problem with the collocation method is considerably

less than that needed for the MLPG code mainly be-
cause no numerical integration is needed in the colloca-

tion scheme.

For widely varying Poisson�s ratios of the two con-

stituents of the FG plate, the two homogenization

techniques give quite different results. Our numerical

experiments suggest that the parameter c in the expres-

sion for the multiquadratic radial basis functions should

equal 2=
ffiffiffiffiffiffi
Na

p
where Na equals the number of collocation

points in the x- or the y-direction.
Appendix A

Equations for the determination of the generalized

displacements u0, v0, w0, /x and /y of a TSDT are listed

below.
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