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Abstract

Infinitesimal deformations of a functionally graded thick elastic plate are analyzed by using a meshless local Petrov–Galerkin
(MLPG) method, and a higher-order shear and normal deformable plate theory (HOSNDPT). Two types of Radial basis functions
RBFs, i.e. Multiquadrics and Thin Plate Splines, are employed for constructing the trial solutions, while a fourth-order Spline function
is used as the weight/test function over a local subdomain. Effective material moduli of the plate, made of two isotropic constituents with
volume contents varying only in the thickness direction, are computed using the Mori–Tanaka homogenization technique. Computed
results for a simply supported aluminum/ceramic plate are found to agree well with those obtained analytically. Results for a plate with
two opposite edges free and the other two simply supported agree very well with those obtained by analyzing three-dimensional defor-
mations of the plate by the finite element method. The distributions of the deflection and stresses through the plate thickness are also
presented for different boundary conditions. It is found that both types of basis functions give accurate values of plate deflection, but
the multiquadrics give better values of stresses than the thin plate splines.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Higher-order shear and normal deformable plate theory; Thick plate; Functionally graded materials; MLPG method; Radial basis function
1. Introduction

Functionally graded materials (FGMs) are a new
generation of composite materials wherein the material
properties vary continuously to yield a predetermined com-
position profile. These materials have been introduced to
benefit from the ideal performance of its constituents, e.g.
high heat/corrosion resistance of ceramics on one side,
and large mechanical strength and toughness of metals on
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the other side. FGMs have no interfaces and are hence
advantageous over conventional laminated composites.
FGMs also permit tailoring of material composition to
optimize a desired characteristic such as minimize the max-
imum deflection for a given load and boundary conditions,
or maximize the first frequency of free vibration, or mini-
mize the maximum principal tensile stress. As a result,
FGMs have gained potential applications in a wide variety
of engineering components or systems, which include armor
plating, heat engine components and human implants.

The variation of material properties in an FGM is usu-
ally achieved by continuously varying volume fractions of
the constituent materials. FGMs with material properties
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varying only in the thickness direction can be manufac-
tured by high-speed centrifugal casting [1,2], or by deposit-
ing ceramic layers on a metallic substrate [3,4]. An FGM
with properties changing in the plane of a sheet can be pro-
duced by ultraviolet irradiation to alter the chemical com-
position [5]. A directed oxidation technique has also been
employed [6,7] to deposit a ceramic layer on the outside
surfaces of a structure. FG fiber reinforced composites
can be fabricated by varying the volume fraction of fibers
and/or their orientation in the preform prior to infusing
resin into it. Commercially developed FGMs are available
for use as structural elements in different applications.
Here, we study static deformations of thick FG elastic
plates.

A number of plate theories are available to analyze
deformations of composite plates. The classical Kirchhoff
plate theory ignores transverse shear effects, provides rea-
sonable results for relatively thin plates, and suffices for
computing the first few modes of flexural vibrations.
However, it may not give good values of higher modes
of flexural vibration for moderately thick plates (thick-
ness/span > 1/10) and does not give through-the-thickness
modes of vibration of very thick plates. Some shortcom-
ings of the Kirchhoff plate theory are remedied by a num-
ber of shear deformable plate theories the simplest of
which is the first-order shear deformation theory (Reiss-
ner–Mindlin theory), which assumes constant transverse
shear strain in the thickness direction and requires a shear
correction factor to account for the deviation of the
actual transverse shear strain from the constant one.
The value of the shear correction factor depends on geo-
metric parameters, applied loads and boundary condi-
tions. Second and higher-order shear deformation plate
theories [8–11] use higher-order polynomials in the expan-
sion of displacement components along the plate’s thick-
ness, and require no shear correction factors. First- and
third-order shear deformation theories coupled with the
finite element method (FEM) have been used by several
authors [12–16] to analyze deformations of FG plates.
The higher-order shear and normal deformable plate the-
ory (HOSNDPT) developed by Batra and coworkers
[10,17] has the following advantages: it accounts for both
transverse normal and transverse shear deformations, it
exactly satisfies traction boundary conditions prescribed
on plate’s major surfaces, the governing equations are sec-
ond-order partial differential equations enabling the use of
Lagrange shape functions in the FEM, transverse stresses
are computed from plate equations rather than by inte-
grating the balance of linear momentum in the thickness
direction and the in-plane stresses computed from the
plate equations, and it can accurately predict through-
the-thickness modes of vibration which correspond to null
lateral displacements or deflections. The plate theory is
called compatible if stresses are derived from the assumed
displacement field and Hooke’s law, and mixed if stresses
and displacements are expanded independently through
the plate thickness. The mixed theory, originally devel-
oped for piezoelectric plates, has been used for studying
the propagation of plane waves, free vibrations of thick
homogeneous isotropic and transversely isotropic plates
[17,18]; and the compatible theory for static and dynamic
deformations of isotropic homogeneous [19] and FG thick
plates [20], and transient thermomechanical deformations
of a FG plate [21].

Approximate solutions of complex engineering prob-
lems are usually obtained by a numerical method. Mesh-
less methods such as the Element-Free Galerkin (EFG)
method [22], the Reproducing Kernel Particle Method
(RKPM) [23], hp-clouds [24], the Partition of Unity
Method (PUM) [25], and the Meshless Local Petrov–
Galerkin (MLPG) method [26,27] have attracted consider-
able attention recently. Among these, the MLPG method
does not need any mesh for either generating basis func-
tions for the trial solution and the test function or numer-
ical integration of integrals appearing in the weak
formulation of the problem. Six MLPG formulations
for different choices of test functions have been labelled
MLPG1 – MLPG6 in [27]. The basis functions for the
trial solution and/or the test functions can be generated
by either the Moving Least Squares (MLS) approxima-
tion, or the PUM, or the Shepard functions, or the
RKPM; however, these are generally rational functions,
and lack the Kronecker delta function property. Thus
special techniques, such as the use of penalty parameters
or Lagrange multipliers, are needed to satisfy essential
(e.g., displacement type) boundary conditions.

Static and transient infinitesimal deformations of thick
FG elastic plates using Batra and Vidoli’s plate theory have
been analyzed with the MLPG method and basis functions
derived by the MLS approximation [19–21]. The matrix
transformation technique, used to impose essential bound-
ary conditions, considerably increased the computational
cost. Recently, Radial Basis Functions (RBFs) [28] have
been employed to solve partial differential equations
[29–31], and to approximate the trial solution in meshless
methods [32–36]; RBFs have the Kronecker delta property,
which facilitates satisfying the essential boundary condi-
tions. Furthermore, when RBFs are used in the weak for-
mulation of a problem over a local domain (such as in an
MLPG method [34–36]) rather than over a global domain,
the dense system matrices associated with the global inter-
polation are avoided. The extended Multiquadrics
(MQ),g(r) = (r2 + c2)b, and the Thin Plate Splines (TPS)
have been successfully employed in the MLPG formulation
in [36] for the solution of two-dimensional problems where
the TPS were modified to g(r) = ra log r with a taken as a
shape parameter. Here r is the distance between two points,
and c and b are constants.

The analysis of thick FG plates with the compatible
HOSNDPT and the MLPG method is presented in [20]
where the MLS approximation was used to generate basis
functions for the trial solution. The meshless collocation
method [37], the MQ radial basis functions and a third-
order shear deformation theory have been used to analyze



Fig. 1. A schematic sketch of the problem studied.
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static deformations of functionally graded square plates.
Here we use the RBFs, an MLPG method, and the compat-
ible HOSNDPT to analyze deformations of a thick FG
plate. Either the MQ or the TPS are employed as basis
functions for the trial solution, and a fourth-order spline
weighting function is used as the test function; such an
approach is called MLPG1 in [27]. Material properties,
taken to vary in the thickness direction only, are deter-
mined with the Mori–Tanaka homogenization scheme
[38]. Results for a simply supported aluminum/ceramic
FG plate are compared with the analytical solution of
Vel and Batra [39]. The distributions of displacements
and stresses through the plate thickness are presented for
different boundary conditions. The effect of varying the
volume fraction of Zirconia on the plate’s top surface on
plate’s deformations is also examined.

2. Review of the compatible higher-order shear and normal

deformable plate theory (HOSNDPT)

A rectangular Cartesian coordinate system, shown in
Fig. 1, is used to describe infinitesimal deformations of a
rectangular plate occupying the region X defined by
0 6 x 6 a,0 6 y 6 b, and �t/2 6 z 6 t/2. The mid-surface,
z = 0, of the plate is denoted by S, and displacements of
a point along the x-, the y- and the z-axes by u, v, and w,
respectively. Displacements are expanded in the thickness
(z-) direction in terms of Legendre polynomials orthonor-
malized byZ t=2

�t=2

LiðzÞLjðzÞdz ¼ dij; i; j ¼ 0; 1; 2; . . . ; ð1Þ

where dij is the Kronecker delta and Li(z) is the ith Legen-
dre polynomial. Orthonormal Legendre polynomials are
equivalent to the basis 1,z,z2, . . . , and have the advantage
of reducing the algebraic work. Expressions for the first se-
ven orthonormal Legendre polynomials are:

L0ðzÞ ¼
1ffiffi

t
p ; L1ðzÞ ¼ 2

ffiffiffi
3

t

r
z
t
; ð2aÞ

L2ðzÞ ¼
1

2

ffiffiffi
5

t

r
12

z
t

� �2

� 1

� �
; ð2bÞ

L3ðzÞ ¼
ffiffiffi
7

t

r
�3

z
t

� �
þ 20

z
t

� �3
� �

; ð2cÞ

L4ðzÞ ¼
3ffiffi

t
p 3

8
� 15

z
t

� �2

þ 70
z
t

� �4
� �

; ð2dÞ

L5ðzÞ ¼
ffiffiffiffiffi
11

t

r
15

4

z
t

� �
� 70

z
t

� �3

þ 252
z
t

� �5
� �

; ð2eÞ

L6ðzÞ ¼
ffiffiffiffiffi
13

t

r
� 5

16
þ 105

4

z
t

� �2

� 315
z
t

� �4

þ 924
z
t

� �6
� �

; ð2fÞ

L7ðzÞ ¼
ffiffiffiffiffi
15

t

r
�35

8

z
t

� �
þ 315

2

z
t

� �3

� 1386
z
t

� �5

þ 3432
z
t

� �7
� �

:

ð2gÞ
We set
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where K is the order of the plate theory; for K 6 2, the plate
theory is called higher order. It should be noted that
ui,vi,wi(i = 0,1,2, . . . ,K) have the units of (length)1/2 since
dimensions of orthonormal Legendre polynomials are
1/(length)1/2 . Recalling that L0iðzÞ ¼ dLi=dz is a polynomial
of degree (i � 1) in z, we write
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Note that elements in the first row and the last column of
the (K + 1) · (K + 1) matrix dij are zeros. For infinitesimal
deformations, the strains e are given by
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where for i = 0,1,2, . . . ,K, gi is a six-dimensional vector
with components
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gið1Þ ¼ oui=ox; gið2Þ ¼ ovi=oy; gið3Þ ¼
XK

j¼0

djiwj; ð7aÞ

gið4Þ ¼ owi=oy þ
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j¼0

ujdji; ð7bÞ

gið6Þ ¼ ovi=oxþ oui=oy: ð7cÞ

The terms involving dij couple Kth order displacements
with those of lower order. Using Hooke’s law, stresses at
a material point x = (x,y,z) are given by

r ¼ rxx ryy rzz ryz rzx rxyf gT ¼ De; ð8Þ

where D, the matrix of elastic constants, is a function of z.
Substitution from (6) and (7) into (8) gives stresses at a
point (x,y,z) in terms of displacements and in-plane gradi-
ents of displacements at the point (x,y, 0).

Let ~u;~v, and ~w be three linearly independent functions
defined on the mid-surface S . Multiplying equations
expressing the balance of linear momentum in the x-, the
y-, and z-directions by ~u;~v, and ~w, respectively, adding
the resulting equations, and using the divergence theorem,
we obtainZ
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where n is the unit outward normal on the boundary oX, f

the body force, ~e the strain vector obtained from Eq. (6)
with u, v, and w replaced by ~u; ~v, and ~w, respectively,
{q±} the traction on the top and the bottom surfaces of
the plate, Cu and Cf are disjoint parts of the boundary C
of S where displacements and surface tractions are pre-
scribed, respectively, as �u and �f . Neglecting the body force,
substituting from (6) and (8) into (9), and integrating with
respect to z from �t/2 to t/2 giveXK

i¼0

XK

j¼0

Z
S
f~gigT½Dij�fgjgdS �

Z
Cu

f~gigT½n�½Dij�fgjgdS
� �

¼
XK

i¼0

Z
Cf

f~ugT
i f�f igdCþ Li �

t
2

� �Z
S
f~uigTfq�gdS

" #
ð10Þ

where

f�f ig ¼
Z t=2

�t=2

LiðzÞff gdz; ð11aÞ

½Dij� ¼
Z t=2

�t=2

½D�LiðzÞLjðzÞdz ð11bÞ

and the matrix [Dij] is 6(K + 1) · 6(K + 1). Since material
properties are assumed to vary in the thickness direction
only, Dij is independent of x and y. For a plate made of
a homogeneous material, Eq. (11b) simplifies to
[Dij] = [D]dij.
3. Interpolation using radial basis functions

Consider a continuous function u(x) defined on the
domain X having a set of nodes suitably located in it. Using
polynomial and radial basis functions, an interpolation of
u(x) in terms of quantities evaluated at nodes surrounding
a point xQ can be written as

uðx; xQÞ ¼
Xn
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where n is the number of nodes in the neighborhood of xQ,
gi(x) the radial basis function, pj(x) the monomial, m� n

the number of polynomial terms, and ai(xQ) and bj(xQ)
are coefficients to be determined.

Enforcing the interpolation to pass through all n scat-
tered points within the domain of influence leads to
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The interpolation of the function u(x) can then be ex-
pressed as

uðxÞ ¼ ½GTðxÞP TðxÞ�A�1 ue

0
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¼ UðxÞue; ð18Þ

where the shape function U(x) is given by
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Here Ai;k is the (i,k) element of the matrix A�1. The deriv-
atives of /k (x) have the following expressions:
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Fig. 2. The support and interpolation domains used in deriving discrete
equations for node i; the region enclosed by a solid circle of radius rs

equals the support of node i, and that enclosed by the dotted circle of
radius ri represents the interpolation domain.
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Among the many choices for RBFs we use the following
Multiquadrics (MQ) and Thin Plate Splines (TPS).

giðx; yÞ ¼ ðr2
i þ c2Þb; ðMQÞ ð23aÞ

giðx; yÞ ¼ ðriÞa log ri; ðTPSÞ ð23bÞ

Here, constants b, c, and a are shape parameters, and
ri = [(x � xi)

2 + (y � yi)
2]1/2.

4. Implementation of the MLPG method for the compatible

HOSNDPT

4.1. Test function of MLPG1

In the MLPG1 method employed here, the weight func-
tion is taken as the test function. That is

wJ ¼ W ðx� xJ Þ: ð24Þ

Furthermore, we use the following fourth-order spline
function as the weight function.

W ðx� xJ Þ ¼
1� 6 dJ
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� 3 dJ
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; 0 6 dJ 6 rs;

0; dj P rs:

8<:
ð25Þ

Here dJ = |x � xJ|, and rs equals the support of the weight
function. We use circular subdomains of radius rs centered
at the node located at xi , hereafter also called node I or xi;
thus the support of W equals the subdomain.

4.2. Derivation of algebraic equations

Let Si 	 S be a smooth two-dimensional region associ-
ated with a node in S, Cui = oSi [ Cu, Cfi = oSi [ Cf and
Ci0 = oSi � Cui � Cqi. Let /1,/2, . . . ,/N, and w1,w2, . . . ,wN

be linearly independent functions defined on Si. For a Kth
order plate theory there are 3(K + 1) unknowns at a point
in Si or S. We write these as a 3(K + 1)-dimensional array
and set

fuðx; yÞg ¼
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½/J ðx; yÞ�fdJg; ð26Þ

f~uðx; yÞg ¼
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J¼1

½wJ ðx; yÞ�ð~dJ Þ; ð27Þ

where for each J, {dJ} is a 3(K + 1)-dimensional array, and
[/J] a square matrix of 3(K + 1) rows and columns. Simi-
larly, f~dJg is a 3(K + 1)-dimensional array, and {wJ} a
square matrix of 3(K + 1) rows and columns. The shape
functions /J are obtained using the radial basis functions
described above, and functions wJ equal the weight func-
tions. The unknowns {dJ} are nodal displacements (similar
to those in the FEM). Substitution from (26) into (7) gives

fgg ¼
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½BJ �fdJg; f~gg ¼
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J¼1

½eBJ �f~dJg; ð28Þ
where {g} is a 6(K + 1)-dimensional array, and BJ a
6(K + 1) · 3(K + 1) matrix. The 6(K + 1) rows of BJ can
be divided into (K + 1) blocks of six rows each. The six
rows of the ith block of BJ are given below
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266666666664

377777777775
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ð29Þ
Elements of matrix eBJ are obtained from those of matrix
BJ by replacing /J with wJ. Replacing the domain S of inte-
gration in Eq. (10) by Si, substituting for {u} and {ũ} from
Eqs. (26) and (27), and requiring that the resulting equa-
tion hold for all choices of f~dg, we arrive at the following
system of algebraic equations:

½KIJ �fdJg ¼ fF Ig; ð30Þ
where

½KIJ � ¼
Z

Si

ð½eBI �T½D�½BJ �ÞdX�
Z

Cui

ð½wI �
T½n�½D�½BJ �ÞdC

�
Z

Ci0

ð½wI �
T½n�½D�½BJ �ÞdC; ð31Þ

fF Ig ¼
Z

Cfi

½wI �
Tf�f gdCþ Lið�t=2Þ

Z
Si

½wI �
Tfq�gdX: ð32Þ

Equations similar to Eq. (30) are derived for each circular
subdomain Si with center at the node xi. Gauss quadrature
rule of an appropriate order is employed to numerically
evaluate integrals over each subdomain. For each quadra-
ture point, the trial solution is interpolated. Therefore, for
a node xi there are two local domains: the support of the
test function which is a circle of radius rs centered at xi,
and the interpolation domain of size ri for each Gauss
point. Fig. 2 shows the local subdomain for the node xi,
and the interpolation domain for the integration point
xQ. These two domains are independent of each other,
and we set rs = asdi , and ri = aidi, where as and ai are con-
stants, and di is the distance from the node xi to the node
nearest to it.
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Fig. 3. For different values of p, variation of Young’s modulus through
the plate thickness.
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5. Effective elastic moduli

Methods available to determine effective elastic moduli
of a composite comprised of two constituents include the
Rule of Mixtures, the three-phase model of Frohlich and
Sack [40], the Self-Consistent scheme [41], the Mori–
Tanaka technique [38], the mean field approach [42], and
the representative volume element. With effective moduli
determined by the Mori–Tanaka and the Self-Consistent
methods, Vel and Batra [39,43,44] have given an analytical
solution for static and dynamic deformations of a simply
supported FG plate. Qian et al. [20] also used the Mori–
Tanaka method to find effective elastic moduli, and then
studied deformations of FG thick plates with the MLPG
method. The rule of mixtures is the easiest to use but does
not account for the interaction among constituents. The
Mori–Tanaka method accounts approximately for these
interactions, and is used here to determine the effective bulk
modulus Ke and the effective shear modulus le from the fol-
lowing relations:

Ke �K1

K2�K1

¼ V 2

1þ ð1� V 2Þð3ðK2�K1Þ=ð3K1þ 4l1ÞÞ
; ð33Þ

le � l1

l2� l1

¼ V 2

1þ ð1� V 2Þðl2 � l1Þ=ðl1þ l1ð9K1þ 8l1Þ=6ðK1 þ 2l1ÞÞ
:

ð34Þ

Here K1, l1, and V1 are, respectively, the bulk modulus, the
shear modulus and the volume fraction of constituent 1,
and K2, l2 and V2 = 1 � V1 are the corresponding quanti-
ties of constituent 2. The effective mass density of the
homogenized medium is determined exactly by the rule of
mixtures. The effective bulk and the shear moduli are re-
lated to Young’s modulus and Poisson’s ratio at each single
point in through-thickness direction by

K ¼ E
3ð1� 2mÞ ; l ¼ E

2ð1þ mÞ : ð35Þ
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Fig. 4. Comparison of the computed non-dimensional centroidal deflec-
tion with that obtained from the analytical solution (SSSS square plate,
pressure = q0 sinpx/a sinpy/a, V �c ¼ 0; V þc ¼ 1).
6. Numerical solution of problems

A number of problems have been analyzed to demon-
strate the accuracy and the convergence of the present
method. Boundary conditions imposed at a simply sup-
ported (S), a clamped (C), and a free (F) edge are

S : rxx ¼ 0; w ¼ v ¼ 0 on x ¼ 0; a;

ryy ¼ 0; u ¼ w ¼ 0 on y ¼ 0; b;

C : u ¼ v ¼ w ¼ 0; on x ¼ 0; a; y ¼ 0; b;

F : rxx ¼ rxy ¼ rxz ¼ 0 on x ¼ 0; a;

ryy ¼ ryx ¼ ryz ¼ 0 on y ¼ 0; b:

FG plates are comprised of either an aluminum alloy
(Al) and zirconia (ZrO2) or an aluminum alloy and a cera-
mic (SiC). Values of parameters for these materials are
Al : Em ¼ 70 GPa; mm ¼ 0:3; qm ¼ 2702 kg=m3

ZrO2 : Ez ¼ 200 GPa; mz ¼ 0:3; qz ¼ 5700 kg=m3

SiC : Ec ¼ 427 GPa; mc ¼ 0:17; qc ¼ 3100 kg=m3

The volume fraction of the ceramic is given by

V c ¼ V �c þ ðV þc � V �c Þ
1

2
þ z

t


 �p

; ð36Þ

where V þc and V �c are, respectively, volume fractions of
the ceramic on the top and the bottom surfaces of the
plate, and the parameter p dictates the variation through
the thickness of the volume fraction of the ceramic. For
an aluminum/zirconia FG plate, p = 0 and 1 correspond,
respectively, to homogeneous plates with uniform distri-
butions, V þc and V �c , of zirconia. The through-the-thick-
ness variation of the effective Young’s modulus, E, of
the composite for different values of p is exhibited in
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Fig. 3 for the aluminum/zirconia plate. Poisson’s ratio,
computed from Eqs. (33)–(35) also varies through the
plate thickness. The midsurface of the square plate is dis-
cretized with 169 uniformly distributed nodes. For all
example problems studied, the fifth-order plate theory
(K = 5) is used, and plate thickness/length equals 0.2; thus
the plate is thick.

As indicated in [34–36], the selection of the shape
parameters of RBFs affects the accuracy and performance
of the meshless method for two-dimensional solid prob-
lems, and could be influenced by the ‘mesh’ size/density.
The optimal values of the shape parameters obtained for
the two-dimensional solid problems [34–36] may not be
applicable to other engineering problems with different
PDEs. The authors have conducted a systematic study on
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Fig. 6. Comparison of the computed deflection of points on the vertical
line passing through the plate centroid with that derived from the
analytical solution (SSSS square plate, pressure = q0 sinpx/a sinpy/a,
V �c ¼ 0; V þc ¼ 0:75; p ¼ 2).
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Fig. 5. Comparison of the computed non-dimensional axial stress at the
center of the top surface with that obtained from the analytical solution
(SSSS square plate, pressure = q0 sinpx/a sinpy/a, V �c ¼ 0; V þc ¼ 1).
the effect of the shape parameters on the bending analysis
of thick isotropic homogeneous plates [45], and our previ-
ous results has indicated that optimum values of shape
parameters for plate problems are the same as those for
two-dimensional elasticity problems [36]. It was also found
in [45] that for the Multiquadric RBFs, there is a wide
range of values of the shape parameter c which yield
acceptable results; optimum values of shape parameters
are c = 6d, b = 1.99 for MQ, and a = 4 for TPS where d

is the minimum distance between any two nodes. These val-
ues should work for the FG plate too since two-dimen-
sional equations for a FG plate differ from those of a
homogeneous plate in the evaluation of the matrix [Dij]
defined by Eq. (11b). An interesting aspect of the present
work is to delineate through-the-thickness variation of dif-
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Fig. 7. Comparison of through-the-thickness variation of the computed
axial stress at points on the vertical line passing through the plate centroid
with that obtained from the analytical solution (SSSS square plate,
pressure = q0 sinpx/a sinpy/a, V �c ¼ 0; V þc ¼ 0:75; p ¼ 2).
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Fig. 8. Comparison of through-the-thickness distribution of the shear
stress rxz at the plate edge x = 0,y = b/2 with that obtained from the
analytical solution (SSSS square plate, pressure = q0 sinpx/a sinpy/a,
V �c ¼ 0; V þc ¼ 0:75; p ¼ 2).
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Fig. 9. Through-the-thickness distribution of the shear stress, rxz, at the
plate edge x = 0,y = b/2 for homogeneous aluminum, ceramic and FG
plates (SSSS square plate, pressure = q0 sinpx/asinpy/a).
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Fig. 10. For different values of the index p, deflection of points on the
vertical line passing through the plate centroid (SSSS square plate,
uniform pressure, V �c ¼ 0; V þc ¼ 1).
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ferent variables. As is common in solid mechanics, we set
the body force field equal to zero.

In the figures and tables to follow, the vertical or the
transverse displacement or the deflection w, the axial in-
plane stress rxx, the transverse shear stress rxz, and the
thickness co-ordinate z are non-dimensionalized as

�w ¼ 100Emt3

12a4ð1� m2
mÞq0

w; �rxx ¼
t2

q0a2
rxx;

�z ¼ 2z
t
; �rxz ¼

10t
q0a

rxz ð37Þ

where a is the length of the side of a square plate, t the plate
thickness, and q0 is the magnitude of the normal traction
on the top surface of the plate.

6.1. Comparison of numerical and analytical solutions

Computed centroidal deflection, axial in-plane stress at
the center of the top surface, and through-the-thickness
variation of the deflection, the axial stress at points on
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(b) TPS 

Fig. 11. For different values of p, variation of the axial stress at points on
the vertical line passing through the plate centroid (SSSS square plate,
uniform pressure, V �c ¼ 0; V þc ¼ 1).
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the vertical line passing through the centroid, and the
transverse shear stress at points on the vertical line passing
through the point (0, a/2,0) of a simply supported square
Al/SiC square FG plate loaded on the top surface by the
normal pressure q0 sinpx/a sinpy/a are compared in Figs.
4–7 with the corresponding results from the analytical solu-
tion of Vel and Batra [39]. It is clear from the plots of Figs.
4 and 5 that for V �c ¼ 0; V þc ¼ 1 and different values of the
index p in Eq. (36), the MQ and the TPS basis functions
give centroidal deflections and the axial stress at the center
of the top surface that are very close to those obtained ana-
lytically. However, as can be seen from results depicted in
Fig. 6, for V �c ¼ 0; V þc ¼ 0:75 and p = 2, deflections of
points on the vertical line passing through the plate cen-
troid computed with the MQ basis functions are closer to
their analytical values than those obtained with the TPS
basis functions; the maximum deviation from the analytical
value of the computed deflection of any point on this line is

1% for the TPS and 
0.5% for the MQ. Plots of the axial
stress included in Figs. 5 and 7 imply that the axial stress
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(b) Axial stress 

Fig. 12. Comparison of MLPG MQ deflection and axial stress at points
on the vertical line passing through the plate centroid with those computed
by the finite element method (SSSS boundary condition, uniformly
distributed pressure, V �c ¼ 0; V þc ¼ 1).
computed with the MQ and the TPS basis functions at
every point on the vertical line passing through the plate
centroid matches very well with that obtained from the
analytical solution. Stresses computed from numerical
solutions at points on plate boundaries usually have larger
errors than those at interior points. We have compared in
Fig. 8 values of the transverse shear stress, rxz, at points
on the vertical line passing through the point (0,a/2,0)
found from the analytical solution and the numerical solu-
tions with MQ and TPS. The maximum errors in the trans-
verse shear stress computed with the MQ and the TPS basis
functions equal 
4% and 16%, respectively. This agrees
with the observations in [44] for isotropic plates where
the TPS basis functions were found to give accurate values
of stresses at centers of different horizontal planes but not
at points on the plate edges.

Because of the non-uniform composition of the material
through the plate thickness, the maximum value of the
transverse shear stress does not occur at a point on the
midsurface as it does for an isotropic plate; e.g see Fig. 9.
-1.05

-1.03

-1.01

-0.99

-0.97

-0.95

-0.93

-0.91

-0.89

-0.87

-1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00

MLPG (p = 3.0)
MLPG (p = 1.5)
FEM (p = 3.0)
FEM (p = 1.5)

Non-Dimensional Thickness

N
on

-D
im

en
si

on
al

 D
ef

le
ct

io
n

(a) Deflection

-1.25

-1.00

-0.75

-0.50

-0.25

0

0.25

0.50

0.75

-1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00

MLPG (p = 3.0)
MLPG (p = 1.5)
FEM (p = 3.0)
FEM (p = 1.5)

Non-Dimensional Thickness

N
on

-D
im

en
si

on
al

 A
xi

al
 S

tr
es

s

(b) Axial stress 

Fig. 13. Comparison of MLPG MQ deflection and axial stress at points
on the vertical line passing through the plate centroid with those computed
by the finite element method (SFSF boundary condition, uniformly
distributed pressure, V �c ¼ 0; V þc ¼ 1).
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The location of the point of the maximum transverse shear
stress is determined by the value of the index p in Eq. (36).
We note that the magnitudes of the maximum shear stress
for the aluminum and the FG plates are the same.

6.2. Results for an uniformly distributed pressure on the top
surface of the plate

We have also studied deformations of a simply sup-
ported Al/ZrO2 square plate loaded by an uniformly dis-
tributed pressure applied to its top surface. Figs. 10 and
11 show, respectively, the through-the-thickness distribu-
tions of the deflection and the stress at points on a vertical
line passing though the plate centroid computed with both
MQ and TPS RBFs. It can be seen that the addition of
ZrO2 to the Al plate reduces deflections since Young’s
modulus of ZrO2 is nearly three times that of Al. Further-
more, through-the-thickness distribution of the axial stress
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Fig. 14. For four values of the volume fraction of zirconia on plate’s top
surface, deflection of points on the vertical line passing through the plate
centroid (SSSS square plate, uniform pressure, V �c ¼ 0).
becomes non-linear as opposed to being affine for a homo-
geneous material. Also, there is a reduction in the maxi-
mum tensile stress induced at points on the bottom
surface of the plate and an increase in the maximum com-
pressive stress at points on the top surface of the plate.
Through-the-thickness distributions of the deflection and
the axial stress for p = 0.5, 1, and 2 are similar to each
other and agree well with those given in Qian et al. [20]
who used MLS basis functions. The MQ and TPS RBFs
give very close values for both the deflection and the axial
stress.

Through-the-thickness distributions of the deflection
and the axial stress for a homogeneous plate are slightly
asymmetric about the plate midsurface because of the
asymmetry in the loads; the top surface has a uniformly
distributed pressure acting on it while the bottom surface
is traction free; this asymmetry was also found in the ana-
lytical solution of the problem.
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Fig. 15. For four values of the volume fraction of zirconia on plate’s top
surface, variation of the axial stress at points on the vertical line passing
through the plate centroid (SSSS square plate, uniform pressure, V �c ¼ 0).
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6.2.1. Comparison with results from the three-dimensional

analysis of the problem

We now provide validation of our results by comparing
them with those obtained from the analysis of the three-
dimensional problem by the finite element method
(FEM). The FE mesh (12,000 solid elements in total) was
created by using the commercial CAE code MSC Marc
with 20 solid elements each in the x- and y-directions,
and 30 elements in the thickness (z-) direction. Each one
of the 30 layers in the thickness direction was assumed to
be homogeneous with material properties (Young’s modu-
lus and Poisson’s ratio) determined from Eqs. (33)–(36);
thus the plate is assumed to be comprised of 30 layers of
isotropic homogeneous materials perfectly bonded to each
other. For p = 1.5 and 3.0, with boundary conditions SSSS
and SFSF, Figs. 12 and 13 show, respectively, the compar-
isons of the MQ-MLPG computed deflections and the axial
stress (rxx) at points on the vertical line passing through
the plate centroid with those obtained from the FEM. It
can be seen that the MQ-MLPG results agree very well
with those from the FEM. Similar excellent agreements
Table 1
Non-dimensional deflections at points on the vertical line passing through
the centroid of a SSSS Al/ZrO2 plate (uniformly distributed traction,
V �c ¼ 0; V þc ¼ 1)

�z Aluminum Zirconia p = 0.5 p = 1 p = 2

MQ, MLPG1

�1 �0.4607 �0.1613 �0.2396 �0.2771 �0.313
�0.5 �0.4726 �0.1654 �0.2468 �0.2859 �0.3229

0 �0.4775 �0.1671 �0.2505 �0.2905 �0.328
0.5 �0.4759 �0.1665 �0.2505 �0.2909 �0.3286
1 �0.4671 �0.1635 �0.2466 �0.2866 �0.3241

TPS, MLPG1

�1 �0.4568 �0.1599 �0.2375 �0.2747 �0.3104
�0.5 �0.4687 �0.164 �0.2447 �0.2835 �0.32

0 �0.4734 �0.1657 �0.2482 �0.2878 �0.3251
0.5 �0.4718 �0.1652 �0.2482 �0.2882 �0.3259
1 �0.4687 �0.1622 �0.2443 �0.2841 �0.3214

Table 2
Non-dimensional axial stress at points on the vertical line passing through
the centroid of a SSSS Al/ZrO2 plate (uniformly distributed
traction,V �c ¼ 0; V þc ¼ 1)

�z Aluminum Zirconia p = 0.5 p = 1 p = 2

MQ, MLPG1

�1 0.2876 0.2876 0.172 0.2028 0.2268
�0.5 0.1372 0.1372 0.1512 0.1428 0.1336

0 �0.00472 �0.00472 0.0378 0.0448 0.03992
0.5 �0.1468 �0.1468 �0.1356 �0.1232 �0.1092
1 �0.2968 �0.2968 �0.3856 �0.424 �0.468

TPS, MLPG1

�1 0.288 0.288 0.1724 0.2028 0.2268
�0.5 0.138 0.138 0.1512 0.1428 0.1336

0 �0.00389 �0.00389 0.0386 0.0452 0.0404
0.5 �0.1456 �0.1456 �0.134 �0.1216 �0.108
1 �0.296 �0.296 �0.384 �0.424 �0.464
between results computed by the two methods were
obtained for the CCCC and the SCSC plates; these results
are omitted for the sake of brevity.

6.3. Effect of zirconia volume fraction variation

The effect of increasing the volume fraction, V þc , of Zirco-
nia in plate’s top surface on through-the-thickness distribu-
tions of the deflection and the axial stress is depicted in Figs.
14 and 15, respectively. With an increase in V þc both the
transverse deflection of a point and the axial tensile stress
at a point on plate’s bottom surface decrease. However,
the magnitude of the maximum compressive stress at a point
on plate’s top surface increases with an increase in V þc .

6.4. Effect of boundary conditions

Results for a square Al/ZrO2 functionally graded plate
with edges CCCC, SCSC, and SFSF and the results are
given in Tables 3–8, and those a simply supported plate
(SSSS) are included for comparison in Tables 1 and 2.
For the boundary conditions considered, the MQ and
Table 3
Non-dimensional deflection at points on the vertical line passing through
the centroid of a CCCC Al/ZrO2 plate (uniformly distributed traction,
V �c ¼ 0; V þc ¼ 1)

�z Aluminum Zirconia p = 0.5 p = 1 p = 2

MQ, MLPG1

�1 �0.2004 �0.0701 �0.1019 �0.1187 �0.1368
�0.5 �0.2061 �0.0722 �0.1054 �0.1229 �0.1416

0 �0.2088 �0.0731 �0.1073 �0.1253 �0.1444
0.5 �0.209 �0.0731 �0.1077 �0.126 �0.1454
1 �0.2059 �0.0721 �0.1063 �0.1244 �0.1437

TPS, MLPG1

�1 �0.1997 �0.0699 �0.1015 �0.1182 �0.1362
�0.5 �0.2055 �0.0719 �0.105 �0.1224 �0.141

0 �0.2082 �0.0729 �0.1069 �0.1248 �0.1438
0.5 �0.2082 �0.0729 �0.1073 �0.1255 �0.1447
1 �0.2051 �0.0718 �0.1058 �0.1239 �0.143

Table 4
Non-dimensional axial stress at the points on the vertical line passing
through the centroid of a CCCC Al/ZrO2 plate (uniformly distributed
traction, V �c ¼ 0; V þc ¼ 1)

�z Aluminum Zirconia p = 0.5 p = 1 p = 2

MQ, MLPG1

�1 0.1432 0.1432 0.0844 0.0992 0.1116
�0.5 0.0636 0.0636 0.0712 0.0668 0.0624

0 �0.00804 �0.00804 0.01412 0.01788 0.01564
0.5 �0.0796 �0.0796 �0.0732 �0.0664 �0.0592
1 �0.1592 �0.1592 �0.2044 �0.2252 �0.248

TPS, MLPG1

�1 0.1428 0.1428 0.0848 0.0992 0.1112
�0.5 0.0636 0.0636 0.0708 0.0668 0.062

0 �0.00808 �0.00808 0.01412 0.01792 0.0156
0.5 �0.0796 �0.0796 �0.0728 �0.0664 �0.0592
1 �0.1588 �0.1588 �0.2036 �0.2244 �0.2464
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TPS RBFs give very close values of deflections and axial
stresses at points on the vertical line passing through the
plate centroid. A comparison of results in Tables 1, 3, 5,
and 7 reveals that both the magnitude of the deflection
Table 5
Non-dimensional deflection at points on the vertical line passing through
the centroid of a SCSC Al/ZrO2 plate (uniformly distributed traction,
V �c ¼ 0; V þc ¼ 1)

�z Aluminum Zirconia p = 0.5 p = 1 p = 2

MQ, MLPG1

�1 �0.2794 �0.0977 �0.143 �0.1664 �0.1909
�0.5 �0.2872 �0.1005 �0.1477 �0.1721 �0.1973

0 �0.2905 �0.1017 �0.1501 �0.1751 �0.2008
0.5 �0.2903 �0.1016 �0.1505 �0.1758 �0.2018
1 �0.2855 �0.0999 �0.1483 �0.1734 �0.1993

TPS, MLPG1

�1 �0.2771 �0.097 �0.1419 �0.1651 �0.1894
�0.5 �0.2849 �0.01 �0.1465 �0.1707 �0.1957

0 �0.2882 �0.1009 �0.1489 �0.1737 �0.1993
0.5 �0.288 �0.1008 �0.1492 �0.1743 �0.2002
1 �0.2833 �0.0991 �0.1472 �0.172 �0.1977

Table 6
Non-dimensional axial stress at points on the vertical line passing through
the centroid of a SCSC Al/ZrO2 plate (uniformly distributed traction,
V �c ¼ 0; V þc ¼ 1)

�z Aluminum Zirconia p = 0.5 p = 1 p = 2

MQ, MLPG1

�1 0.1796 0.1796 0.1052 0.1244 0.1408
�0.5 0.0856 0.0856 0.092 0.0872 0.0824

0 �0.002688 �0.002688 0.02316 0.02728 0.02444
0.5 �0.0908 �0.0908 �0.0824 �0.0752 �0.0672
1 �0.1848 �0.1848 �0.2356 �0.2604 �0.2884

TPS, MLPG1

�1 0.178 0.178 0.1044 0.1232 0.1396
�0.5 0.0848 0.0848 0.0912 0.0864 0.0816

0 �0.002784 �0.002784 0.02288 0.02696 0.02412
0.5 �0.0904 �0.0904 �0.082 �0.0744 �0.0668
1 �0.1832 �0.1832 �0.2336 �0.2576 �0.2852

Table 7
Non�dimensional deflection at points on the vertical line passing through
the centroid of a SFSF Al/ZrO2 plate (uniformly distributed traction,
V �c ¼ 0; V þc ¼ 1)

�z Aluminum Zirconia p = 0.5 p = 1 p = 2

MQ MLPG1

�1 �1.4092 �0.4931 �0.7378 �0.8509 �0.9518
�0.5 �1.4273 �0.4995 �0.7489 �0.8642 �0.9668

0 �1.4345 �0.5019 �0.7543 �0.8708 �0.9744
0.5 �1.4308 �0.5007 �0.7538 �0.8708 �0.9748
1 �1.4162 �0.4956 �0.7473 �0.8638 �0.9672

TPS MLPG1

�1 �1.4086 �0.4929 �0.7376 �0.8501 �0.9502
�0.5 �1.4261 �0.4991 �0.7483 �0.8630 �0.9645

0 �1.4330 �0.5015 �0.7532 �0.8693 �0.9719
0.5 �1.4295 �0.5003 �0.7530 �0.8693 �0.9723
1 �1.4156 �0.4954 �0.7469 �0.8628 �0.9651

�z Aluminum Zirconia p = 0.5 p = 1 p = 2

MQ MLPG1
-1 0.7360 0.7360 0.4400 0.5200 0.5840
�0.5 0.3604 0.3604 0.3968 0.3748 0.3496

0 �0.0028 �0.0028 0.1056 0.1232 0.1108
0.5 �0.3660 �0.3660 �0.3396 �0.3084 �0.2724
1 �0.7440 �0.7440 �0.9680 �1.0680 �1.176

TPS MLPG1

�1 0.7280 0.7280 0.4360 0.5160 0.5760
�0.5 0.3568 0.3568 0.3928 0.3708 0.3460

0 �0.0031 �0.0031 0.1040 0.1212 0.1092
0.5 �0.3632 �0.3632 �0.3368 �0.3060 �0.2704
1 �0.7360 �0.7360 �0.9600 �1.0560 �1.1600
and the axial stress at the center of a horizontal plane
decrease with a change in boundary conditions from SFSF
to SSSS, SSSS to SCSC, and SCSC to CCCC. The magni-
tudes of the deflection and the axial stress at the center of a
horizontal surface for a clamped plate are about one-half
of those for the corresponding simply supported plate.
The deflections for the SFSF plate are about three times
as much as the simply supported plate. The MQ and the
TPS RBFs give results that are very close to each other
for all boundary conditions examined.

7. Conclusions

A higher order shear and normal deformable plate the-
ory (HOSNDPT) has been combined with the Meshless
Local Petrov-Galerkin (MLPG) method to analyze static
deformations of functionally graded thick plates. The
MLPG method employs suitably located nodes in the
problem domain and does not require a mesh for either
interpolation of the trial solution or numerical evaluation
of integrals appearing in the weak formulation of the prob-
lem. The Multiquadric and Thin Plate Spline radial basis
functions have been used for approximating the trial solu-
tion and a fourth-order spline weight function for the test
function. The RBF shape functions satisfy the delta func-
tion property and thus no special technique is needed to
impose essential boundary conditions. Governing equa-
tions in the HOSNDPT are second-order partial differen-
tial equations, and traction boundary conditions on
plate’s top and bottom surfaces are exactly satisfied.

The plate material is comprised of two isotropic constit-
uents, and its macroscopic response is assumed to be iso-
tropic. The effective material properties are determined
using the Mori–Tanaka homogenization technique. For a
simply supported square plate, through-the-thickness dis-
tributions of the deflection and the axial stress are found
to agree very well with those found from the analytical
solution of Vel and Batra [39]. Also, for a plate with two
opposite edges free and the other two simply supported,
computed results are in excellent agreement with those
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obtained by analyzing three-dimensional deformations of
the plate by the finite element method. For all types of
boundary conditions, presently computed results match
well with those obtained by Qian et al. [20] who used basis
functions derived by the moving least squares approxima-
tion and modified the stiffness matrix and the load vector
to exactly satisfy essential boundary conditions. The pres-
ent implementation of the MLPG with RBFs is computa-
tionally less expensive as compared to the MLS scheme,
and yields equally accurate results. The MQ and TPS RBFs
give equally good results. However, for through-the-thick-
ness variation of the transverse shear stress at points on the
edge of a simply supported plate, the maximum deviations
in the computed stress with MQ and RBFs from the ana-
lytical values are 4% and 16%, respectively. The centroidal
deflection of a thick clamped square plate is nearly one-
fourth of that of a simply supported plate, about one-sev-
enth of a plate with two opposite edges simply supported
and the other two free, and about two-third of a plate with
two opposite edges simply supported and the other two
clamped. The axial tensile stress at the center of the bottom
surface of a clamped plate is about one-half of that of a
simply supported plate, one-fifth of that when two opposite
edges are simply supported and the other two are free, and
8–10th of that when two opposite edges are simply sup-
ported and the other two are clamped.
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