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1. Introduction Most of the spacial discretization techniques so far have been
Due to the high ratio of tensile modulus to transverse shear
modulus in composite materials, the use of shear deformation the-
ories is of crucial importance in static and dynamic analysis of
composite and sandwich laminates.

The classical laminate plate theory and the first-order shear
deformation theory [1–3] are the most typical and used deforma-
tion theories for the analysis of composite laminates. Higher-order
theories can also be used, with advantages regarding the warping
of the normal to the middle surface. Such theories also have the
advantage of disregarding shear correction factors and may yield
more accurate transverse shear stresses [4–10]. Classical, first-
order or higher-order theories also consider laminate-wise rota-
tions. However, in some laminates, particularly in sandwich
applications, the difference between material properties suggests
the use of layerwise theories, that consider independent degrees
of freedom for each layer. The layerwise theory of Reddy [11] is
perhaps the most popular layerwise theory for composite and
sandwich plate analysis. In this work, we adopt a layerwise theory
based on an expansion of Mindlin’s first-order shear deformation
theory in each layer. The displacement continuity at layer’s inter-
face is guaranteed and produces very accurate transverse shear
stress, in each layer middle surface. Other layerwise or zig-zag the-
ories have been presented by Mau [6], Chou and Corleone [12], Di
Sciuva [13], Murakami [14], Ren [15]. A recent and comprehensive
review of such theories in the analysis of multilayered plates and
shells has been presented by Carrera [16].
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based on finite differences and finite elements. In this study, a lay-
erwise shear deformation theory is implemented in a new numer-
ical scheme where collocation by radial basis functions is viewed
as a pseudospectral method to produce highly accurate results. In
this paper, we use a cross-validation technique to optimize the
shape parameter for the basis functions.

The radial basis function method was first used by Hardy [17,18]
for the interpolation of geographical scattered data and later used
by Kansa [19,20] for the solution of partial differential equations
(PDEs). Many other radial basis functions can be used as reviewed
in the recent book of Liu [21] and in the recent works [22–27].
The method has also been applied to other engineering problems
such as in [28–31]. The use of RBFs for 2D solids has been proposed
by Liu et al. [32–34] and by Ferreira [35–37] for composite lami-
nated plates and beams using the first-order and the third-order
shear deformation theory. The use of layerwise theories and radial
basis functions has also been proposed recently by Ferreira et al. for
the static deformations of composite plates in bending [38,39]. In
this paper, we combine for the first time a layerwise theory for
plates, a radial basis method with pseudospectral framework and
an optimization technique of the shape parameter.

2. RBF–PS methods

Pseudospectral (PS) methods (see the books [40] or [41] for an
introduction to the subject) are known as highly accurate solvers
for partial differential equations (PDEs). Generally speaking, one
represents the spatial part of the approximate solution û of a given
PDE by a linear combination of certain smooth basis functions
/j; j ¼ 1; . . . ;N, i.e.,
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ûðxÞ ¼
XN

j¼1

cj/jðxÞ; x 2 R: ð1Þ

Traditionally, polynomial basis functions are used, and there-
fore the above formulation is a univariate one. This leads to the
well-known limitation for PS methods: for higher space dimen-
sions their use is pretty much limited to tensor-product grids. In
this paper, however, we will use radial basis functions (RBFs) in-
stead of polynomials. This opens up the possibility to work with
irregular grids, and on irregular geometries while maintaining a
degree of accuracy similar to that obtained with PS methods.

The usual approach to solving PDEs with an RBF collocation
method is frequently referred to as Kansa’s method. For this method
one also starts with an expansion of the form (1), now with x 2 Rs.
However, one then imposes the boundary conditions for the PDE,
and forces the PDE and its boundary conditions to be satisfied at
a set of collocation points. This leads to a system of linear equa-
tions which is solved for the expansion coefficients cj in (1). Having
these coefficients, one can then evaluate the approximate solution
û at any point x via (1). Thus, with Kansa’s collocation method we
end up with an approximate solution that is given in terms of a
(continuous) function. For more details see, e.g. [42].

Recently, Fornberg et al. (see, e.g. [43,44]) and Schaback [45]
showed that certain limiting cases of radial basis functions corre-
spond to polynomial interpolants. This new insight has led to the
idea of using pseudospectral methods combined with radial basis
functions to solve PDEs (see, e.g. [46–48]). It is this numerical ap-
proach that we use for the eigenvalue analysis presented below.
For the sake of completeness, we summarize the main ideas of this
approach. Consider the linear elliptic PDE problem

Lu ¼ f in X ð2Þ

with Dirichlet boundary condition

u ¼ g on C ¼ oX: ð3Þ

For the pseudospectral approach, we start with an expansion of the
form

ûðxÞ ¼
XN

j¼1

cjuðkx� njkÞ; x 2 X � Rs; ð4Þ

where the points nj; j ¼ 1; . . . ;N are the centers of the basis functions
/j ¼ uðk � �njkÞ and u is one of the usual radial basis functions such
as the inverse multiquadric

uðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðerÞ2

q ; ð5Þ

the multiquadric

uðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðerÞ2

q
; ð6Þ

the Gaussian

uðrÞ ¼ e�ðerÞ
2
; ð7Þ

or a Wendland compactly supported function such as

uðrÞ ¼ ð1� erÞ8þð32ðerÞ3 þ 25ðerÞ2 þ 8er þ 1Þ: ð8Þ

The first three of these functions are infinitely differentiable, the
Wendland function is six times continuously differentiable. The in-
verse multiquadric, Gaussian and Wendland functions are positive
definite, while the multiquadric is conditionally negative definite.
Note that all of our examples contain a positive shape parameter
e. For (inverse) multiquadrics, our notation differs from another
popular one for which the shape parameter is denoted by c (not
to be confused with the coefficients cj in the expansion (4)), e.g.
uðrÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p

. However, the two formulations are equivalent
if we set e ¼ 1=c. For the Wendland function, the shape parameter
determines the size of the support radius (since the + notation indi-
cates that the function is identically equal to zero outside a sphere
of radius r=e). The advantage of our representation is that all RBFs
behave similarly under changes of e. In particular, e! 0 always
leads to ‘‘flat” basic functions, and it is exactly for this limiting case
that the connection to polynomials mentioned at the beginning of
this section arises. To be precise, since the compactly supported
Wendland functions possess only a limited amount of smoothness
they will not be able to provide the full spectral accuracy that poly-
nomials and the other infinitely smooth basis functions are able to.
However, the experiments below show that they still provide very
high accuracy, and moreover behave in a more stable way than the
other basis functions which proved to be beneficial for our eigen-
value analysis.

If we evaluate (4) at a set of collocation points xi; i ¼ 1; . . . ;N,
then we get

ûðxiÞ ¼
XN

j¼1

cjuðkxi � njkÞ; i ¼ 1; . . . ;N;

or in matrix–vector notation

u ¼ Ac; ð9Þ

where c ¼ ½c1; . . . ; cN�T is the coefficient vector, the evaluation matrix
A has entries Aij ¼ uðkxi � njkÞ, and u ¼ ½ûðx1Þ; . . . ; ûðxMÞ�T is a vector
of values of the approximate solution at the collocation points.

An important feature of pseudospectral methods is the fact that
one usually is content with obtaining an approximation to the
solution on a discrete set of grid points xi; i ¼ 1; . . . ;N instead of
at an arbitrary point x, as in the popular non-symmetric RBF collo-
cation approach (or Kansa’s method). One of several ways to imple-
ment the pseudospectral method is via the so-called differentiation
matrices, i.e., one finds a matrix L such that at the grid points xi we
have

uL ¼ Lu: ð10Þ

Here u ¼ ½ûðx1Þ; . . . ; ûðxNÞ�T is the vector of values of û at the grid
points mentioned above, and uL is the vector of values of the
‘‘derivatives” of u at the same points.

Therefore, instead of computing the coefficients c by solving a
collocation system – as is done in the standard RBF collocation
approach (Kansa’s method) – we want to use the differentiation
matrix L so that in the end we will have a discrete version of the
PDE in the form

Lu ¼ f ; ð11Þ

where u is as above and f is the vector of values of the right-hand
side f of (2) evaluated at the collocation points.

Since the differential equation for our problem is Lu ¼ f , we
will apply the differential operator L to the approximate solution
û as given by (4). By linearity we get

LûðxÞ ¼
XN

j¼1

cjLuðkx� njkÞ:

Evaluation of this formula at the collocation points xi yields a
system of linear algebraic equations which can be written in
matrix–vector notation as

Lu ¼ ALc; ð12Þ

where u and c are as in (9) above, and the matrix AL has entries
Luðkx� njkÞjx¼xi

. The coefficients – which we do not explicitly
compute – are given by (9), i.e., c ¼ A�1u, so that we formally get

Lu ¼ ALA�1u; ð13Þ
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and we see that the differentiation matrix L is given by L ¼ ALA�1.
The name differentiation matrix is due to the fact that L takes the
vector u of function values to the vector Lu ¼ uL of ‘‘derivative” val-
ues (cf. (10)).

Note that this matrix involves inverting the standard RBF inter-
polation matrix A which is known to be nonsingular for all the dis-
tributions of centers nj and (coinciding) collocation points xi. This
property of A ensures that (at this point in our discussion) we will
not run into the problems of possible non-invertibility of the collo-
cation matrix encountered in the popular Kansa method.

Also note that we have not yet enforced the boundary condi-
tions. This, however, is – for the Dirichlet case we are considering
here — an absolutely trivial matter. We simply replace those rows
of L corresponding to the boundary collocation points (at which we
want to enforce the boundary conditions) by standard unit vectors
with one in the diagonal position and zeros elsewhere, and replace
the corresponding f ðxkÞ on the right-hand side by gðxkÞ (cf. (3)). It is
obvious that this works since the resulting product of (boundary)
row k of L with the vector u now corresponds to ûðxkÞ ¼ gðxkÞ
(see, e.g. [41]). One can show that the resulting matrix LBC which
also enforces the boundary condition is very closely related to
the Kansa matrix, i.e., after a possible permutation of rows we
obtain

LBCu ¼
eALeA

" #
A�1u;

where the block matrix on the right-hand side is exactly Kansa’s
matrix. To obtain a numerical approximation to the solution of
the elliptic problem (2) and (3), we actually need to compute

u ¼ L�1
BC

f
g

� �
¼

eALeA
" #

A�1

" #�1
f
g

� �
; ð14Þ

which is the solution of the fully discretized problem (including
both the differential operator and the boundary conditions). Assum-
ing invertibility of the two matrix factors gives

u ¼ A
eALeA

" #�1
f
g

� �
:

This is the same end result as one obtains if the approximate
solution for the non-symmetric collocation method (Kansa’s
method) is evaluated at the collocation points. Note, that in this
formulation we now do require invertibility of the Kansa matrix
(just as in Kansa’s method).

However, as noted above, we do not work with the individual
matrices A, eAL, and eA, but instead use only the differentiation ma-
trix LBC, so that

u ¼ L�1
BC

f
g

� �
as stated in (14). Moreover, the coefficient vector c is never com-
puted. This can be especially beneficial in the time-dependent
problems.
3. Finding an ‘‘optimal’’ shape parameter

As mentioned above, a small shape parameter e! 0 will always
lead to ‘‘flat” basis functions. In fact, the shape parameter e can be
used to influence the accuracy of our numerical method: smaller
values of e generally lead to higher accuracy. However, it is known
that there exists a so-called trade-off principle (for infinitely
smooth RBFs), i.e., high accuracy can only be achieved at the cost
of low numerical stability or vice versa (see, e.g. [49]). This means
that it is very difficult to get near the polynomial limit in practice.
On the other hand, the optimal value of e, i.e., the value that pro-
duces the smallest error, is usually a positive value [44]. For the
Wendland functions we use below, the trade-off principle associ-
ated with the variation of e describes the balance between higher
accuracy (for small e) and numerical efficiency (which results from
the increasingly sparse matrices produced by higher values of �).
Numerical stability is not so much of an issue with these functions,
and that is why we use them here.

A popular strategy for estimating the parameter of a model
based on the given data is known as cross-validation. In [50], Rippa
describes an algorithm that corresponds to a variant of cross-vali-
dation known as ‘‘leave-one-out” cross-validation (LOOCV). This
method is rather popular in the statistics literature where it is also
known as PRESS (predictive residual sum of squares). In this algo-
rithm, an ‘‘optimal” value of e for the RBF interpolation problem is
selected by minimizing the error for a fit to the data based on an
interpolant for which one of the centers was ‘‘left out”. This meth-
od takes into account the dependence of the error on the data func-
tion. Therefore, the predicted ‘‘optimal” shape parameter is usually
close to the actual optimum value (which we can only find if we
know the exact solution of the interpolation problem). We will
adopt Rippa’s strategy to find the ‘‘optimal” shape parameter e of
the basis function used in the RBF-PS method.

First, we explain how the LOOCV method was used in [50] for
the interpolation problem. Specifically, if P

½k�
f is the radial basis

function interpolant to the data ff1; . . . ; fk�1; fkþ1; . . . ; fNg, i.e.,

P
½k�
f ðxÞ ¼

XN

j¼1
j 6¼k

c½k�j uðkx� xjkÞ;

and if Ek is the error

Ek ¼ fk �P
½k�
f ðxkÞ;

then the quality of the fit is determined by the norm of the vector of
errors E ¼ ½E1; . . . ; EN�T obtained by removing in turn one of the data
points and comparing the resulting fit with the (known) value at the
removed point. The norm of E as a function of e will serve as a cost
function for the shape parameter.

While a naive implementation of the leave-one-out algorithm is
rather expensive (on the order of N4), Rippa shows that the algo-
rithm can be simplified to a single formula

Ek ¼
ck

A�1
kk

; ð15Þ

where ck is the kth coefficient in the interpolant Pf based on the full
data set, and A�1

kk is the kth diagonal element of the inverse of the
corresponding interpolation matrix. This results in OðN3Þ computa-
tional complexity. Note that all entries in the error vector E can be
computed in a single statement in Matlab if we vectorize the com-
ponent formula (15) (see line 4 in Program 3.1). In order to find a
good value of the shape parameter as quickly as possible, we can
use the Matlab function fminbnd to find the minimum of the cost
function for e.

Thus, we can implement the cost function in the subroutine
CostEpsilon.m displayed in Program (3.1). Here, the pseudoin-
verse of A was used to ensure maximum stability in the solution
of the linear system. The cost is computed via the 2-norm.

Program 3.1. CostEpsilon.m

1 function ceps = CostEpsilon(ep,rbf,r,rhs)
2 A = rbf(ep,r);
3 invA = pinv(A);
4 EF = (invA*rhs)./diag(invA);
5 ceps = norm(EF(:));



Fig. 1. 1D representation of the layerwise kinematics.
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The calling sequence for CostEpsilon will look something like

½ep;fval� ¼ fminbndð@ðepÞCostEpsilonðep;rbf;DM;rhsÞ;
mine;maxeÞ;

where mine and maxe define the interval to search in for the opti-
mal e value, and DM is a distance matrix with entries kxi � njk used to
evaluate the RBF (in the interpolation setting).

The original algorithm in Rippa’s paper [50] was intended for
the interpolation problem. Therefore, in the context of RBF-PS
methods we use a modification of the basic routine CostEpsilon
which we call CostEpsilonDRBF (see Program (3.2) below). In-
stead of finding an optimal e for the interpolation problem
Ac ¼ f, we now need to optimize the choice of e for the matrix
problem (cf. (13))

L ¼ ALA�1 () LA ¼ AL () ATLT ¼ ðALÞT:

For simplicity, we illustrate the procedure with the first-order
derivative o

ox. In this case, we will write Ax instead of the generic
AL. Any other differential operator can be implemented analo-
gously. As long as the differential operator is of odd order, we will
have to provide both a distance matrix and a difference matrix. For
differential operators of even order such as the Laplacian, a dis-
tance matrix will suffice. For more details see [42].

Program 3.2. CostEpsilonDRBF.m

% ceps = CostEpsilonDRBF(ep, r, dx, rbf, dxrbf)
% Provides the ‘‘cost of epsilon” function for LOOCV %
optimization

% of shape parameter

% Input: ep, values of shape parameter

% r, dx, distance and difference matrices

% rbf, dxrbf, definition of rbf and its derivative

1 function ceps = CostEpsilonDRBF(ep, r, dx, rbf, dxrbf)
2 [m,n] = size(r);
3 A = rbf(ep,r); % = A

^
T since A is symmetric

4 rhs = dxrbf(ep, r, dx)’; % A x^T

5 invA = pinv(A);
6 EF = (invA*rhs)./repmat(diag(invA),1,m);
7 ceps = norm(EF(:));

Note that CostEpsilonDRBF.m is very similar to CostEpsi-

lon.m (cf. Program (3.1)). Now, however, we compute a right-hand
side matrix corresponding to the transpose of Ax. Therefore, the
denominator – which remains the same for all right-hand sides
(see formula (15)) – needs to be cloned on line 6 via the repmat

command. The cost of e is now again the (Frobenius) norm of the
matrix EF. Other measures for the error may also be appropriate.
For the standard interpolation setting, Rippa compared the use of
the ‘1 and ‘2 norms (see [50]) and concluded that the ‘1 norm
yields more accurate ‘‘optima”. For the RBF-PS problems to be pre-
sented here, we have observed very good results with the ‘2 (or
Frobenius) norm, and therefore that is what is used in line 7 of Pro-
gram (3.2).

A program that calls CostEpsilonDRBF and computes the dif-
ferentiation matrix (with optimal e) is given by

Program 3.3. DRBF.m

% [D,x] = DRBF(N,rbf,dxrbf)
% Computes the differentiation matrix D for 1D derivative

% using Chebyshev points and LOOCV for optimal shape

parameter

% Input: N, number of points �1
% rbf, dxrbf function handles for rbf and its % derivative

% Calls on: DistanceMatrix, DifferenceMatrix
% Requires: CostEpsilonDRBF
1 function [D,x] = DRBF(N,rbf,dxrbf)
2 if N==0, D=0; x = 1; return, end
3 x = cos(pi*(0:N)/N)’; % Chebyshev points

4 mine = .1; maxe = 10; % Shape parameter interval

5 r = DistanceMatrix(x,x);
6 dx = DifferenceMatrix(x,x);
7a ep = fminbnd(@(ep) CostEpsilonDRBF(ep,r,dx,rbf, dxrbf), � � �
7b mine, maxe);
8 fprintf(’Using epsilon = % f/n’, ep)
9 A = rbf(ep,r);
10 DA = dxrbf(ep,r,dx);
11 D = DA/A;
4. A layerwise theory

The layerwise theory proposed in this paper is based on the
assumption of the first-order shear deformation theory in each
layer and the imposition of displacement continuity at layer’s
interfaces. In each layer, the same assumptions as those the first-
order plate theories are considered. Due to the size and complexity
of the formulation, we restrict the analysis to a three-layer lami-
nate, as shown schematicaly in Fig. 1. However, the present ap-
proach is easily extendible to a general laminate.

The displacement field for the middle layer (sometimes known
as the core in sandwich laminates) is given as
2

uð2Þðx; y; zÞ ¼ u0ðx; yÞ þ zð2Þhð2Þx ; ð16Þ
vð2Þðx; y; zÞ ¼ v0ðx; yÞ þ zð2Þhð2Þy ; ð17Þ
wð2Þðx; y; zÞ ¼ w0ðx; yÞ; ð18Þ

where u and v are the in-plane displacements at any point
ðx; y; zÞ;u0 and v0 denote the in-plane displacement of the point
ðx; y; 0Þ on the midplane, w is the deflection, hð2Þx and hð2Þy are the
rotations of the normals to the midplane about the y and x axes,
respectively, for layer 2 (middle layer).

The correspondent displacement field for the upper layer (3)
and lower layer (1) is given, respectively, as
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uð3Þðx; y; zÞ ¼ u0ðx; yÞ þ
h2

2
hð2Þx þ

h3

2
hð3Þx þ zð3Þhð3Þx ; ð19Þ

vð3Þðx; y; zÞ ¼ v0ðx; yÞ þ
h2

2
hð2Þy þ

h3

2
hð3Þy þ zð3Þhð3Þy ; ð20Þ

wð3Þðx; y; zÞ ¼ w0ðx; yÞ; ð21Þ

uð1Þðx; y; zÞ ¼ u0ðx; yÞ �
h2

2
hð2Þx �

h1

2
hð1Þx þ zð1Þhð1Þx ; ð22Þ

vð1Þðx; y; zÞ ¼ v0ðx; yÞ �
h2

2
hð2Þy �

h1

2
hð1Þy þ zð1Þhð1Þy ; ð23Þ

wð1Þðx; y; zÞ ¼ w0ðx; yÞ; ð24Þ

where hk is the kth layer thickness and zðkÞ 2 ½�hk=2;hk=2� are the
kth layer z-coordinates. Deformations for layer k are given by

�ðkÞxx

�ðkÞyy

cðkÞxy

cðkÞxz

cðkÞyz

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
¼

ouðkÞ
ox

ovðkÞ
oy

ouðkÞ
oy þ ovðkÞ

ox

ouðkÞ
oz þ owðkÞ

ox

ovðkÞ
oz þ owðkÞ

oy

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
: ð25Þ

Therefore, in-plane deformations can be expressed as

�ðkÞxx

�ðkÞyy

cðkÞxy

8><>:
9>=>; ¼

�mðkÞ
xx

�mðkÞ
yy

cmðkÞ
xy

8><>:
9>=>;þ zðkÞ

�f ðkÞ
xx

�f ðkÞ
yy

cf ðkÞ
xy

8><>:
9>=>;þ

�mf ðkÞ
xx

�mf ðkÞ
yy

cmf ðkÞ
xy

8><>:
9>=>;; ð26Þ

and shear deformations as

cðkÞxz

cðkÞyz

( )
¼

ow0
ox þ hðkÞx

ow0
oy þ hðkÞy

( )
: ð27Þ

The membrane components are given by

�mðkÞ
xx

�mðkÞ
yy

cmðkÞ
xy

8><>:
9>=>; ¼

ou0
ox
ov0
oy

ou0
oy þ

ov0
ox

8>><>>:
9>>=>>;: ð28Þ

The bending components can be expressed as

�f ðkÞ
xx

�f ðkÞ
yy

cf ðkÞ
xy

8><>:
9>=>; ¼

ohðkÞx
ox

ohðkÞy

oy

ohðkÞx
oy þ

ohðkÞy

ox

8>>>><>>>>:

9>>>>=>>>>;; ð29Þ

and the membrane-bending coupling components for layers 2, 3
and 1 are, respectively, given as

�mf ð2Þ
xx

�mf ð2Þ
yy

cmf ð2Þ
xy

8><>:
9>=>; ¼

0
0
0

8><>:
9>=>;; ð30Þ

�mf ð3Þ
xx

�mf ð3Þ
yy

cmf ð3Þ
xy

8><>:
9>=>; ¼

h2
2

ohð2Þx
ox þ

h3
2

ohð3Þx
ox

h2
2

ohð2Þy

oy þ
h3
2

ohð3Þy

oy

h2
2

ohð2Þx
oy þ

ohð2Þy

ox

� �
þ h3

2
ohð3Þx
oy þ

ohð3Þy

ox

� �
8>>>>><>>>>>:

9>>>>>=>>>>>;
; ð31Þ

�mf ð1Þ
xx

�mf ð1Þ
yy

cmf ð1Þ
xy

8><>:
9>=>; ¼

� h2
2

ohð2Þx
ox �

h1
2

ohð1Þx
ox

� h2
2

ohð2Þy

oy �
h1
2

ohð1Þy

oy

� h2
2

ohð2Þx
oy þ

ohð2Þy

ox

� �
� h1

2
ohð1Þx
oy þ

ohð1Þy

ox

� �
8>>>>><>>>>>:

9>>>>>=>>>>>;
: ð32Þ

Setting rðkÞz ¼ 0 for each orthotropic layer, solving the equation for
�ðkÞzz and substituting for �ðkÞzz in the remaining equations, the
stress–strain relations in the fiber local coordinate system can be
expressed as

rðkÞ1

rðkÞ2

sðkÞ12

sðkÞ23

sðkÞ31

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
¼

Q 11 Q 12 0 0 0
Q 12 Q 22 0 0 0

0 0 Q33 0 0
0 0 0 Q 44 0
0 0 0 0 Q 55

26666664

37777775

ðkÞ eðkÞ1

eðkÞ2

cðkÞ12

cðkÞ23

cðkÞ31

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
; ð33Þ

where subscripts 1 and 2 are, respectively, the fiber and the normal
to fiber in-plane directions, 3 is the direction normal to the plate,
and the reduced stiffness components, Q ðkÞij , are given by

Q ðkÞ11 ¼
EðkÞ1

1� mðkÞ12m
ðkÞ
21

; Q ðkÞ22 ¼
EðkÞ2

1� mðkÞ12m
ðkÞ
21

; Q ðkÞ12 ¼ mðkÞ21 Q ðkÞ11 ;

Q ðkÞ33 ¼ GðkÞ12 ; Q ðkÞ44 ¼ GðkÞ23 ; Q ðkÞ55 ¼ GðkÞ31 ;

mðkÞ21 ¼ mðkÞ12
EðkÞ2

EðkÞ1

;

in which EðkÞ1 ; EðkÞ2 ; mðkÞ12 ;G
ðkÞ
12 ;G

ðkÞ
23 and GðkÞ31 are material properties of

lamina k. By performing coordinate transformations, the stress–
strain relations in the global x–y–z coordinate system can be ob-
tained as

rðkÞxx

rðkÞyy

sðkÞxy

sðkÞyz

sðkÞzx

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
¼

Q ðkÞ11 Q ðkÞ12 Q ðkÞ16 0 0

Q ðkÞ12 Q ðkÞ22 Q ðkÞ26 0 0

Q ðkÞ16 Q ðkÞ26 Q ðkÞ66 0 0

0 0 0 Q ðkÞ44 Q ðkÞ45

0 0 0 Q ðkÞ45 Q ðkÞ55

2666666664

3777777775

eðkÞxx

eðkÞyy

cðkÞxy

cðkÞyz

cðkÞzx

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
: ð34Þ

By considering a as the angle between x-axis and 1-axis, with 1-
axis being the first principal material axis, connected usually with
fiber direction, the components Q ðkÞij can be calculated by coordi-
nate transformation, as in [11].

We note that the displacement field given by equations (16)
through (24) satisfies the continuity of displacements across an
interface between two adjoining layers. However, stresses result-
ing from them and the constitutive relations (34) may not satisfy
the continuity of tractions across these interfaces. Errors intro-
duced by this approximation are generally small, as will be verified
by the good agreement between the presently computed results
and those obtained from the analytical solution of the problem.

The equations of motion of this layerwise theory are derived
from the principle of virtual displacements. In this work, only sym-
metric laminates are considered, therefore u0; v0 and the related
stress resultants can be discarded.

The virtual strain energy ðdUÞ, the virtual kinetic energy ðdKÞ
and the virtual work done by applied forces ðdVÞ, assuming a
three-layer laminate, are given by

dU ¼
Z

X0

X3

k¼1

Z hk=2

�hk=2
rxxðzd�f ðkÞ

xx þ d�mf ðkÞ
xx Þ þ ryyðzd�f ðkÞ

yy þ d�mf ðkÞ
yy Þ

h(
þsxyðzdcf ðkÞ

xy þ dcmf ðkÞ
xy Þ þ sxzdcðkÞxz þ syzdcðkÞyz

i
dz
o

dxdy
���

¼
Z

X0

X3

k¼1

NðkÞxx d�mf ðkÞ
xx þMðkÞ

xx d�f ðkÞ
xx þ NðkÞyy d�mf ðkÞ

yy þMðkÞ
yy d�f ðkÞ

yy

�
þNðkÞxy dcmf ðkÞ

xy þMðkÞ
xy dcf ðkÞ

xy þ Q ðkÞx dcðkÞxz þ Q ðkÞy dcðkÞyz

	
dxdy; ð35Þ

dK ¼
Z

X0

X3

k¼1

Z hk=2

�hk=2
qðkÞ _ukd _uk þ _vkd _vk þ _wkd _wk


 �
dzdxdy; ð36Þ
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and

dV ¼ �
Z

X0

qdw0 dxdy; ð37Þ
where X0 denotes the midplane of the laminate, q is the external
distributed load and

NðkÞab

MðkÞ
ab

( )
¼
Z hk=2

�hk=2
rðkÞab

1
z

� 

dzk; ð38Þ

Q ðkÞa ¼
Z hk=2

�hk=2
sðkÞaz dzk; ð39Þ

where a;b take the symbols x; y.
Substituting for dU; dK; dV into the virtual work statement, not-

ing that the virtual strains can be expressed in terms of the gener-
alized displacements, integrating by parts to relieve from any
derivatives of the generalized displacements and using the funda-
mental lemma of the calculus of variations, we obtain the equa-
tions of motion [11] with respect to 7 degrees of freedom
ðw0; h

ð1Þ
x ; hð1Þy ; hð2Þx ; hð2Þy ; hð3Þx ; hð3Þy Þ (see Fig. 1):

dw0 :
X3

k¼1

oQ ðkÞx

ox
þ

oQ ðkÞy

oy

 !
� q ¼

X3

k¼1

IðkÞ0
€w0; ð40Þ

dhð1Þx :
h1

2
oNð1Þxx

ox
� oMð1Þ

xx

ox
þ h1

2
oNð1Þxy

oy
�

oMð1Þ
xy

oy
þ Q ð1Þx

¼ Ið1Þ0
h1h2

4
€hx2 þ

h2
1

4
€hx1

 !
þ Ið1Þ2

€hx1; ð41Þ

dhð1Þy :
h1

2
oNð1Þyy

oy
�

oMð1Þ
yy

oy
þ h1

2
oNð1Þxy

ox
�

oMð1Þ
xy

ox
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h1h2

4
€hy2 þ

h2
1

4
€hy1

 !
þ Ið1Þ2

€hy1; ð42Þ
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xy
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2
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4
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 !
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h2
2

4
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h2h3

4
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€hx2; ð43Þ
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€hy2; ð44Þ
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ox
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� h3

2
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dhð3Þy : �h3

2
oNð3Þyy
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�

oMð3Þ
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� h3

2
oNð3Þxy

ox
�

oMð3Þ
xy

ox
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4
€hy2 þ
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4
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where

IðkÞ0 ; IðkÞ2

� 	
¼
Z hk=2

�hk=2
qðkÞð1; z2Þdz ð47Þ

q being the mass density of the material and hk the thickness of the
kth layer.

The equations of motion can be written in terms of the displace-
ments by substituting for strains and stress resultants into the pre-
vious equations. As an example, the first equation is replaced by

dw0 :
X3

k¼1

hk Q ðkÞ55
o2w0

ox2 þ
ohðkÞx

ox

 !
þ Q ðkÞ44

o2w0

oy2 þ
ohðkÞy

oy

 ! !
� q

¼
X3

k¼1

IðkÞ0
€w0: ð48Þ
5. Free vibration analysis

For free vibration problems, we assume harmonic solution in
terms of displacements w0; h

ðkÞ
x ; hðkÞy in the form

w0ðx; y; tÞ ¼Wðw; yÞeixt ; ð49Þ
hðkÞx ðx; y; tÞ ¼ WðkÞx ðw; yÞeixt; ð50Þ
hðkÞy ðx; y; tÞ ¼ WðkÞy ðw; yÞeixt; ð51Þ

where x is the frequency of natural vibration. Removing the exter-
nal force q and substituting the harmonic expansion into equations
of motion, we obtain Eq. (48) in terms of the amplitudes
W;WðkÞx ;WðkÞy , where k ¼ 1;2;3

dw0 :
X3

k¼1

hk Q ðkÞ55
o2w0

ox2 þ
ohðkÞx

ox

 !
þ Q ðkÞ44

o2w0

oy2 þ
ohðkÞy

oy

 ! !

¼ �
X3

k¼1

IðkÞ0 x2W: ð52Þ

The remaining equations of motion are dealt with in a similar way.

6. Interpolation of differential equations of motion and
boundary conditions by radial basis functions

The equations of motion are now interpolated by radial basis
functions, for each node i. For example, Eq. (52) is expressed
as

dw0 :
X3

k¼1

hk Q ðkÞ55

XN

j¼1

aw
j

o2uj

ox2 þ
XN

j¼1

ahðkÞx
j

ouj

ox

 ! 

þQ ðkÞ44

XN

j¼1

aw
j

o2uj

oy2 þ
XN

j¼1

a
hðkÞy

j

ouj

oy

 !!
¼ �

X3

k¼1

IðkÞ0 x2
XN

j¼1

aw
j uj;

ð53Þ

where uj was defined before and N represents the total number of
discretization points.

The other six equations are interpolated in a similar way. The
vector of unknowns is now composed of the interpolation param-
eters aj, for w0; h

ð1Þ
x ; hð1Þy ; hð2Þx ; hð2Þy ; hð3Þx ; hð3Þy , respectively.

For each boundary node, the RBF interpolation is also quite sim-
ple. As an example, a simply-supported condition at x ¼ b edge
with outward normal direction a imposes seven boundary condi-
tions as follows:

w0 ¼ 0; ð54Þ
MðkÞ

aa ¼ 0; ð55Þ
hðkÞb ¼ 0: ð56Þ
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These conditions are equivalent to
w0 ¼ 0; ð57Þ

dhð1Þx �h1

2
Nð1Þxx �

h1

2
Nð1Þxy þMð1Þ

xx

� �
þ dhð2Þx �h2

2
Nð1Þxx þ

h2

2
Nð3Þxx �

h2

2
Nð1Þxy þ

h2

2
Nð3Þxy þMð2Þ

xx

� �
þ dhð3Þx

h3

2
Nð3Þxx þMð3Þ

xx

� �
¼ 0; ð58Þ

hðkÞb ¼ 0: ð59Þ

The RBF interpolation of boundary equations leads to a change
in the global equations system. For each node i where the equa-
tions are valid, the following equations are imposed. For example,
Eq. (57) is interpolated asXN

j¼1

aw
j uj ¼ 0; ð60Þ

where N represents the total number of grid points. The other
boundary conditions are interpolated in the same way.

7. Numerical examples

In all the following examples, a Chebyshev grid was used. The
radial basis function used was a compact support Wendland func-
tion in the form

uðrÞ ¼ ð1� erÞ8þð32ðerÞ3 þ 25ðerÞ2 þ 8er þ 1Þ; ð61Þ
where � is the shape parameter and r an Euclidean distance. For all
cases, the optimum factor seems to be only dependent on the num-
ber of nodes. Up to 17� 17 nodes, � ¼ 0:1, while for
21� 21; � ¼ 0:104.

7.1. Three layer square sandwich plate in bending, under uniform load

A simply supported sandwich square plate, under a uniform
transverse load is considered. This is the classical sandwich exam-
ple of Srinivas [51].

The material properties of the sandwich core are expressed in
the stiffness matrix, Q core as

Q core ¼

0:999781 0:231192 0 0 0
0:231192 0:524886 0 0 0

0 0 0:262931 0 0
0 0 0 0:266810 0
0 0 0 0 0:159914

26666664

37777775
The material properties of the face sheets are related to those of the
core material properties by a factor R as

Q skin ¼ RQ core:

Transverse displacement and stresses are normalized as
w ¼ wða=2; a=2; 0Þ 0:999781

hq
;

�1
x ¼

�
ð1Þ
x ða=2; a=2;�h=2Þ

q
; �2

x ¼
�
ð1Þ
x ða=2; a=2;�2h=5Þ

q
; �3

x

�1
y ¼

�
ð1Þ
y ða=2; a=2;�h=2Þ

q
; �2

y ¼
�
ð1Þ
y ða=2; a=2;�2h=5Þ

q
; �3

y ¼

�1
xz ¼

�
ð2Þ
xz ð0; a=2; 0Þ

q
; �2

xz ¼
�
ð2Þ
xz ð0; a=2;�2h=5Þ

q
:

Transverse displacement and stresses for a sandwich plate are
indicated in Tables 1–3 and compared with those from various
formulations. These formulations provide very good results both
for displacement and for stresses. It can be seen that the present
formulation achieves very good results for all cases, without the
use of shear correction factors. The FSDT and HSDT results of
Pandya and Kant [52] cannot match our formulation for sandwich
laminates where skin properties are quite different than core
properties, which is the typical industrial case. So for R ¼ 15 or
larger this formulation should be adopted. The work of Ferreira
and Barbosa in laminated shell finite elements [53] and multi-
quadrics [35] using the first-order shear deformation approach
is also compared. The results are as good or better than results
from the present formulation. However, this was achieved by a
shear correction procedure [35] that is dependent on some
assumptions that may not be general, although quite good for
all the tested cases so far. The present layerwise formulation is
better than the third-order formulation presented by Ferreira
et al. [37], particularly in sandwich plates with skin properties
much higher than core properties.

7.2. Three layer (0/90/0) square cross-ply laminated plate under
sinusoidal load

A simply supported square laminated plate of side a and thick-
ness h is composed of four equal layers oriented at [0�/90�/90�/0�].
The plate is subjected to a sinusoidal vertical pressure of the form:

pz ¼ P sin
px
a

� 	
sin

py
a

� 	
;

with the origin of the coordinate system located at the lower left
corner on the midplane.

The material properties are given by

E1 ¼ 25:0E2 G12 ¼ G13 ¼ 0:5E2 G23 ¼ 0:2E2 m12 ¼ 0:25:

In Table 4, results from the present method are compared with
those from a finite strip formulation by Akhras [54,55] who used
three strips, an analytical solution by Reddy [56] using a higher-or-
der formulation and the exact three-dimensional solution by Pag-
ano [57]. The present solution is also compared with another
higher-order solution [37]. The in-plane displacements, the
transverse displacements, the normal stresses and the in-plane
and the transverse shear stresses are presented in normalized form
as

w ¼ 102wmaxh3E2

Pa4 ; rxx ¼
rxxh2

Pa2 ; ryy ¼
ryyh2

Pa2 ; szx ¼
szxh
Pa

;

sxy ¼
sxyh2

Pa2 :

The transverse shear stresses are calculated directly from the
constitutive equations. This is a feature of this theory, whereas
other equivalent single layer theories such as Reddy’s third-order
theory need to calculate transverse shear stresses using the equi-
librium equations.
¼ �
ð2Þ
x ða=2; a=2;�2h=5Þ

q
;

�
ð2Þ
y ða=2; a=2;�2h=5Þ

q
;



Table 1
Square laminated plate under uniform load-R ¼ 5

Method w r1
x r2

x r3
x r1

y r2
y r3

y s1
xz s2

xz

HSDT [52] 256.13 62.38 46.91 9.382 38.93 30.33 6.065 3.089 2.566
FSDT [52] 236.10 61.87 49.50 9.899 36.65 29.32 5.864 3.313 2.444
CLT 216.94 61.141 48.623 9.783 36.622 29.297 5.860 4.5899 3.386
Ferreira [53] 258.74 59.21 45.61 9.122 37.88 29.59 5.918 3.593 3.593
Ferreira ðN ¼ 15Þ [35] 257.38 58.725 46.980 9.396 37.643 27.714 4.906 3.848 2.839
exact [51] 258.97 60.353 46.623 9.340 38.491 30.097 6.161 4.3641 3.2675
HSDT [37] ðN ¼ 11Þ 253.6710 59.6447 46.4292 9.2858 38.0694 29.9313 5.9863 3.8449 1.9650
HSDT [37] ðN ¼ 15Þ 256.2387 60.1834 46.8581 9.3716 38.3592 30.1642 6.0328 4.2768 2.2227
HSDT [37] ðN ¼ 21Þ 257.1100 60.3660 47.0028 9.4006 38.4563 30.2420 6.0484 4.5481 2.3910
Present ðN ¼ 11Þð� ¼ 0:1Þ 258.2812 60.7292 46.7031 9.3406 39.0424 30.4338 6.0868 4.1061 2.2934
Present ðN ¼ 15Þð� ¼ 0:1Þ 258.1813 60.2973 46.4641 9.2928 38.5549 30.1141 6.0228 4.0961 2.1262
Present ðN ¼ 21Þð� ¼ 0:104Þ 258.1795 60.0626 46.3926 9.2785 38.3644 30.0294 6.0059 4.0950 2.0418

Table 2
Square laminated plate under uniform load-R ¼ 10

Method w r1
x r2

x r3
x r1

y r2
y r3

y s1
xz s2

xz

HSDT [52] 152.33 64.65 51.31 5.131 42.83 33.97 3.397 3.147 2.587
FSDT [52] 131.095 67.80 54.24 4.424 40.10 32.08 3.208 3.152 2.676
CLT 118.87 65.332 48.857 5.356 40.099 32.079 3.208 4.3666 3.7075
Ferreira [53] 159.402 64.16 47.72 4.772 42.970 42.900 3.290 3.518 3.518
Ferreira ðN ¼ 15Þ [35] 158.55 62.723 50.16 5.01 42.565 34.052 3.400 3.596 3.053
Exact [51] 159.38 65.332 48.857 4.903 43.566 33.413 3.500 4.0959 3.5154
Third-order [37] ðN ¼ 11Þ 153.0084 64.7415 49.4716 4.9472 42.8860 33.3524 3.3352 2.7780 1.8207
Third-order [37] ðN ¼ 15Þ 154.2490 65.2223 49.8488 4.9849 43.1521 33.5663 3.3566 3.1925 2.1360
Third-order [37] ðN ¼ 21Þ 154.6581 65.3809 49.9729 4.9973 43.2401 33.6366 3.3637 3.5280 2.3984
Present ðN ¼ 11Þð� ¼ 0:1Þ 159.0260 66.0311 48.7610 4.8761 44.2945 33.6994 3.3699 3.9550 2.5388
Present ðN ¼ 15Þð� ¼ 0:1Þ 158.9237 65.3861 48.5365 4.8537 43.7554 33.4149 3.3415 3.9842 2.4860
Present ðN ¼ 21Þð� ¼ 0:104Þ 158.9117 64.9927 48.6009 4.8601 43.4907 33.4089 3.3409 3.9803 2.3325

Table 3
Square laminated plate under uniform load-R ¼ 15

Method w r1
x r2

x r3
x r1

y r2
y r3

y s1
xz s2

xz

HSDT [52] 110.43 66.62 51.97 3.465 44.92 35.41 2.361 3.035 2.691
FSDT [52] 90.85 70.04 56.03 3.753 41.39 33.11 2.208 3.091 2.764
CLT 81.768 69.135 55.308 3.687 41.410 33.128 2.209 4.2825 3.8287
Ferreira [53] 121.821 65.650 47.09 3.140 45.850 34.420 2.294 3.466 3.466
Ferreira ðN ¼ 15Þ [35] 121.184 63.214 50.571 3.371 45.055 36.044 2.400 3.466 3.099
Exact [51] 121.72 66.787 48.299 3.238 46.424 34.955 2.494 3.9638 3.5768
Third-order [37] ðN ¼ 11Þ 113.5941 66.3646 49.8957 3.3264 45.2979 34.9096 2.3273 2.1686 1.5578
Third-order [37] ðN ¼ 15Þ 114.3874 66.7830 50.2175 3.3478 45.5427 35.1057 2.3404 2.6115 1.9271
Third-order [37] ðN ¼ 21Þ 114.6442 66.9196 50.3230 3.3549 45.6229 35.1696 2.3446 3.0213 2.2750
Present ðN ¼ 11Þð� ¼ 0:1Þ 121.3949 67.6166 47.9685 3.1979 47.1146 35.0756 2.3384 3.8332 2.5772
Present ðN ¼ 15Þð� ¼ 0:1Þ 121.3381 66.8559 47.8129 3.1875 46.6254 34.8805 2.3254 3.9062 2.6885
Present ðN ¼ 21Þð� ¼ 0:104Þ 121.3474 66.4362 48.0104 3.2007 46.3849 34.9650 2.3310 3.9024 2.4811
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The present layerwise theory discretized with multiquadrics
presents better results than the previous results by Ferreira et al.
[37]. Results for transverse displacements and stresses are better
than the results of Akhras and Reddy when compared with the ex-
act solutions.

7.3. Natural frequencies of isotropic clamped square plates

The length of the isotropic plate is a and two thickness-to-side
ratios h=a ¼ 0:01 and 0.1 are considered. A non-dimensional fre-
quency parameter is defined as

�k ¼ kmna

ffiffiffiffi
q
G

r
;

where k is the frequency, q is the mass density per unit volume, G is
the shear modulus and G ¼ E=ð2ð1þ mÞÞ; E Young’s modulus and
m ¼ 0:3 the Poisson ratio. The subscripts m and n denote the number
of half-waves in the mode shapes in the x and y directions,
respectively.
The plates are clamped at all boundary edges. The first eight
modes of vibration for both plates are calculated. Two cases of
thickness-to-side ratio h=a ¼ 0:01 and 0.1 are considered. The
comparison of frequency parameters with the Rayleigh–Ritz
solutions [58] and results by Liew et al. [59], using a reproduc-
ing kernel particle approximation, for each plate is listed in Ta-
bles 5 and 6. Excellent agreement is obtained, in fact our
solution is closer to the Rayleigh–Ritz solutions than that of
Liew. In Figs. 2 and 3 the first eight mode shapes of the CCCC
plate ðh=a ¼ 0:1Þ are presented. In Figs. 4 and 5 the first eight
mode shapes for h=a ¼ 0:01 are shown. The corresponding 3D
views are illustrated in Figs. 6 and 7, showing quite stable
modes.

7.4. Natural frequencies of a laminated plate

A [0/90/90/0] composite laminated simply supported plate is
considered. The plate is a square with side a and thickness h. The
side-to-thickness ratio a=h is taken as 10 to study the convergence



Table 4
[0�/90�/90�/0�] square laminated plate under sinusoidal load

a
h Method w rxx ryy szx sxy

4 3 strip [54] 1.8939 0.6806 0.6463 0.2109 0.0450
HSDT [56] 1.8937 0.6651 0.6322 0.2064 0.0440
FSDT [55] 1.7100 0.4059 0.5765 0.1398 0.0308
Elasticity [57] 1.954 0.720 0.666 0.270 0.0467
Ferreira et al. [37] ðN ¼ 21Þ 1.8864 0.6659 0.6313 0.1352 0.0433
Ferreira (layerwise) [38] ðN ¼ 21Þ 1.9075 0.6432 0.6228 0.2166 0.0441
Present (N=9) 1.9083 0.6433 0.6271 0.2172 0.0442
Present ðN ¼ 11Þ 1.9091 0.6427 0.6262 0.2173 0.0443
Present ðN ¼ 15Þ 1.9091 0.6429 0.6264 0.2173 0.0443
Present ðN ¼ 21Þ 1.9091 0.6429 0.6265 0.2173 0.0443

10 3 strip [54] 0.7149 0.5589 0.3974 0.2697 0.0273
HSDT [56] 0.7147 0.5456 0.3888 0.2640 0.0268
FSDT [55] 0.6628 0.4989 0.3615 0.1667 0.0241
elasticity [57] 0.743 0.559 0.403 0.301 0.0276
Ferreira et al. [37] ðN ¼ 21Þ 0.7153 0.5466 0.4383 0.3347 0.0267
Ferreira (layerwise) [38] ðN ¼ 21Þ 0.7309 0.5496 0.3956 0.2888 0.0273
Present (N=9) 0.7297 0.5487 0.3965 0.2991 0.0273
Present ðN ¼ 11Þ 0.7303 0.5486 0.3966 0.2994 0.0273
Present ðN ¼ 15Þ 0.7303 0.5487 0.3966 0.2993 0.0273
Present ðN ¼ 21Þ 0.7303 0.5487 0.3966 0.2993 0.0273

20 3 strip [54] 0.5061 0.5523 0.3110 0.2883 0.0233
HSDT [56] 0.5060 0.5393 0.3043 0.2825 0.0228
FSDT [55] 0.4912 0.5273 0.2957 0.1749 0.0221
Elasticity [57] 0.517 0.543 0.309 0.328 0.0230
Ferreira (layerwise) [38] ðN ¼ 21Þ 0.5121 0.5417 0.3056 0.3248 0.0230
Ferreira et al. [37] ðN ¼ 21Þ 0.5070 0.5405 0.3648 0.3818 0.0228
Present (N=9) 0.5104 0.5400 0.3061 0.3247 0.0228
Present ðN ¼ 11Þ 0.5112 0.5407 0.3075 0.3257 0.0230
Present ðN ¼ 15Þ 0.5113 0.5407 0.3073 0.3256 0.0230
Present ðN ¼ 21Þ 0.5113 0.5407 0.3073 0.3256 0.0230

100 3strip [54] 0.4343 0.5507 0.2769 0.2948 0.0217
HSDT [56] 0.4343 0.5387 0.2708 0.2897 0.0213
FSDT [55] 0.4337 0.5382 0.2705 0.1780 0.0213
Elasticity [57] 0.4347 0.539 0.271 0.339 0.0214
Ferreira et al. [37] ðN ¼ 21Þ 0.4365 0.5413 0.3359 0.4106 0.0215
Ferreira (layerwise) [38] ðN ¼ 21Þ 0.4374 0.5420 0.2697 0.3232 0.0216
Present (N=9) 0.4350 0.5324 0.2689 0.3401 0.0207
Present ðN ¼ 11Þ 0.4334 0.5385 0.2690 0.3335 0.0213
Present ðN ¼ 15Þ 0.4347 0.5390 0.2709 0.3356 0.0214
Present ðN ¼ 21Þ 0.4348 0.5391 0.2711 0.3359 0.0214

Table 5
Natural frequencies of a CCCC square Mindlin/Reissner plate with h=a ¼ 0:1; m ¼ 0:3

Mode no. m n 9� 9 13� 13 17� 17 Rayleygh-Ritz [58] Liew et al. [59]

1 1 1 1.6047 1.5937 1.5940 1.5940 1.5582
2 2 1 3.0417 3.0638 3.0653 3.0390 3.0182
3 1 2 3.0420 3.0641 3.0655 3.0390 3.0182
4 2 2 4.2224 4.3244 4.3245 4.2650 4.1711
5 3 1 4.9699 5.1054 5.1045 5.0350 5.1218
6 1 3 5.0382 5.1440 5.1448 5.0780 5.1594
7 3 2 5.9440 6.2066 6.1969 6.0178
8 2 3 5.9449 6.2074 6.1977 6.0178

Table 6
Natural frequencies of a CCCC square Mindlin/Reissner plate with h=a ¼ 0:01; m ¼ 0:3

Mode no. m n 9� 9 13� 13 17� 17 21� 21 Rayleygh-Ritz [58] Liew et al. [59]

1 1 1 0.1005 0.1848 0.1753 0.1754 0.1754 0.1743
2 2 1 0.2761 0.3791 0.3576 0.3572 0.3576 0.3576
3 1 2 0.2761 0.3791 0.3576 0.3575 0.3576 0.3576
4 2 2 0.4827 0.5610 0.5283 0.5274 0.5274 0.5240
5 3 1 1.1254 0.6533 0.6435 0.6406 0.6402 0.6465
6 1 3 1.1344 0.6598 0.6464 0.6437 0.6432 0.6505
7 3 2 1.6041 0.7705 0.8145 0.8085 0.8015
8 2 3 1.6041 0.7705 0.8145 0.8099 0.8015
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Fig. 2. Modes (1–4) of vibration of a CCCC square Mindlin/Reissner plate with h=a ¼ 0:1; m ¼ 0:3.

Fig. 3. Modes (5–8) of vibration of a CCCC square Mindlin/Reissner plate with h=a ¼ 0:1; m ¼ 0:3.
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Fig. 4. Modes (1–4) of vibration of a CCCC square Mindlin/Reissner plate with h=a ¼ 0:01; m ¼ 0:3.

Fig. 5. Modes (5–8) of vibration of a CCCC square Mindlin/Reissner plate with h=a ¼ 0:01; m ¼ 0:3.

338 A.J.M. Ferreira et al. / Composite Structures 86 (2008) 328–343



Fig. 6. Modes (1–4) of vibration of a CCCC square Mindlin/Reissner plate with h=a ¼ 0:01; m ¼ 0:3, 3D view.

Fig. 7. Modes (5–8) of vibration of a CCCC square Mindlin/Reissner plate with h=a ¼ 0:01; m ¼ 0:3, 3D view.

Table 7
Convergence of the present layerwise method with respect to the number of nodes for a cross-ply laminate plate ða=h ¼ 10Þ, �x ¼ xh

ffiffiffiffi
q
E2

q
Method/Mode (1,1) (1,2) (2,1) (2,2) (1,3) (2,3) (3,1) (3,2)

Exact (Srinivas et al. [60]) 0.06715 0.12811 0.17217 0.20798
HSDT (Nosier et al. [61]) 0.06716 0.12816 0.17225 0.20808
Layerwise (Wang and Zhang [62]) 0.06716 0.12819 0.17230 0.20811 0.2287 0.2842 0.2936 0.3181
Present, layerwise ð9� 9Þ 0.0681 0.1321 0.1761 0.2154 0.2364 0.2960 0.2995 0.3290
Present, layerwise ð11� 11Þ 0.0681 0.1322 0.1762 0.2151 0.2377 0.2958 0.3010 0.3292
Present, layerwise ð13� 13Þ 0.0681 0.1322 0.1762 0.2150 0.2376 0.2954 0.3009 0.3288
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Fig. 8. First four modes of vibration: 2D view.

Fig. 9. First four modes of vibration.
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with respect to the number of nodes. The thickness of each ply is
h=3 and the material properties (MPa) are

E1 ¼ 173; E2 ¼ 33:1; G12 ¼ 9:38; G13 ¼ 8:27; G23 ¼ 3:24;

m12 ¼ 0:036; m13 ¼ 0:25; m23 ¼ 0:171:

ð62Þ
The dimensionless frequency parameter is defined as

�x ¼ xh
ffiffiffiffiffi
q
E2

r
;

where x is the circular frequency. Results from the present formu-
lation are compared in Table 7 with those from the exact solution



Fig. 10. Modes (5–8) of vibration.

Fig. 11. Modes (9–12) of vibration.
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by Srinivas et al. [60], a higher-order formulation by Nosier et al.
[61] and a layerwise B-spline finite strip method by Wang and
Zhang [62]. The present layerwise method produces convergent
and highly accurate results for cross-ply laminated plates. All
modes are accurately represented. Results from the present layer-
wise approach agree very well those from with the layerwise ap-
proach of Wang and Zhang [62].

In Fig. 8, the first four modes of vibration are illustrated for the
13� 13 grid. The regular evolution of modes is noticeable. In Figs.
9–11, the first 12 modes in 3D view and their projections on the
horizontal plane are illustrated.

We note that radial basis functions coupled with weak formula-
tion of the governing equations of a higher-order shear and normal
deformable plate theory have been employed in [64,65] to study
deformations of a plate. Also, frequencies of a plate derived by
using basis functions obtained by the moving least squares (MLS)
approximation have been found to match well with those from
the analytical solution of the problem [66,67]. It will be interesting
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to investigate if the present RBFs-PS formulation will give as accu-
rate values of the stress intensity factor as those obtained in [68]
by using the MLS basis functions.

8. Conclusions

The first-order and the third-order shear deformation theories
are laminate-wise, with laminate degrees of freedom, where all
layers have the same rotations. Layerwise formulations can accom-
modate better the deformation behaviour of some laminates, par-
ticularly the sandwich laminates, where the core and the skin
materials are very different.

In this paper, the free vibration analysis of composite laminated
plates by the use of RBFs in a pseudospectral framework [63,19]
and using a layerwise theory with independent rotations in each
layer is performed for the first time.

The equations of motion were derived and solved by the collo-
cation method. Boundary conditions interpolation was schemati-
cally formulated.

Composite laminated plates and sandwich plates were consid-
ered for testing the present methodology, and results obtained
showed excellent accuracy for all cases. The method produces
highly accurate results for isotropic, laminated composites and
sandwich plates. The shape parameter of the basis functions is
automatically selected by cross-validation techniques.
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