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a b s t r a c t

We study analytically plane strain static deformations of functionally graded eccentric and non-axisym-
metrically loaded circular cylinders comprised of isotropic and incompressible linear elastic materials.
Normal and tangential surface tractions on the inner and the outer surfaces of a cylinder may vary in
the circumferential direction. The shear modulus is taken to vary either as an exponential function or
as a power law function of the radius only. The radial and the circumferential displacements, and the
hydrostatic pressure are expanded in Fourier series in the angular coordinate, and expressions for their
coefficients are derived from equations expressing the balance of mass (or the continuity equation)
and the balance of linear momentum. Boundary conditions are satisfied in the sense of Fourier series.
For the exponential variation of the shear modulus, the method of Frobenius series is used to solve
4th-order ordinary differential equations for coefficients of the Fourier series. It is shown that the series
solutions for displacements and the hydrostatic pressure converge rapidly. Results for eccentric cylinders
and non-axisymmetrically loaded circular cylinders are computed and exhibited graphically. Effects on
stress distributions of the eccentricity in the cylinders and of the gradation in the shear modulus are illu-
minated. It is found that in a thin cylinder subjected to cosinusoidally varying pressure on the inner sur-
face, segments of the cylinder between two adjacent cusps in the pressure deform due to bending rather
than stretching.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

One way to optimally design hollow cylindrical structures is to
suitably vary material properties in them so as to optimize a design
variable such as the maximum principal stress, the maximum
shear stress, the cylinder thickness, and the eccentricity between
the inner and the outer circular surfaces of the cylinder. The tai-
lored material properties can be obtained either by fabricating
the structure from more than one material and varying their vol-
ume fractions or by changing the molecular and the chemical
structure by exposing the material to either ultraviolet light or
appropriate heat and chemical treatments. Materials with continu-
ously varying elastic moduli are usually called functionally graded
(FG), and structures comprised of such materials are termed FG
structures (FGSs). Advantages of FGSs over laminated composites
include the elimination of interfaces between different constitu-
ents/layers thereby avoiding points of high stress concentration.
However, FGSs fabricated by continuously varying volume frac-
tions of reinforcing particulates in a matrix may have too many
surfaces where debonding between particulates and the matrix
ll rights reserved.

+1 5402314574.
can occur. For mathematical considerations FGSs are comprised
of inhomogeneous materials.

Rubberlike and polymeric materials are extensively used in
every day life, e.g., tires, hoses, seals in automotive and aerospace
applications, reinforcements for soft biological tissues, etc. Rubber-
like materials are usually regarded as incompressible. An incom-
pressible material can undergo only isochoric or volume
preserving deformations and accordingly its constitutive relation
has a hydrostatic pressure that cannot be determined from the
deformation field but is to be found as a part of the solution of
the boundary-value problem.

Solutions to linear elastic problems for inhomogeneous materi-
als are given in Lekhnitskii’s book [1]. A general theory of nonlinear
elastic problems can be found in Truesdell and Noll’s book [2]. Lin-
ear elastic axisymmetric problems for FG cylinders comprised of
compressible materials have been studied in [3–13], and for
incompressible materials in [14]. Finite deformations of axisym-
metrically loaded FG cylinders comprised of Mooney–Rivlin and
2nd-order elastic incompressible materials have been analyzed in
[15–18]. However, non-axisymmetric problems for circular cylin-
ders, and boundary-value problems for eccentric cylinders have re-
ceived very little attention. During the Couette flow of a viscous
fluid between two cylinders, the fluid exerts both tangential and
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normal surface tractions on the cylinders surfaces, and eccentrici-
ties between the inner and the outer surfaces during the fabrica-
tion of a hollow cylinder are generally unavoidable. A partially
filled pressure vessel has tractions acting only on a part of the inner
surface. The literature search on scholar.google.com revealed
numerous works related to the flow of fluids between eccentric
cylinders. The analysis of these problems is more challenging than
that of axisymmetric problems because the radial and the circum-
ferential components of displacements and the hydrostatic pres-
sure need to be found as a function of r and h where (r, h)
denotes cylindrical coordinates of a point with the origin of the
axes at the center of the inner circular surface. Here we study ana-
lytically static deformations of a FG hollow circular cylinder with
non-axisymmetric tractions applied to its inner and outer surfaces,
and of an eccentric cylinder under similar loads. In each case, the
cylinder material is linear elastic and incompressible. We note that
a linear thermoelastic problem for a thick FG circular cylinder with
constant Poisson’s ratio, and Young’s modulus and the coefficient
of thermal expansion given by power law functions of the radial
coordinate and non-axisymmetric loads prescribed on the inner
surface has been analyzed in [19]. The current work differs from
that reported in [19] in several respects. For example, the hydro-
static pressure is found by satisfying the continuity condition,
exponential variation of the shear modulus in the radial direction
is considered, problems for circular cylinders with tangential trac-
tions applied to its bounding surfaces are studied, and deforma-
tions of a thin cylinder with the pressure applied on the inner
surface varying sinusoidally, stress concentration in a thick cylin-
der loaded by a periodic pressure on the outer surface, and prob-
lems for eccentric cylinders have been scrutinized. The analysis
of a problem for a cylinder with the exponential variation of the
shear modulus is more involved than that of the same problem
when the shear modulus varies according to a power law relation.

2. Problem formulation

Consider an infinitely long hollow cylinder of uniform cross-
section of inner radius rin, outer radius rou and the inner and the
outer circular surfaces having an eccentricity e as shown in
Fig. 1. We take the origin of the cylindrical coordinate axes at the
center of the inner circular surface, and denote coordinates of a
point by (r, h, z). The cylinder is made of an incompressible and iso-
tropic linear elastic material with the shear modulus assumed to
vary in the radial direction either by a power-law or an exponential
function. The cylinder is loaded by pressures pin(h), pou(h) and tan-
gential tractions qin(h) and qou(h), respectively, on its inner and out-
er surfaces (cf. Fig. 1). Alternatively, the radial and the
circumferential displacements could be prescribed at one or both
of these bounding surfaces as for the rectilinear shear deformations
studied in [18]. Because the shear modulus, the cylinder geometry,
and the applied loads are independent of the axial coordinate z of a
point, the state of deformation in the cylinder is that of plane
Fig. 1. Schematic sketch of the problem studied.
strain, and stresses and strains are independent of the z-
coordinate.

Equations of equilibrium in polar coordinates (r, h), in the ab-
sence of body forces, are

@rrr

@r
þ 1

r
@rrh

@h
þ rrr � rhh

r
¼ 0;

@rhr

@r
þ 1

r
@rhh

@h
þ 2

r
rhr ¼ 0;

rin < r < ~rðhÞ; ð1Þ

where rrr, rrh = rhr and rhh are components of the stress tensor,
r = rin on the inner surface, and r ¼ ~rðhÞ describes the outer bound-
ing surface of the cylinder. The function ~rðhÞ is given by

~rðhÞ ¼ e cos hþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�e2 sin2 hþ r2

ou

q
;

where e is the eccentricity between the inner and the outer circular
surfaces of the cylinder and rou the radius of the outer circular sur-
face; cf. Fig. 1.

The non-zero components of the infinitesimal strain tensor are
given by

err ¼ ur;r ; ehh ¼
1
r

ur þ
1
r

uh;h;

2erh ¼ 2ehr ¼
1
r

ur;h þ uh;r �
1
r

uh; ur;r ¼
@ur

@r
; uh;h ¼

@uh

@h
; ð2Þ

where ur and uh are physical components of the displacement u in
the radial and the circumferential directions, respectively.

Since only isochoric (volume preserving) deformations are
admissible in an incompressible material, therefore, displacements
must satisfy

err þ ehh ¼ 0; rin < r < ~rðhÞ: ð3Þ

The constitutive equation for an incompressible and isotropic linear
elastic material is

r ¼ �p1þ 2lðrÞe; ð4Þ

where p is the hydrostatic pressure not determined from the defor-
mation field, 1 is the identity tensor, and l(r) is the shear modulus.
The pertinent boundary conditions are

rrrðrin; hÞ ¼ �pinðhÞ or urðrin; hÞ ¼ �uin
r ðhÞ;

rrhðrin; hÞ ¼ �qinðhÞ or uhðrin; hÞ ¼ �uin
h ðhÞ; ða—dÞ

rrrð~rðhÞ; hÞ cosð/� hÞ þ rrhð~rðhÞ; hÞ sinð/� hÞ
¼ �pouðhÞ cosð/� hÞ þ qouðhÞ sinð/� hÞ; or

urð~rðhÞ; hÞ ¼ �uou
r ðhÞ ðe; fÞ

rrhð~rðhÞ; hÞ cosð/� hÞ þ rhhð~rðhÞ; hÞ sinð/� hÞ
¼ �pouðhÞ sinð/� hÞ þ qouðhÞ cosð/� hÞ; or

uhð~rðhÞ; hÞ ¼ �uou
h ðhÞ; ðg;hÞ

ð5Þ

where

rou sin / ¼ ~rðhÞ sin h: ð6Þ

In Eqs. (5b,d,f,h) a superposed bar on u indicates that the value
of the function is specified, superscripts and subscripts ‘in’ and ‘ou’
affixed to a quantity indicate, respectively, the value of the quan-
tity at the inner and the outer surfaces of the cylinder, and sub-
scripts ‘r’ and ‘h’ on a quantity indicate its value in the radial and
the circumferential directions, respectively. When only surface
tractions are prescribed on the bounding surfaces, then values of
qin(h), pou(h) and qou(h) must be such that the cylinder is in equilib-
rium under the application of external loads. That is,Z 2p

0
qinðhÞr2

indhþ
Z 2p

0

~r2ðhÞ½�pouðhÞ sinð/� hÞ

þ qouðhÞ cosð/� hÞ�dh ¼ 0: ð7Þ
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3. Analytical solution

We assume that the displacement and the hydrostatic pressure
fields can be expressed as

urðr; hÞ ¼
X1
m¼0

½uc
rmðrÞuc

m þ us
rmðrÞus

m�; ð8aÞ

uhðr; hÞ ¼
X1
m¼0

½uc
hmðrÞuc

m þ us
hmðrÞus

m�; ð8bÞ

pðr; hÞ ¼
X1
m¼0

½pc
mðrÞuc

m þ ps
mðrÞus

m�; ð8cÞ

where the integer m equals the circumferential wave number,
uc

m ¼ cosðmhÞ, us
m ¼ sinðmhÞ, and superscripts c and s signify,

respectively, quantities associated with the cosine and the sine
terms. For radial expansion/contraction of a circular cylinder due
to pressures applied to its inner and outer surfaces,
uc

r0 – 0; pc
0 – 0, and coefficients of the remaining cosine and the

sine terms in Eq. (8) can be taken as zeros; e.g. see the analysis pre-
sented in [14]. For non-axisymmetric problems, we take
us

r0 ¼ us
h0 ¼ ps

0 ¼ 0 since they do not contribute to ur, uh and p
respectively.

Substitution for displacements ur and uh from Eq. (8) into Eqs.
(2) and (3), and equating to zero coefficients of cos (mh) and
sin (mh) we obtain

ðuc
rm;r þ 1

r uc
rm þ m

r us
hmÞ ¼ 0; m ¼ 0;1;2; . . . ;

ðus
rm;r þ 1

r us
rm � m

r uc
hmÞ ¼ 0; m ¼ 1;2; . . . :

ð9a;bÞ

Thus for m – 0,

us
hm ¼ �

1
m
ðruc

rmÞ;r; uc
hm ¼

1
m
ðrus

rmÞ;r ; ð10a;bÞ

and for m = 0, we get from Eq. (9a)

uc
r0 ¼

ac
r0

r
; ð10cÞ

where ac
r0 is a constant.

Substituting for ur, uh and p from Eq. (8) into Eqs. (2), (4), and (1)
we getP1

m¼0
½g1mðrÞuc

m þ g2mðrÞus
m� ¼

P1
m¼0
½pc

m;rðrÞuc
m þ ps

m;rðrÞus
m�;P1

m¼0
½g3mðrÞuc

m þ g4mðrÞus
m� ¼

P1
m¼0

m
r ½�pc

mðrÞus
m þ ps

mðrÞuc
m�;

ð11Þ

where

g1mðrÞ ¼ lðrÞ 2uc
rm;rr þ

2
r

uc
rm;r �

2þm2

r2 uc
rm þ

m
r

us
hm;r �

3m
r2 us

hm

� �
þ 2l;rðrÞuc

rm;r ;

g2mðrÞ ¼ lðrÞ 2us
rm;rr þ

2
r

us
rm;r �

2þm2

r2 us
rm �

m
r

uc
hm;r þ

3m
r2 uc

hm

� �
þ 2l;rðrÞus

rm;r ;

g3mðrÞ ¼
lðrÞ

r2 ðr
2uc

hm;rr þ rðuc
hm;r þmus

rm;rÞ � ð2m2 þ 1Þuc
hm þ 3mus

rmÞ

þ
l;rðrÞ

r
ðmus

rm � uc
hm þ ruc

hm;rÞ;

g4mðrÞ ¼
lðrÞ

r2 ðr
2us

hm;rr þ rðus
hm;r �muc

rm;rÞ � ð2m2 þ 1Þus
hm � 3muc

rmÞ

�
l;rðrÞ

r
ðmuc

rm þ us
hm � rus

hm;rÞ:

ð12Þ

Equating coefficients of cos (mh) and sin (mh) on both sides of
Eq. (11) gives
g1mðrÞ ¼ pc
m;r; g2mðrÞ ¼ ps

m;r; rg4mðrÞ ¼ �mpc
m; rg3mðrÞ ¼ mps

m:

ð13a—dÞ

Thus for m – 0, we get the following compatibility conditions
for the pressure field, p, to exist:

mg1m ¼ �ðrg4mÞ;r; mg2m ¼ ðrg3mÞ;r: ð14a;bÞ

For m = 0, it follows from Eqs. (13c) and (13d) that g30(r) = 0,
g40(r) = 0. Recalling that us

h0 ¼ 0, thus uc
h0 is the solution of the fol-

lowing ordinary differential equation:

lðrÞ uc
h0;rr þ

1
r

uc
h0;r �

1
r2 uc

h0

� �
þ l;rðrÞ uc

h0;r �
1
r

uc
h0

� �
¼ 0: ð15Þ

For an inhomogeneous cylinder, as should be clear from Eq.
(10c), uc

r0 is independent of the variation of the shear modulus;
however, uc

h0 may depend upon the variation with the radius r of
the shear modulus. Because the component ps

0 of the hydrostatic
pressure is taken to be zero, the component pc

0 is the solution of
Eq. (13a), viz.,

pc
0;r ¼ 2lðrÞ uc

r0;rr þ
1
r

uc
r0;r �

1
r2 uc

r0

� �
þ 2l;rðrÞuc

r0;r: ð16Þ

Substitution for uc
r0 from Eq. (10c) into Eq. (16), and integration

of the resulting equation give

pc
0 ¼ bc

0 � 2ac
r0

Z r

rin

l;yðyÞ
y2 dy; ð17Þ

where bc
0 is a constant.

For m = 0, uc
r0 is given by Eq. (10c), pc

0 is computed from Eq. (17),
and uc

h0 is found by solving Eq. (15). Thus there are four constants of
integration to be determined from the boundary conditions.

For m – 0, uc
rm and us

rm are solutions of ordinary differential Eqs.
(14a) and (14b), uc

hm and us
hm are determined, respectively, from

Eqs. (10a) and (10b), and pc
m and ps

m are given by Eqs. (13c) and
(13d), respectively. Thus constants appearing in expressions for
pc

m; ps
m; uc

hm and us
hm are the same as those in the expressions for

uc
rm and us

rm. Substitution for uc
hm and us

hm from Eqs. (10a) and
(10b) into Eqs. (14a) and (14b) gives 4th-order ordinary differential
equations for uc

rm and us
rm; e.g. see Eq. (21) below. Hence expres-

sions for uc
rm and us

rm will each have four constants of integration.
For M terms retained in series solution (8), there are (8M � 4) un-
knowns to be determined since there are only four constants of
integration for m = 0. These are found by satisfying boundary con-
ditions (5) in the sense of Fourier series. For example, both sides of
Eq. (5a) are multiplied with uc

l ¼ cosðlhÞ and us
l ¼ sinðlhÞ, and the

resulting equations integrated over (0, 2p) with the following
result:Z 2p

0
rrrðrin; hÞuc

l dh ¼ �
Z 2p

0
pinðhÞuc

l dh; l ¼ 0;1;2; . . . : ð18a;bÞ

For each non-zero value of l, boundary conditions on the inner
surface give four algebraic equations, and those on the outer sur-
face also give four algebraic equations. For M terms in the series
solution (8), we use M sequential integer values of l in Eq. (18)
resulting in the number of algebraic equations equal to the number
of unknowns in expression (8a) for ur.

Having found the displacement and the pressure fields, strains
are computed from Eq. (2) and then stresses from Eq. (4). We note
that for the shear modulus l > 0, the solution of the boundary-value
problem in linear elasticity is unique within a rigid body motion.

3.1. Cylinder made of a homogeneous material

For a cylinder comprised of a homogeneous material, l,r = 0, and
Eqs. (15) and (17) give
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uc
h0 ¼

ac
h0

r
þ bc

h0r; pc
0 ¼ bc

0; ð19Þ

where ac
h0 and bc

h0 are constants. Thus Eq. (8) can be written as

urðr; hÞ ¼
ac

r0

r
þ
X1
m¼1

½uc
rmðrÞuc

m þ us
rmðrÞus

m�;

uhðr; hÞ ¼
ac

h0

r
þ bc

h0r þ
X1
m¼1

½uc
hmðrÞuc

m þ us
hmðrÞus

m�;

pðr; hÞ ¼ bc
0 þ

X1
m¼1

½pc
mðrÞuc

m þ ps
mðrÞus

m�:

ð20Þ

For m P 1, Eqs. (14a) and (14b) after substitutions for uc
hm and

us
hm from Eqs. (10a) and (10b) give identical 4th-order ordinary dif-

ferential equations for uc
rm and us

rm; that for uc
rm is given below:

r4uc
rm;rrrr þ 6r3uc

rm;rrr � ð2m2 � 5Þr2uc
rm;rr � ð2m2 þ 1Þruc

rm;r

þ ðm2 � 1Þ2uc
rm ¼ 0: ð21Þ

Since the coefficient of uc
rm vanishes for m = 1, we give below

solutions of Eq. (21) for m = 1, and m > 1. For m = 1, the solution
of Eq. (21) is

ua
r1 ¼ �

ca
11

r2 þ ca
21 ln r þ ca

31r2 þ ca
41; a ¼ c; s;

uc
h1 ¼

cs
11

r2 þ cs
21ð1þ ln rÞ þ 3cs

31r2 þ cs
41;

us
h1 ¼ �

cc
11

r2 � cc
21ð1þ ln rÞ � 3cc

31r2 � cc
41;

pa
1 ¼ l0 �

2ca
21

r
þ 8rca

31

� �
; a ¼ c; s:

ð22Þ

For m > 1, we get the following for the solution of Eq. (21):

ua
rm ¼ ca

1mr�1�m þ ca
2mr1�m þ ca

3mr1þm þ ca
4mr�1þm; a ¼ c; s;

uc
hm ¼ �cs

1mr�1�m þ 2
m
� 1

� �
cs

2mr1�m

þ 2
m
þ 1

� �
cs

3mr1þm þ cs
4mr�1þm;

us
hm ¼ cc

1mr�1�m þ 1� 2
m

� �
cc

2mr1�m

� 2
m
þ 1

� �
cc

3mr1þm � cc
4mr�1þm;

pa
m ¼

4l0r�m

m
½ðm� 1Þca

2m þ ðmþ 1Þr2mca
3m�; a ¼ c; s;

ð23Þ

where ca
1m; c

a
2m; c

a
3m and ca

4m (a = c, s) are constants of integration to
be determined from the boundary conditions.

3.2. Cylinder composed of a FGM

3.2.1. Power-law variation of the shear modulus
We assume that the shear modulus, l(r), is given by

lðrÞ ¼ l0
r

rou

� �n

; ð24Þ

where l0 is the reference value of the shear modulus, and the expo-
nent n describes the variation in the radial direction of the shear
modulus. For a cylinder made of a homogeneous material n = 0.
For n > 0, the shear modulus increases monotonically from its value
l0(rin/rou)n at points on the inner surface to l0ð~rðhÞ=rouÞn at points
on the outer periphery of the cylinder. For n < 0, the shear modulus
has the largest value at points on the inner surface of the cylinder.
Since the radial coordinate of a point on the exterior boundary is a
function of rou and h, therefore, the shear modulus appears to de-
pend upon r and h even though there is no explicit dependence of
l upon h in Eq. (24). As for a cylinder made of a homogeneous mate-
rial, ordinary differential equations for finding urm when m = 0,
m = 1 and m > 1 are different. Accordingly, we list below solutions
for these three cases. In the remainder of this sub-section we have
assumed that n – 0.

For m = 0, substitution for l(r) from Eq. (24) into Eq. (15) gives a
2nd-order ordinary differential equation for uh0. For n – �1, the
solution is

uc
h0 ¼ ac

h0r þ bc
h0r�ðnþ1Þ ð25Þ

and for n = �1, we have

uc
h0 ¼ ac

h0 þ bc
h0r; ð26Þ

where ac
h0 and bc

h0 are constants of integration. Similarly, substitut-
ing for l(r) from Eq. (24) into Eq. (17) and simplification of the
resulting equation gives the following expression for the hydro-
static pressure.

For n – 2,

pc
0 ¼ bc

0 � 2ac
r0

l0

r2

n
n� 2

r
rou

� �n

: ð27Þ

For n = 2,

pc
0 ¼ bc

0 � 4ac
r0

l0

r2
ou

ln r: ð28Þ

For m = 1, expressions for displacements and the hydrostatic
pressure are

ua
r1 ¼

ca
11

8
nt1r�

1
2nt2 þ ca

21

8
nt2r�

1
2nt1 � ca

31

n
r�n þ ca

41; a ¼ c; s;

uc
h1 ¼

cs
11

8
ðnt1 þ 8Þr�1

2nt2 þ cs
21

8
ðnt2 þ 8Þr�1

2nt1 þ cs
31ðn� 1Þ

n
r�n þ cs

41;

us
h1 ¼ �

cc
11

8
ðnt1 þ 8Þr�1

2nt2 � cc
21

8
ðnt2 þ 8Þr�1

2nt1 � cc
31ðn� 1Þ

n
r�n � cc

41;

pa
1 ¼ l0

r
rou

� �n ca
11

2
ð4� nt2Þrð�1�1

2nt2Þ þ ca
21

2
ð4� nt1Þrð�1�1

2nt1Þ
�

�ca
31ðnþ 2Þr�1�n

�
;a ¼ c; s;

ð29a — dÞ

where nt1 ¼ n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ n2
p

, and nt2 ¼ nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ n2
p

.
For m P 2, displacements and the hydrostatic pressure are gi-

ven by

ua
rm ¼

X4

i¼1

ca
imrni ; a ¼ c; s;

uc
hm ¼

X4

i¼1

cs
imð1þ niÞrni

m
; us

hm ¼ �
X4

i¼1

cc
imð1þ niÞrni

m
;

pa
m ¼ l0

r
rou

� �nX4

i¼1

eCa
imrni�1; a ¼ c; s;

ð30a — dÞ

where eCa
im ¼ ca

imð1þ n� niÞ þ ca
imð1þ nþ niÞðn2

i � 1Þ=m2, ca
imða ¼ c; s;

i ¼ 1;2;3;4Þ are constants of integration to be determined from the
boundary conditions, and

n1 ¼
1
2
�n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nm1 � 4

ffiffiffiffiffiffiffiffi
nm2
pq� �

; n2 ¼
1
2
�nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nm1 � 4

ffiffiffiffiffiffiffiffi
nm2
pq� �

;

nm1 ¼ 4þ 4m2 þ n2;

n3 ¼
1
2
�n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nm1 þ 4

ffiffiffiffiffiffiffiffi
nm2
pq� �

; n4 ¼
1
2
�nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nm1 þ 4

ffiffiffiffiffiffiffiffi
nm2
pq� �

;

nm2 ¼ 4m2 þ n2 �m2n2:

ð31Þ
3.2.2. Exponential variation of the shear modulus
The exponential variation of the shear modulus is assumed to

be given by the following equation:
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lðrÞ ¼ l0 expðbrÞ; ð32Þ

where l0 ¼ ~l0 expð�~bÞ and b ¼ ~b=rou control the variation of the
shear modulus in the radial direction and ~l0 equals the shear mod-
ulus at a point on the outer surface of the cylinder. For a cylinder
made of a homogeneous material b = 0.

As for the power-law variation of the shear modulus, we con-
sider separately cases when m = 0, m = 1 and m > 1.

For m = 0, substitution for l(r) from Eq. (32) into Eq. (15) gives
the following 2nd-order differential equation for uc

h0:

r2uc
h0;rr þ ruc

h0;r � uc
h0 þ br ruc

h0;r � uc
h0

� �
¼ 0: ð33Þ

Thus

uc
h0 ¼ ac

h0r þ bc
h0e�br

4r
ðb2ebrr2Eið�brÞ þ br � 1Þ; ð34Þ

where Ei(�br) is the exponential integral function.
Substitution for l(r) from Eq. (32) into Eq. (17) yields

pc
0 ¼ bc

0 � 2bac
r0f ðrÞ; f ðrÞ ¼

Z r

rin

l0eby

y2 dy: ð35Þ

For m = 1, the differential equation for the radial displacement
is

ua
r1;rrrr þ 2bþ 6

r

� �
ua

r1;rrr þ b2 þ 7b
r
þ 3

r2

� �
ua

r1;rr

þ b2

r
� b

r2 �
3
r3

 !
ua

r1;r ¼ 0; a ¼ c; s: ð36Þ

The analytical solution of Eq. (36) is

ua
r1 ¼ ca

11fr1 þ ca
21fr2 þ ca

31fr3 þ ca
41; a ¼ c; s: ð37Þ

Expressions for fri (i = 1, 2, 3) are given in Appendix A.
Substitution from Eq. (37) into Eqs. (10), (13c) and (13d) gives

us
h1 ¼ cc

11fh1 þ cc
21fh2 þ cc

31fh3 � cc
41;

uc
h1 ¼ �cs

11fh1 � cs
21fh2 � cs

31fh3 þ cs
41;

pa
1 ¼ l0 expðbrÞðca

11fp1 þ ca
21fp2 þ ca

31fp3Þ; a ¼ c; s: ð38Þ

Expressions for fhi and fpi (i = 1, 2, 3) are given in Appendix A.
For m P 2, the 4th-order differential equation for the radial dis-

placement is

ua
rm;rrrr þ 2bþ 6

r

� �
ua

rm;rrr þ b2 þ 7b
r
þ 5� 2m2

r2

� �
ua

rm;rr

þ b2

r
þ bð1� 2m2Þ

r2 � 1þ 2m2

r3

 !
ua

rm;r

þ b2

r2 þ
b
r3 þ

m2 � 1
r4

 !
ðmþ 1Þðm� 1Þua

rm ¼ 0; a ¼ c; s: ð39Þ

Eq. (39) is solved using the Frobenius series method. The series
solution of Eq. (39) is taken to be

ua
rmðrÞ ¼

X1
k¼0

aa
k rkþt ; aa

0 – 0 and a ¼ c; s; ð40Þ

where the exponent t is to be determined, and aa
k is a constant.

Substitution for ua
rmðrÞ from Eq. (40) into Eq. (39), we get the fol-

lowing recurrence formula for aa
k where it has been tacitly assumed

that the denominator of Eq. (41a) does not vanish:

aa
1 ¼ �

bð2t3 þ t2 � 2t þ ð1� 2tÞm2 � 1Þ
ðt þmÞðt þmþ 2Þðt �mÞðt �mþ 2Þ a

a
0; a ¼ c; s; ð41aÞ

aa
k ¼ f1aa

k�1 þ f2aa
k�2; k P 2; ð41bÞ

where
f1¼�
bð2t3þm2ð3�2t�2kÞþt2ð6k�5Þþkð2k2�5kþ2Þþ2tð3k2�5kþ1ÞÞ

f3
;

f2¼�
b2ð3þk2þm2þ2kðt�2Þ�4tþt2Þ

f3
;

f3¼ðtþmþ1þkÞðtþm�1þkÞðt�mþ1þkÞðt�m�1þkÞ: ð42a;b;cÞ

The exponent t in Eq. (40) is a solution of

ðt þmþ 1Þðt þm� 1Þðt �mþ 1Þðt �m� 1Þ ¼ 0; ð43Þ

obtained by equating to zero the coefficient of aa
0. It is clear that

roots of the indicial Eq. (43) depend on the circumferential wave
number m, and any two roots differ by an integer. The solution cor-
responding to the maximum root tmax = max (t1, t2, t3, t4) of Eq. (43)
is

ua
rm1ðrÞ ¼

X1
k¼0

aa
k rkþtmax ; a ¼ c; s; ð44aÞ

and the solution for the other three roots of Eq. (43) is

ua
rmiðrÞ ¼

X1
k¼0

ðt � tiÞaa
k

� 	
t¼ti

rkþti ln r

þ
X1
k¼0

ðt � tiÞaa
k


 �
;t

n o
t¼ti

rkþti ; i ¼ 2;3;4: ð44bÞ

The complete solution for ua
rm can be written as

ua
rm ¼

X4

i¼1

ca
imua

rmiðrÞ; ð45Þ

where ca
im is a constant.

Explicit expressions for the circumferential displacement and
the hydrostatic pressure can be derived by following the same
procedure as that for the power-law variation of the shear
modulus.
4. Results for example problems

We first study the convergence of the Fourier series solution (8),
the convergence of the Frobenius series (40), and the evaluation of
the integral in Eq. (18) for a given eccentricity between the inner
and the outer surfaces of the cylinder. Subsequently, we present
results for several sample problems to illustrate effects of non-axi-
symmetric loads, the eccentricity, and the gradation of material
properties. In these example problems, unless noted otherwise,
we take l0 = 1 MPa, rin/rou = 0.6, and rou = 1 cm. For a few problems
we compare our analytical solution with that obtained by using the
commercial finite element software, ANSYS. We note that the finite
element method (FEM) provides an approximate solution of a
boundary-value problem whose accuracy can be improved upon
by increasing the number of elements into which the problem do-
main is divided. While analyzing problems using ANSYS the cylin-
der thickness is divided into 16 uniform layers of equal
thicknesses. Each layer has 400 uniform 4-node (Plane 182) ele-
ments in the circumferential direction and two elements in the ra-
dial direction. It requires solving simultaneously 39,266 algebraic
equations. The value of the shear modulus in each layer is a con-
stant and equals that obtained from Eqs. (24) or (32) at the mid-
point of the layer.

In curves included in all figures, ‘a’ and ‘p’ represent,
respectively, solutions obtained with the FEM and the present
approach.

The number of terms in the Frobenius and the Fourier series is
increased till stresses at a point have converged to within 0.1% of
their values. The number of terms in these series needed to obtain
a converged solution varies with the eccentricity of the cylinder
and the gradation of material properties.



Fig. 2. Through-the-thickness distributions of (a) the hoop stress, and (b) the radial
stress. Fig. 3. Through-the-thickness distributions of (a) the hoop stress, and (b) the radial

stress.
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4.1. Comparison of the present solution with that from the FEM

4.1.1. Power-law variation of the shear modulus
We assume that only the inner surface of the FG hollow cylinder

is loaded by pressure pin = 0.1 � cos (2h) MPa, 0 6 h < 2p, and n = 2
in the power-law variation (24) of the shear modulus. The problem
is also analyzed for pin = 0.1 � cos (6h) MPa, 0 6 h < 2p, and n = �2
in Eq. (24). The analytical solutions of these two problems are ob-
tained by retaining only the cos (2h) and the cos (6h) terms, respec-
tively, in Eqs. (8a)–(8c). The through-the-thickness distributions of
the radial and the hoop stresses computed from the two ap-
proaches are compared in Fig. 2a and b. The close agreement be-
tween solutions from the two methods suggests that for the
pressure distribution expressed by a single cosine or a sine term,
the analytical solution obtained easily by considering only one
term in Eqs. (8a)–(8c) is close to the solution of the problem by
the FEM. Furthermore, for a power-law variation of the shear mod-
ulus in the radial direction, dividing the inhomogeneous cylinder
into one comprised of 16 perfectly bonded contiguous homoge-
neous cylinders is sufficient. In [12] problems for FG cylinders
and in [25] vibrations of a FG rectangular plate have been solved
by dividing the cylinder and the plate, respectively, into several
layers of homogeneous materials.

4.1.2. Exponential variation of the shear modulus
We calculate stresses in an internally loaded hollow cylinder

with an exponential variation in the radial direction of the shear
modulus using the following parameters:
Table 1
Effect of the number of terms in the Frobenius series on stresses at the point (6.6 mm, 0)

Number of terms in the Frobenius series

25 27 29

Radial stress (�0.1 MPa) 0.357805 0.359573 0.36136
Hoop stress (�0.1 MPa) 1.09346 1.16507 1.23729
pin ¼ 0:1� sinð4hÞMPa; 0 6 h < 2p; b ¼ 5; and
pin ¼ 0:1� sinð8hÞMPa 0 6 h < 2p; b ¼ �5:

The radial and the hoop stresses at the point (6.6 mm, 0) for dif-
ferent number of terms in the Frobenius series (40) when b = 5 are
listed in Table 1. It is clear that with an increase in the number of
terms in the Frobenius series from 30 to 50 the radial and the hoop
stresses at the point (6.6 mm, 0) hardly change. It suggests that 30
terms in the Frobenius series provide a solution for which stresses
at a point have converged within 0.1% of their values at that point.
The through-the-thickness variations of the radial and the hoop
stresses on the radial line h = 0 depicted in Fig. 3a and b and com-
puted with the two approaches overlap each other.
4.1.3. Eccentric cylinder
We now consider two eccentric cylinders with e/rou = 0.05 and

0.10, the power-law variation of the shear modulus corresponding
to n = 0 and 1, qou = 0, pou = 0.1 MPa, 0.1 � cos (h) MPa and
0.1 � cos (2h) MPa, and the inner surface of the cylinder kept fixed.
The compatibility condition (7) for the solution to exist is automat-
ically satisfied since tractions on the inner clamped boundary will
be such that the overall equilibrium is maintained. The challenge is
to satisfy boundary condition (5e) in the sense of Fourier series. For
pou = 0.1 � cos (2h) MPa and e/rou = 0.05, n = 1, we have listed in
Table 2 the radial stress at the point (6.5 mm, 0) for different
.

30 35 40 50

0.361577 0.361534 0.361534 0.361534
1.24607 1.24434 1.24434 1.24434



Table 2
Effect of the number of Gauss integration points and the number of terms in the Fourier series on the radial stress at the point (6.5 mm, 0). Unit: 0.1 MPa.

Gauss points Number of terms in the Fourier series

2 3 4 5 6 7 8 9 10

24 �1.14266 �1.07112 �1.05021 �1.04749 �1.04722 �1.0472 �1.04719 �1.04719 �1.04719
32 �1.14266 �1.07112 �1.05021 �1.04749 �1.04722 �1.04719 �1.04719 �1.04719 �1.04719
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number of terms in the Fourier series expansion of displacements
and the hydrostatic pressure (cf. Eq. (8)), and the number of Gauss
integration points used to numerically evaluate integrals on the
left hand side of Eq. (18). It is clear that with an increase in the
number of terms in the Fourier series, the radial stress at the point
(6.5 mm, 0) converges. For a fixed number of terms in the Fourier
series, results with 24 and 32 Gauss integration points are the
same. In general, the number of terms in the Fourier series re-
quired for the solution to converge increases with an increase in
the eccentricity e.

In Figs. 4 and 5 we compare the through-the-thickness distri-
butions of the radial and the hoop stresses from the FEM and
the present technique for the two eccentric cylinders. It is clear
that results from the FEM and the present technique differ by less
than 5%.

4.1.4. Partially loaded circular cylinder
The convergence of the Fourier series solution for the concentric

cylinder with pressure applied to a part of the inner surface is also
Fig. 4. For eccentric cylinders made of a homogeneous material having e/rou = 0.1
and three different pressure distributions (corresponding to m = 0, 1 and 2) on the
outer surface, comparison from the two solution techniques of through-the-
thickness distributions of (a) the hoop stress, and (b) the radial stress.
studied. For n = �2, pin(h) = 0.1 MPa, �p/2 6 h 6 p/2 and the outer
surface fixed, stresses at the point (rin, 0) are listed in Table 3. It
is evident that the radial and the hoop stresses at the point
(rin, 0) converge with an increase in the number of terms in the
Fourier series, and 35 terms in the Fourier series solution should
suffice. Even though magnitudes of stresses oscillate the amplitude
of oscillations is less than 2% of the magnitude of the stress. We
note that the magnitude of the hoop stress is less than that of
the radial stress, and the number of terms needed to get converged
values of stresses is four times that for the case of the uniform
pressure applied on the inner surface of a hollow cylinder.

4.2. Parametric studies

We have conducted parametric studies to illuminate effects of
(i) the gradation of material properties, (ii) the circumferential
wave number of the pressure applied on the inner surface of a hol-
low cylinder, (iii) the pressure applied only on a part of the inner
surface of a cylinder, (iv) tangential tractions applied on the inner
surface, and (v) the eccentricity of the cylinder. We also give re-
sults for a thin cylinder with a non-axisymmetric pressure applied
Fig. 5. For an eccentric cylinder with the shear modulus a linear function of the
radius, e/rou = 0.05, and three different pressure distributions (corresponding to
m = 0, 1 and 2) on the outer surface, comparison from the two solution techniques
of through-the-thickness distributions of (a) the hoop stress, and (b) the radial
stress.



Table 3
Radial and hoop stresses at the point (rin, 0) for different number of terms in the Fourier series.

Number of terms in the Fourier series

35 37 39 41 43 45 47 49

Radial stress (�0.1 MPa) �0.991165 �1.00837 �0.992047 �1.00757 �0.992769 �1.00692 �0.993371 �1.00636
Hoop stress (�0.1 MPa) �0.729089 �0.747276 �0.730072 �0.746394 �0.730868 �0.745672 �0.731525 �0.74507
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on its inner surface, and for a very thick cylinder with a non-axi-
symmetric pressure applied on the outer surface.

4.2.1. Hollow cylinder with non-axisymmetric surface tractions
4.2.1.1. Gradation of material properties. For pin(h) = 0.1 �
cos (2h) MPa, 0 6 h < 2p, pou = 0, and the exponent n = �2, �1, 0,
1, 2 in Eq. (24) representing the power-law variation of the shear
Fig. 6. For power-law variation of the shear modulus with exponent n = �2, �1, 0, 1 and
the radial displacement, (d) the circumferential displacement on the radial line h = 0, and
the FG cylinder with the power law exponent n = 1 are also shown; the shear stress for
modulus, we have plotted in Fig. 6a–f on the radial line h = 0
the through-the-thickness variations of the radial and the hoop
stresses, the radial and the circumferential displacements, and
the shear stress. The value of a quantity at a point (r, h) is ob-
tained by multiplying the value plotted for r by cos (2h). For
comparison purposes results are also included for the uniform
pressure 0.1 applied on the inner surface of a FG cylinder with
2, through-the-thickness distributions of (a) the hoop stress, (b) the radial stress, (c)
(e) the shear stress on the radial line h = p/4. Results for an axisymmetric problem in
the axisymmetric problem identically vanishes.



Fig. 7. For power-law variation of the shear modulus with exponent n = 2 (left figures) and�2 (right figures), and non-axisymmetric pressure 0.1cos(mh) on the inner surface,
through-the-thickness distributions of (a) the hoop stress, (b) the radial stress, (c) the shear stress, (d) the radial displacement, and (e) the circumferential displacement.
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n = 1. For this axisymmetric problem, Batra [14] proved analyti-
cally that the hoop stress is a constant through the cylinder
thickness. Results for this problem are labeled ‘axisym’ in
Fig. 6a–f.



Fig. 8. For uniform pressure applied only on a quarter of the outer surface, distributions of the hoop stress on (a) the surface r = rou, (b) the radial line h = p/4, and distributions
of the radial stress on (c) the surface r = rin, (d) the surface r = rou, and (e) the radial line h = p/4.
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Results presented in Fig. 6 reveal that displacements and stres-
ses depend continuously upon the exponent n since in varying n
from �2 to 2 the value of each one of these quantities changes
gradually. Whereas under a uniform pressure applied to the inner
surface of a homogeneous cylinder (i.e. n = 0) the hoop stress is
tensile, for a non-uniform pressure distribution it can be compres-
sive and of rather large magnitude. Furthermore, the hoop stress
under a non-uniform pressure applied to the inner surface of the
cylinder varies from large negative values at points on the inner
surface of the cylinder to positive values at points on the outer un-
loaded surface of the cylinder. The maximum value of the radial
stress does not occur at points on the inner surface of the cylinder
as it does for a homogeneous cylinder but at an interior point. For
each one of the five values of n and the cylinder geometry consid-
ered here, the maximum magnitude of the radial stress exceeds
that of pin and the location of this point moves slightly inwards
with an increase in the value of n from �2 to 2. At r/rou � 0.75,
the magnitude of the radial stress is independent of the value of
n; there are two interior points where the magnitude of the hoop
stress is nearly independent of the value of n. The maximum mag-
nitude of each one of the radial, the hoop and the shear stress de-
creases gradually as n is increased from �2 to 2, and these do not
occur at the same interior point. At an interior point, with an in-
crease in the value of n from �2 to 2, magnitudes of the radial
and the circumferential displacements increase.
For the exponent n = 2 and �2 in Eq. (24) we scrutinize defor-
mations of the thick cylinder for

pinðhÞ ¼ 0:1� cosðmhÞMPa; 0 6 h < 2p; m ¼ 6;8;10;12:

For the four distributions of the pressure on the inner surface,
stresses and displacements in the cylinder calculated using the
present formulation are shown in Fig. 7. For n = 2, the influence
of the non-axisymmetric pressure applied to the inner surface of
the cylinder on the hoop stress spreads gradually along a radial
line, but for n = �2, it is concentrated mostly at points in the vicin-
ity of the inner surface of the cylinder. The shear stress and the two
displacements at a point are affected more by the circumferential
wave number m of the prescribed pressure than the hoop stress ex-
cept for the increase in m from 6 to 8. Thus a small value of m
seems to have a large effect on the through-the-thickness variation
of a deformation variable than a large value of m. For n = 2 magni-
tudes of the radial and the tangential displacements at a point are
greater than those for n = �2. Thus by suitably tailoring the varia-
tion in the thickness direction of the shear modulus, one can con-
trol displacements and stresses in the cylinder even when the
pressure on the inner surface is not uniform.

4.2.1.2. Uniform pressure applied on a quarter of the outer surface. For
the uniform pressure pou(h) = 0.1 MPa, 0 6 h 6 p/2 applied to a
quarter of the outer surface, the inner surface of the cylinder kept



Fig. 9. For exponential variation of the shear modulus with b = 5 (left figures) and b = �5 (right figures), and the tangential traction 0.1sin (mh) MPa applied on the inner
surface, through-the-thickness distributions of (a) the hoop stress, (b) the radial stress, and (c) the shear stress.
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fixed, and the exponent n = �2, �1, 0, 1, 2 in Eq. (24) for the power-
law variation of the shear modulus, results computed with fifty
terms in the Fourier series are exhibited in Fig. 8. Results for the
five values of the exponent n in Eq. (24) are qualitatively similar
to each other. Both the radial stress on the inner fixed surface
and the hoop stress on the outer periphery decay rapidly with h
as one moves away from extremities of the loaded region. The
through-the-thickness distributions for 0 < h < p/2 are essentially
similar to that for a cylinder with uniform pressure applied to its
outer boundary.

4.2.1.3. Non-axisymmetric tangential tractions applied on the inner
surface. We analyze deformations of a hollow cylinder with the
outer surface traction free, tangential traction qin(h) = 0.1 �
sin (mh) MPa, 0 6 h < 2p, m = 4, 6, 8, 10 acting on the inner surface,
and the exponential variation of the shear modulus in the radial
direction given by l0 exp [�5(r � rin)], l0 exp [5(r � rou)]. For
non-zero even values of m, the compatibility condition (7) is satis-
fied by the prescribed tangential tractions; otherwise balancing
tangential tractions need to be applied on the outer surface of
the cylinder. The solution, found by retaining thirty terms in the
Frobenius series, is depicted in Fig. 9. Stress distributions for the
four values of m agree qualitatively suggesting that the circumfer-
ential wave number of the tangential tractions prescribed on the
inner surface does not affect the stress distribution noticeably.
However, results for m = 4 are quantitatively different from those
for the other three values of m. Distributions of the radial and
the shear stresses for b = �5 and b = 5 are qualitatively similar to
each other, but the two distributions of the hoop stress differ
noticeably. For b = 5 and m = 4, the hoop stress varies from
+0.18 MPa at points on the inner surface to �0.18 MPa at points
on the outer surface; however, for b = �5, it varies smoothly from
0.42 MPa at points on the inner surface to �0.03 MPa at points on
the outer surface. For b = �5 and for each one of the four values of
m, the hoop stress drops rather rapidly from its maximum value at
points on the inner surface to �0.03 MPa at r/rou = 0.75; the rate of
drop is a little less for the circumferential wave number m = 4 than
that for the other three values of m. Whereas the maximum value
of the hoop stress occurs at a point on the inner surface that of the
radial and the shear stresses occurs at interior points whose loca-
tions vary with the value of m. The maximum hoop stress is greater
than the maximum magnitude of the shear stress. These results
suggest that for a FG cylinder with the shear modulus decreasing
with an increase in r, large values of stresses occur within one-
third the cylinder thickness from the inner surface. However, when
the shear modulus increases with an increase in r, the magnitude
of the hoop stress for m = 4 at points on the outer surface is com-
parable to that at points on the inner surface.



Fig. 10. For (a) m = 12 (top) and (b) m = 20 (bottom), rin/rou = 0.95, through-the-thickness distributions of the hoop and the shear stresses.
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4.2.1.4. Non-axisymmetric pressure applied to a thin cylinder. For rin/
rou = 0.95, pin = 0.1 � cos (mh) MPa, 0 6 h < 2p, pou = 0, m = 12, 20
and the exponent n = �2, �1, 0, 1 and 2, we have plotted in
Fig. 10 on a radial line through-the-thickness variations of the hoop
stress and the shear stress to delineate effects of the non-axisym-
metric pressure distribution on the surface tension and the shear
stresses induced in the thin cylinder. These results show that the
maximum hoop stress and the maximum shear stress strongly de-
pend upon the circumferential wave number of the applied pres-
sure. With an increase in the circumferential wave number from
12 to 20, the maximum hoop stress decreases from 1.6 to
0.6 MPa and the maximum shear stress from 0.23 to 0.14 MPa.
We note that these stress distributions are nearly independent of
the gradation of material properties. The variation of rh from neg-
ative values on the inner surface to positive values on the outer
surface of the same magnitude suggests that bending rather than
stretching deformation are dominant in each one of the angular
segments of length 2p/m. For a uniformly loaded simply supported
beam, the maximum axial stress is proportional to the square of
the beam length. Thus for pure bending of the segment of thin cyl-
inder between two cusps of the applied pressure, the maximum
hoop stress for m = 20 should be 36% of that for m = 12 which is
not too different from the 37.5% obtained here. Recall that for a
uniform pressure distribution corresponding to m = 0, the shear
stress vanishes identically, the hoop stress is almost constant and
equals nearly twenty times the uniform pressure, and the cylinder
wall deforms due to stretching rather than due to bending
deformations.

4.2.1.5. Non-axisymmetric pressure applied to the outer surface of a
very thick cylinder. We have analyzed deformation of a very thick
Table 4
Hoop stress at a tiny hole in a very thick cylinder. Unit: 0.1 MPa.

rin/rou = 0.1 rin/rou = 0.05

n = �2 n = 0 n = 2 n = �2

m = 0 �4.0004 �2.0202 �0.4343 �4.0000
m = 2 12.6087 4.1220 0.2492 13.2928
cylinder with rou� rin, pou = 0.1 � cos (mh) MPa, 0 6 h < 2p, m =
0, 2, 6, 12, pin = 0 and the exponent n = �2, 0 and 2. For n = �2, 0,
2 and m = 0 and 2, the maximum hoop stress occurs at the tiny
hole, and the values are listed in Table 4. We note that for
m = n = 0, the maximum hoop stress of 0.2 MPa listed in Table 4
agrees with that given in [14]. As should be clear from the values
listed in Table 4, the maximum hoop stress at the surface of a tiny
hole strongly depends upon the values of n and m. For n = �2, the
maximum hoop stress at the hole for m = 2 is about 3.5 times that
for m = 0. However, the maximum hoop stress at the hole is signif-
icantly reduced when n is changed from 0 to 2. Thus the gradation
in the radial direction of the shear modulus significantly affects the
maximum hoop stress induced at the surface of a hole in a thick
cylinder. For n = �2, 0, 2, the hoop stress at the hole surface
changes from compressive for m = 0 to tensile for m = 2. For
n = �2 and 2, and the four values of m, the through-the-thickness
variations of rrr and rhh are plotted in Fig. 11. These plots evince
that for m = 6 and 12 stresses, except at points near the outer sur-
face, are nearly uniform through the cylinder thickness.

4.2.2. Eccentric cylinder
4.2.2.1. Gradation of material properties. For an eccentric cylinder
with e/rou = 0.05, the exponent n in the power law relation (24)
equal to �2, �1, 0, 1 and 2, the inner surface of the cylinder fixed
and the pressure pou = 0.1 � cos (2h) MPa, 0 6 h < 2p applied to the
outer surface, Fig. 12 exhibits through-the-thickness variations of
the hoop and the radial stresses. Results have been computed by
retaining eight terms in the Fourier series and using 24 Gauss
points to numerically evaluate integrals in Eq. (18). For each value
of n, the through-the-thickness distributions of the hoop and the
radial stresses on the radial line where the cylinder thickness is
rin/rou = 0.025

n = 0 n = 2 n = �2 n = 0 n = 2

�2.0050 �0.3338 �4.0000 �2.0013 �0.2710
4.03013 0.0675 13.6919 4.0075 0.0176



Fig. 11. For rin/rou = 0.1, and four values of the circumferential wave number of the
pressure applied to the outer surface through-the-thickness distributions of the
maximum hoop stress; (a) n = �2, and (b) n = 2.
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the maximum are similar to those on the radial line where the cyl-
inder thickness is the minimum. However, the influence of the
eccentricity on the stresses in the cylinder with the exponent
n = 2 is greater than that in the cylinder with the exponent
n = �2. The magnitudes of the radial stress at interior points vary
Fig. 12. For e/rou = 0.05, through-the-thickness distributions of (a) the hoop stress on
maximum thickness), (c) the radial stress on the line h = 0 (the minimum thickness), an
between 0.1 and 0.13 MPa irrespective of the value of n and where
the point is located.

4.2.2.2. Eccentricity of the cylinder. For an eccentric cylinder with e/
rou = 0.05, 0.10, 0.15 and 0.20, the exponent n in the power law
relation (24) equal to �2 and 2, the inner surface of the cylinder
fixed and the pressure pou = 0.1 � cos (2h) MPa, 0 6 h < 2p applied
to the outer surface, variations of stresses in the circumferential
and the radial directions are exhibited in Figs. 13 and 14. Results
are computed by retaining thirty terms in the Fourier series and
using 128 Gauss points to evaluate integrals in Eq. (18). These re-
sults evince that the eccentricity does not significantly change
the magnitude of stresses on the inner surface of the cylinder,
and the stress distribution has the same circumferential wave
number as the applied pressure. Furthermore, stresses depend con-
tinuously upon the eccentricity. For the largest value e/rou = 0.2 of
the eccentricity considered, the hoop stress on the inner surface
in the neighborhood of the point h = p varies smoothly for n = 2
but not so smoothly for n = �2. Also, the radial and the hoop stres-
ses at a point do no equal principal stresses there because of non-
zero shear stress. At interior points on the radial lines h = p and
h = 0 the maximum magnitude of the hoop stress occurs at a point
on the inner surface. The maximum magnitude of the radial stress
exceeds that of the external pressure and the point where it occurs
varies with the eccentricity of the cylinder. For n = 2 and �2 the
shear stress at a point varies smoothly with the change in the
eccentricity.

The distributions on the inner fixed surface of principal stresses
for the cylinders with e = 0 and e/rou = 0.2 are exhibited in Fig. 15.
As mentioned above, the principal stresses at a point need not
equal the hoop stress and the radial stress since the shear stress
rrh may not vanish. However, one of the principal stresses equals
the hydrostatic pressure since rzh and rrz equal zero. Since the
three principal stresses have nearly the same magnitude, the
hydrostatic pressure significantly contributes to the other two
principal stresses, and to the radial and the hoop stresses. Both
the eccentricity and the exponent n in the power law relation
(24) noticeably affect the variation with h of the principal stresses.
For the cylinder with zero eccentricity, stress distributions on the
the line h = 0 (the minimum thickness), (b) the hoop stress on the line h = p (the
d (d) the radial stress on the line h = p (the maximum thickness).



Fig. 13. For four values of the eccentricity e, and the exponent n = 2 in Eq. (24), distributions of stresses on the (a) inner surface, r = rin, (b) the radial line h = 0 (the minimum
thickness), (c) the radial line h = p (the maximum thickness), and (d) the shear stress on the radial line h = p/4.
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Fig. 14. For four values of the eccentricity e, and the exponent n = �2 in Eq. (24), distributions of stresses on the (a) inner surface, r = rin, (b) the radial line h = 0 (the minimum
thickness), (c) the radial line h = p (the maximum thickness), and (d) the shear stress on the radial line h = p/4.
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Fig. 15. Variations of principal stresses on the fixed inner surface of the cylinder for (a) n = 2, e/rou = 0.0, (b) n = 2, e/rou = 0.2, (c) n = �2, e/rou = 0, and (d) n = �2, e/rou = 0.2.
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inner fixed surface are virtually unaffected when n in Eq. (24) is
changed from �2 to 2. However, for an eccentric cylinder, the
change in n from �2 to 2 has a noticeable effect on the stress dis-
tribution on the fixed surface. For the cylinder with zero eccentric-
ity the maximum principal stress of 0.13 MPa occurs at h = 0.4p
and for the eccentric cylinder the maximum principal stress equals
0.17 MPa for n = 2 at the point h = 0.5p and equals 0.14 MPa for
n = �2 at the point h = 0.6p.

From values of the maximum principal stress versus the eccen-
tricity plotted in Fig. 16 it is clear that for n = 2 the maximum prin-
cipal stress induced in the cylinder increases monotonically with
an increase in e but for n = �2 it seems to saturate at e/rou = 0.1
and barely increases when the eccentricity is doubled. Thus the ef-
fect of eccentricity on the maximum principal stress induced in the
cylinder can be mitigated by tailoring the gradation of the shear
modulus through the cylinder thickness.

5. Remarks

For a FG cylinder comprised of two or more materials one can
use an homogenization technique (e.g. the rule of mixture, the 3-
phase rule, the equivalent energy principle; see [21] and references
Fig. 16. Variation with the eccentricity of the maximum principal stress.
cited therein) to ascertain volume fractions of constituents needed
to obtain the desired gradation of the shear modulus in the radial
direction. The material tailoring problem, i.e., finding the gradation
of material properties so as to achieve a desired state of stress
within the body has been discussed in [22–24].

6. Conclusions

We have analyzed analytically plane strain infinitesimal defor-
mations of a non-axisymmetrically loaded hollow cylinder and of
an eccentric cylinder composed of a linear elastic isotropic and
incompressible functionally graded (FG) material. The shear mod-
ulus in the radial direction is assumed to vary either according to a
power law relation or an exponential function. The convergence of
the infinite series in the analytical solution has been established,
and solutions for a few problems are found to compare very well
with their solutions obtained by the finite element method using
a commercial computer code with the cylinder divided into sixteen
contiguous perfectly bonded homogeneous cylinders. The shear
modulus of each one of the sixteen cylinders equals that of the
functionally graded cylinder evaluated at the mean radius of the
layer. We have delineated effects of the eccentricity and of the gra-
dation of the shear modulus upon deformations of a cylinder.

It is found that for a hollow FG cylinder with uniform pressure
applied to the inner surface only, the maximum value of the radial
stress does not occur at points on the inner surface of the cylinder
as it does for a homogeneous cylinder but at an interior point. The
hoop stress in the cylinder can be compressive and of rather large
magnitude under a non-uniform pressure. For a hollow cylinder
with non-axisymmetric tangential traction acting on the inner sur-
face, the maximum hoop stress is greater than the maximum mag-
nitude of the shear stress. The maximum value of the hoop stress
occurs at a point on the inner surface and that of the radial and
the shear stresses occurs at interior points whose locations vary
with the circumferential wave number of the load.

The maximum hoop and shear stresses in a thin cylinder
strongly depend upon the circumferential wave number of the ap-
plied non-axisymmetric pressure. For large circumferential wave
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number of the applied pressure, bending rather than stretching
deformations of the cylinder segment between two cusps of the
applied pressure are dominant.

For a very thick FG cylinder with pressure applied only on the
outer surface, the magnitude and the sign of the hoop stress on
the inner surface strongly depend upon the gradation of material
properties and on the circumferential wave number of the applied
load.

The maximum principal stress in a FG eccentric cylinder can be
controlled by suitably varying the shear modulus in the radial
direction.
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Appendix A

Expressions for fri, fhi, fpi (i = 1, 2, 3)

fr1 ¼
2
br
þ ln r

2
� 3

2b2r2
;

fr2 ¼
3 expð�brÞ

4b6r2
� expð�brÞ

4b5r
� Eið�brÞ

4b4 ;

fr3 ¼ �
13

16b2 þ
5c
8b2 þ

15 expð�brÞ
8b4r2

� 11 expð�brÞ
8b3r

� 3Eið�brÞ
4b2 � 3Eið�brÞ

4b4r2
þ Eið�brÞ
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þ 5Cð0;brÞ

8b2

� ðrpÞFq½f1;1;1g; f2;2;2g;�br�
2b

� 5 lnðrÞ
8b2 þ c lnðrÞ

2b2

þ 3 expð�brÞ lnðrÞ
4b4r2

� expð�brÞ lnðrÞ
4b3r

þ Eið�brÞ lnðrÞ
4b2

þ Cð0;brÞ lnðrÞ
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2
� 3

2b2r2
� lnðrÞ

2
;
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3 expð�brÞ

4b6r2
þ 3 expð�brÞ

4b5r
þ Eið�brÞ

4b4 ;

fp1 ¼ �
2

br2 þ
1
r
; f p2 ¼

expð�brÞ
b5r2

þ expð�brÞ
2b4r

;

fh3¼
13

16b2�
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8b2þ

15expð�brÞ
8b4r2

þ9expð�brÞ
8b3r
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2b
þ5InðrÞ

8b2 �
cInðrÞ

2b2 þ
3expð�brÞInðrÞ

4b4r2
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2b2

fp3¼
5expð�brÞ
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þexpð�brÞInðrÞ

2b2r
where EiðzÞ ¼ �
R1
�z

e�t

t dt, c Euler’s constant = 0.577216, C(a, z) the
incomplete gamma function, pFqða; b; zÞ the generalized hypergeo-
metric function [20] given by pFqða; b; zÞ ¼

P1
k¼0ða1Þk � � � ðapÞk=

ðb1Þk � � � ðbqÞkzk=k!.
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