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1. Introduction

Bending and free vibration of shear-flexible plates by numerical
techniques was performed by [1–3] using the differential quadra-
ture method. In [4–7] the finite element method was used with
success. More recently the analysis of isotropic and laminated
plates by Kansa’s non-symmetric radial basis function collocation
method was performed by Ferreira and colleagues [8–16].

This paper deals with the bending analysis of sandwich plates
by a wavelet collocation method [17,18]. A layerwise theory is
used to model the kinematics of the laminated plates. Although
in the present study we restrict the analysis to sandwich plates,
the method can be easily applied to isotropic as well as more com-
plicated plate bending problems, such as piezolaminates, or lami-
nates with distributed actuators.

The method employed for the numerical solution is a collocation
method based on Deslaurier–Dubuc interpolating basis in hierar-
chical form [19], which is the first necessary step towards the appli-
cation to this class of problems of the adaptive wavelet collocation
method introduced in [17,20]. This collocation algorithm can be
viewed as a very effective meshless technique. It was already tested
with success in the solution of plane elasticity problems, as shown
in [20,18]. The method was recently applied with success to com-
posite structures [25]. For the sake of completeness, some aspects
related to the basic formulation will be described.
ll rights reserved.

: +351 218497650.
2. Interpolating wavelets

The Deslaurier–Dubuc fundamental function [21] of order
N ¼ 2Lþ 1 is defined as the autocorrelation of Daubechies scaling
functions, /L [22], as follows:

#ðxÞ ¼
Z

R

/LðyÞ/Lðy� xÞdy ð1Þ

The scaling function /L satisfies the following properties:

1. supp/L ¼ ½0;2Lþ 1�;
2. /L 2WR=2;1 for some R > 0 (R is proportional to L): jðds

=dxsÞ
/Lj 6 C, for all integers s, with com 0 6 s 6 R=2;

3. /L is orthogonal to all its integer translates:
R

/LðxÞ/Lðx� kÞdx ¼
d0k;

4. All polynomials up to order L can be exactly represented as a
linear combination of function /L and all its integer translates.

As a consequence of the above properties, function # satisfies:

1. supp# ¼ ½�N;N�; and # 2WR;1;
2. Due to the orthogonality of the translates of /L, the function #

presents the following interpolating property:

#ðnÞ ¼
Z

R

/LðyÞ/Lðy� nÞdy ¼ dn0 ð2Þ

3. All polynomials up to order N can be exactly represented as a
linear combination of function # and all its integer translates.

http://dx.doi.org/10.1016/j.compstruct.2010.01.021
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The plots of the function # and its derivatives, for N ¼ 4, are pre-
sented in Fig. 1.

Based on the fundamental function # it is possible to build the
complete wavelet system on R. As described in detail in [17], ten-
sor products will lead to wavelet systems on Rd.

Following the ideas and techniques described in [23,24], it is
possible to build a Deslaurier–Dubuc wavelet system in the closed
interval [0,1]. As described in [20], we define for j P j0 ¼
½log2ðN=2Þ� þ 1

#jk ¼ #ð2jx� kÞ þ
X�1

n¼�Nþ1

ank#ð2jx� nÞ; k ¼ 0; . . . ; L ð3Þ

#jk ¼ #ð2jx� kÞ; k ¼ Lþ 1; . . . ;2j � L� 1; ð4Þ

#jk ¼ #ð2jx� kÞ þ
X2jþN�1

n¼2jþ1

bnk#ð2jx� nÞ; k ¼ 2j � L; . . . ;2j; ð5Þ

where the coefficients ank and bnk are defined by

ank ¼ l1
jkðn2�jÞ; bnk ¼ l2jkðn2�jÞ ð6Þ

and where l1
jk and l2

jk represent Lagrange interpolation polynomials
of degree L, defined by

l1
jk ¼

YL

i¼0
i–k

x� i2�j

k2�j � i2�j ; l2jk ¼
Y2j

i¼2j�L
i–k

x� i2�j

k2�j � i2�j ð7Þ
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Fig. 1. Deslaurier–Dubuc function with N ¼ 4 and its derivatives.
An interpolating multi-resolution analysis (MRA) in the interval
[0,1] is defined by a set of closed subspaces Vj ¼ spanh#jk; k ¼
0; . . . ;2ji � L2ð0;1Þ. By using tensor products, it is then possible to
define a multi-resolution on the square ½0; 1�2. The two-dimensional
scaling functions #j;k;k ¼ ðk1; k2Þ 2 Gj ¼ f0; . . . ;2jg2 are defined by

#j;k ¼ #jk1
� #jk2

ð8Þ

The subspace Vj is the defined by:

Vj ¼ spanh#j;k; k ¼ ðk1; k2Þ 2 f0; . . . ;2jg2i ð9Þ

It is easy to define an interpolation operator Lj : C0ð½0;1�2Þ ! Vj

Ljf ¼
X
k2Gj

f ðk=2jÞhj;k ð10Þ

The wavelet basis for the complement space Wj ¼ ðLjþ1 � LjÞVjþ1 is
composed by the functions

wð1;0Þj;k ¼ #jþ1;2k1�1 � #j;2k2
ð11Þ

wð0;1Þj;k ¼ #j;2k1
� #jþ1;2k2�1 ð12Þ

wð1;1Þj;k ¼ #jþ1;2k1�1 � #jþ1;2k2�1 ð13Þ

and a hierarchical basis for Vj can be assembled as

f#j0 ;k;k ¼ ðk1; k2Þ 2 f0; . . . ;2j0g2
[j�1

m¼j0

wð1;0Þm;k ;w
ð0;1Þ
m;k ;w

ð1;1Þ
m;k

n o
;

k ¼ ðk1; k2Þ 2 f0; . . . ;2mg ð14Þ

The grid points corresponding to the scaling functions and the
wavelets are defined by

fj;k ¼ ðk12�j; k22�jÞ ð15Þ

For the sake of simplicity we will use the following compact nota-
tion: given k ¼ ðg; j;kÞ with g 2 N ¼ f0;1g2 n f0; 0g; j P j0, and k
such that ng

j;k 2 ½0; 1�2, define

wk ¼ wg
j;k; nk ¼ ng

j;k ð16Þ

Any continuous function f 2 C0ð½0; 1�2Þ can be expanded in the form

f ¼
X

k2f0;...;2j0 g2

bj0k#j0k þ
X
k2K

akwk ð17Þ

where

K ¼ fðg; j;kÞ;g 2 N; j P j0;k such that ng
j;k 2 ½0; 1�2g ð18Þ

denotes the set of compact indexes.
It can be shown [20] that the scaling functions are responsible

for representing f at a given level of resolution and the wavelets
define the detail that is necessary to switch from one level of reso-
lution to the next. Consequently, the value of the wavelet coeffi-
cients, ak, allow for the identification of the region of the domain
where details are important – which correspond to the regions
where the discretization should be improved.

3. Collocation technique

In this section we briefly describe the collocation method based
on Deslaurier–Dubuc interpolating wavelets. We consider a uni-
form discretization, although the collocation method that we pres-
ent here does not a priori require the uniformity of the grid and can
easily be adapted to the case of non-uniform grids of dyadic points.
For any j P j0, let the dyadic grid Gj be defined by

Gj :¼ ffj;k; k 2 f0; . . . ;2jg2g ð19Þ
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In order to take into account the boundary conditions, the grid Gj is
subdivided into a set of interior nodes and sets of Neumann and
Dirichlet boundary nodes. It is then possible to write:

Gj ¼ GðiÞj [ GðNÞj [ GðDÞj

with

GðiÞj ¼ Gj \ ½0; 1�2; GðNÞj ¼ Gj \ Cr; GðDÞj ¼ Gj \ Cu

Problem (P) can be discretized as follows:
Find u 2 Vj such that

AuhðpÞ ¼ f ðpÞ for all nodes p 2 GðiÞj ð20Þ

uhðpÞ ¼ gðxkÞ for all nodes p 2 GðDÞj ð21Þ

BuhðpÞ ¼ tðpÞ for all nodes p 2 GðNÞj ð22Þ
4. A layerwise theory

The layerwise proposed in this paper is based on the assump-
tion of a first-order shear deformation theory [7] in each layer
and the imposition of displacement continuity at layer’s interfaces.
In each layer the same assumptions as in the first-order plate the-
ory are considered. Due to the size and complexity of the formula-
tion we restrict the analysis to a three-layer laminate, as shown
schematically in Fig. 2. However, the present approach is easily
extendible for a general laminate.

The displacement field for the middle layer (sometimes known
as the core of a sandwich laminate) is given as

uð2Þðx; y; zÞ ¼ u0ðx; yÞ þ zð2Þhð2Þx ð23Þ
v ð2Þðx; y; zÞ ¼ v0ðx; yÞ þ zð2Þhð2Þy ð24Þ
wð2Þðx; y; zÞ ¼ w0ðx; yÞ ð25Þ

where u and v are the in-plane displacements at any point
ðx; y; zÞ;u0 and v0 denote the in-plane displacement of the point
ðx; y;0Þ on the midplane, w is the transverse deflection, hð2Þx and
hð2Þy are the rotations of the normals to the midplane about the y
and x axes, respectively, for layer 2 (middle layer). The correspond-
ing displacement field for the upper layer (3) and lower layer (1) are
given, respectively, as

uð3Þðx; y; zÞ ¼ u0ðx; yÞ þ
h2

2
hð2Þx þ

h3

2
hð3Þx þ zð3Þhð3Þx ð26Þ

v ð3Þðx; y; zÞ ¼ v0ðx; yÞ þ
h2

2
hð2Þy þ

h3

2
hð3Þy þ zð3Þhð3Þy ð27Þ
Fig. 2. 1D representation of the layerwise kinematics.
wð3Þðx; y; zÞ ¼ w0ðx; yÞ ð28Þ

uð1Þðx; y; zÞ ¼ u0ðx; yÞ �
h2

2
hð2Þx �

h1

2
hð1Þx þ zð1Þhð1Þx ð29Þ

v ð1Þðx; y; zÞ ¼ v0ðx; yÞ �
h2

2
hð2Þy �

h1

2
hð1Þy þ zð1Þhð1Þy ð30Þ

wð1Þðx; y; zÞ ¼ w0ðx; yÞ ð31Þ

where hk denotes the thickness of the kth layer and zðkÞ 2
½�hk=2; hk=2� are the z-coordinates of the kth layer.

Strains of the kth layer are given by

�ðkÞxx

�ðkÞyy

cðkÞxy

cðkÞxz

cðkÞyz

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼

@uðkÞ
@x

@vðkÞ
@y

@uðkÞ
@y þ @vðkÞ

@x

@uðkÞ
@z þ @wðkÞ

@x

@vðkÞ
@z þ @wðkÞ

@y

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð32Þ

Therefore, in-plane strains can be expressed as

�ðkÞxx

�ðkÞyy

cðkÞxy

8>><
>>:

9>>=
>>; ¼

�mðkÞ
xx

�mðkÞ
yy

cmðkÞ
xy

8>><
>>:

9>>=
>>;þ zðkÞ

�f ðkÞ
xx

�f ðkÞ
yy

cf ðkÞ
xy

8>><
>>:

9>>=
>>;þ

�mf ðkÞ
xx

�mf ðkÞ
yy

cmf ðkÞ
xy

8>><
>>:

9>>=
>>; ð33Þ

and the transverse shear strains as

cðkÞxz

cðkÞyz

( )
¼

@w0
@x þ hðkÞx

@w0
@y þ hðkÞy

( )
ð34Þ

The membrane strain components are given by

�mðkÞ
xx

�mðkÞ
yy

cmðkÞ
xy

8><
>:

9>=
>; ¼

@u0
@x
@v0
@y

@u0
@y þ

@v0
@x

8>><
>>:

9>>=
>>; ð35Þ

The bending strains can be expressed as

�f ðkÞ
xx

�f ðkÞ
yy

cf ðkÞ
xy

8>><
>>:

9>>=
>>; ¼

@hðkÞx
@x

@hðkÞy

@y

@hðkÞx
@y þ

@hðkÞy

@x

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð36Þ

and the membrane-bending coupling components for layers 2, 3
and 1, are, respectively, given as

�mf ð2Þ
xx

�mf ð2Þ
yy

cmf ð2Þ
xy

8><
>:

9>=
>; ¼

0
0
0

8><
>:

9>=
>; ð37Þ

�mf ð3Þ
xx

�mf ð3Þ
yy

cmf ð3Þ
xy

8>><
>>:

9>>=
>>; ¼

h2
2

@hð2Þx
@x þ

h3
2

@hð3Þx
@x

h2
2

@hð2Þy

@y þ
h3
2

@hð3Þy

@y

h2
2

@hð2Þx
@y þ

@hð2Þy

@x

� �
þ h3

2
@hð3Þx
@y þ

@hð3Þy

@x

� �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð38Þ

�mf ð1Þ
xx

�mf ð1Þ
yy

cmf ð1Þ
xy

8>><
>>:

9>>=
>>; ¼

� h2
2

@hð2Þx
@x �

h1
2

@hð1Þx
@x

� h2
2

@hð2Þy

@y �
h1
2

@hð1Þy

@y

� h2
2

@hð2Þx
@y þ

@hð2Þy

@x

� �
� h1

2
@hð1Þx
@y þ

@hð1Þy

@x

� �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð39Þ

Neglecting rðkÞz for each orthotropic layer, the stress–strain relations
in the fiber local coordinate system can be expressed as
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rðkÞ1

rðkÞ2

sðkÞ12

sðkÞ23

sðkÞ31

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼

Q11 Q 12 0 0 0

Q12 Q 22 0 0 0

0 0 Q 33 0 0

0 0 0 Q 44 0

0 0 0 0 Q 55

2
66666664

3
77777775

ðkÞ eðkÞ1

eðkÞ2

cðkÞ12

cðkÞ23

cðkÞ31

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð40Þ

where subscripts 1 and 2 denote, respectively, the fiber and the
transverse to the fiber directions in the plane and 3 is the direction
normal to the plate; the reduced stiffness components, Q ðkÞij , are gi-
ven by [7]

Q ðkÞ11 ¼
EðkÞ1

1� mðkÞ12 m
ðkÞ
21

Q ðkÞ22 ¼
EðkÞ2

1� mðkÞ12m
ðkÞ
21

Q ðkÞ12 ¼ mðkÞ21 Q ðkÞ11

Q ðkÞ33 ¼ GðkÞ12 Q ðkÞ44 ¼ GðkÞ23 Q ðkÞ55 ¼ GðkÞ31

mðkÞ21 ¼ mðkÞ12
EðkÞ2

EðkÞ1

in which EðkÞ1 ; EðkÞ2 ; mðkÞ12 ;G
ðkÞ
12 ;G

ðkÞ
23 and GðkÞ31 are material properties of the

kth lamina.
By performing adequate coordinate transformation, the stress–

strain relations in the global ðx; y; zÞ coordinate system can be ob-
tained as

rðkÞxx

rðkÞyy

sðkÞxy

sðkÞyz

sðkÞzx

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼

Q ðkÞ11 Q ðkÞ12 Q ðkÞ16 0 0

Q ðkÞ12 Q ðkÞ22 Q ðkÞ26 0 0

Q ðkÞ16 Q ðkÞ26 Q ðkÞ66 0 0

0 0 0 Q ðkÞ44 Q ðkÞ45

0 0 0 Q ðkÞ45 Q ðkÞ55

2
6666666664

3
7777777775

eðkÞxx

eðkÞyy

cðkÞxy

cðkÞyz

cðkÞzx

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð41Þ

By considering a as the angle between x-axis and 1-axis, with 1-axis
being the first principal material axis, connected usually with fiber
direction, the components Q ðkÞij can be calculated by adequate coor-
dinate transformation, as in [7].

The equations of motion of this layerwise theory are derived
from the dynamic version of the principle of virtual displacements.
In the present work, only symmetric laminates are considered;
therefore, the in-plane displacements u0; v0, which are uncoupled
from the bending deformation, and related stress resultants can
be discarded.

The virtual strain energy ðdUÞ, the virtual kinetic energy ðdKÞ
and the virtual work done by applied forces ðdVÞ, assuming a
three-layer laminate, are given by

dU ¼
Z

X0

X3

k¼1

Z hk=2

�hk=2
rxx zd�f ðkÞ

xx þ d�mf ðkÞ
xx

� �
þ ryy zd�f ðkÞ

yy þ d�mf ðkÞ
yy

� �h(

þ sxy zdcf ðkÞ
xy þ dcmf ðkÞ

xy

� �
þ sxzdcðkÞxz þ syzdcðkÞyz

i
dz
o

dxdy

¼
Z

X0

X3

k¼1

NðkÞxx d�mf ðkÞ
xx þMðkÞ

xx d�f ðkÞ
xx þ NðkÞyy d�mf ðkÞ

yy þMðkÞ
yy d�f ðkÞ

yy

�

þ NðkÞxy dcmf ðkÞ
xy þMðkÞ

xy dcf ðkÞ
xy þ Q ðkÞx dcðkÞxz þ Q ðkÞy dcðkÞyz

�
dxdy ð42Þ

dK ¼
Z

X0

X3

k¼1

Z hk=2

�hk=2
qðkÞð _ukd _uk þ _vkd _vk þ _wkd _wkÞdzdxdy ð43Þ

and

dV ¼ �
Z

X0

qdw0 dxdy ð44Þ

where X0 denotes the midplane of the laminate, q is the external
distributed load and
NðkÞab

MðkÞ
ab

( )
¼
Z hk=2

�hk=2
rðkÞab

1
z

� 	
dzk ð45Þ

Q ðkÞa ¼
Z hk=2

�hk=2
sðkÞaz dzk ð46Þ

where a;b take the symbols x; y.
Substituting for dU; dK; dV , into the virtual work statement, not-

ing that the virtual strains can be expressed in terms of the gener-
alized displacements, integrating by parts to relieve from any
derivatives of the generalized displacements and using the funda-
mental lemma of the calculus of variations, we obtain the equa-
tions of motion [7] with respect to seven degrees of freedom

w0; h
ð1Þ
x ; hð1Þy ; hð2Þx ; hð2Þy ; hð3Þx ; hð3Þy

� �
(see Fig. 2):

dw0 :
X3

k¼1

@Q ðkÞx

@x
þ
@Q ðkÞy

@y

 !
� q ¼

X3

k¼1

IðkÞ0
€w0 ð47Þ
dhð1Þx :
h1

2
@Nð1Þxx

@x
� @Mð1Þ

xx

@x
þ h1

2
@Nð1Þxy

@y
�
@Mð1Þ

xy

@y
þ Q ð1Þx

¼ Ið1Þ0
h1h2

4
€hx2 þ

h2
1

4
€hx1

 !
þ Ið1Þ2

€hx1 ð48Þ
dhð1Þy :
h1

2
@Nð1Þyy

@y
�
@Mð1Þ

yy

@y
þ h1

2
@Nð1Þxy

@x
�
@Mð1Þ

xy

@x
þ Q ð1Þy

¼ Ið1Þ0
h1h2

4
€hy2 þ

h2
1

4
€hy1

 !
þ Ið1Þ2

€hy1 ð49Þ
dhð2Þx :
h2

2
@Nð1Þxx

@x
� h2

2
@Nð3Þxx

@x
� @Mð2Þ

xx

@x
þ h2

2
@Nð1Þxy

@y
� h2

2
@Nð3Þxy

@y
�
@Mð2Þ

xy

@y
þQ ð2Þx

¼ Ið1Þ0
h2

2

4
€hx2 þ

h1h2

4
€hx1

 !
þ Ið3Þ0

h2
2

4
€hx2 þ

h2h3

4
€hx3

 !
þ Ið2Þ2

€hx2 ð50Þ
dhð2Þy :
h2

2
@Nð1Þyy

@y
� h2

2
@Nð3Þyy

@y
�
@Mð2Þ

yy

@y
þ h2

2
@Nð1Þxy

@x
� h2

2
@Nð3Þxy

@x
�
@Mð2Þ

xy

@x
þQ ð2Þy

¼ Ið1Þ0
h2

2

4
€hy2 þ

h1h2

4
€hy1

 !
þ Ið3Þ0

h2
2

4
€hy2 þ

h2h3

4
€hy3

 !
þ Ið2Þ2

€hy2

ð51Þ
dhð3Þx : �h3

2
@Nð3Þxx

@x
� @Mð3Þ

xx

@x
� h3

2
@Nð3Þxy

@y
�
@Mð3Þ

xy

@y
þ Q ð3Þx

¼ Ið3Þ0
h2h3

4
€hx2 þ

h2
3

4
€hx3

 !
þ Ið3Þ2

€hx3 ð52Þ
dhð3Þy : �h3

2
@Nð3Þyy

@y
�
@Mð3Þ

yy

@y
� h3

2
@Nð3Þxy

@x
�
@Mð3Þ

xy

@x
þ Q ð3Þy

¼ Ið3Þ0
h2h3

4
€hy2 þ

h2
3

4
€hy3

 !
þ Ið3Þ2

€hy3 ð53Þ

where

IðkÞ0 ; IðkÞ2

� �
¼
Z hk=2

�hk=2
qðkÞð1; z2Þdz ð54Þ

being q the specific mass of the material, and hk the thickness of the
kth layer.

The equations of motion can be written in terms of the displace-
ments by substituting strains and stress resultants into previous
equations. As an example the first equation is replaced by

dw0 :
X3

k¼1

hk Q ðkÞ55
@2w0

@x2 þ
@hðkÞx

@x

 !
þ Q ðkÞ44

@2w0

@y2 þ
@hðkÞy

@y

 ! !
� q

¼
X3

k¼1

IðkÞ0
€w0 ð55Þ
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5. Interpolation of differential equations of motion and
boundary conditions by wavelets

The equations of motion are now interpolated by wavelets, for
each node i. For example, Eq. (55) is then expressed as

dw0 :
X3

k¼1

hk Q ðkÞ55

XN

j¼1

aw
j

@2uj

@x2 þ
XN

j¼1

ahðkÞx
j

@uj

@x

 ! 

þ Q ðkÞ44

XN

j¼1

aw
j

@2uj

@y2 þ
XN

j¼1

a
hðkÞy

j

@uj

@y

 !!
� q ¼ �

X3

k¼1

IðkÞ0 x2
XN

j¼1

aw
j uj

ð56Þ

where uj was defined before and N represents the total number of
discretization points. The other six equations are interpolated in a
similar way. The vector of unknowns is now composed of the
interpolation parameters aj, for w0; h

ð1Þ
x ; hð1Þy ; hð2Þx ; hð2Þy ; hð3Þx ; hð3Þy ,

respectively.
For each boundary node, the wavelet interpolation is also quite

simple. As an example, a simply-supported condition on the x ¼ b
edge with outward normal direction a imposes seven boundary
conditions, as follows:

w0 ¼ 0 ð57Þ
MðkÞ

aa ¼ 0 ð58Þ
hðkÞb ¼ 0 ð59Þ

These conditions are equivalent to

w0 ¼ 0 ð60Þ
dhð1Þx �h1

2
Nð1Þxx �

h1

2
Nð1Þxy þMð1Þ

xx

� �

þ dhð2Þx �h2

2
Nð1Þxx þ

h2

2
Nð3Þxx �

h2

2
Nð1Þxy þ

h2

2
Nð3Þxy þMð2Þ

xx

� �

þ dhð3Þx
h3

2
Nð3Þxx þMð3Þ

xx

� �
¼ 0 ð61Þ
hðkÞb ¼ 0 ð62Þ

The interpolation of boundary equations leads to a change in the
global equations system. For each node i were the equations are va-
lid, the following equations are imposed. For example, Eq. (60) is
interpolated as

XN

j¼1

aw
j ui ¼ 0 ð63Þ

where N represents the total number of grid points. The other
boundary conditions are interpolated in the same way.
Table 1
Square laminated plate under uniform load – R ¼ 5.

Method �w �r1
x �r2

x �r3
x

HSDT [28] 256.13 62.38 46.91 9.382
FSDT [28] 236.10 61.87 49.50 9.899
CLT 216.94 61.141 48.623 9.783
Ferreira [26] 258.74 59.21 45.61 9.122
Ferreira (N = 15) [8] 257.38 58.725 46.980 9.396
Exact [27] 258.97 60.353 46.623 9.340
HSDT [15] (N = 11) 253.6710 59.6447 46.4292 9.285
HSDT [15] (N = 15) 256.2387 60.1834 46.8581 9.371
HSDT [15] (N = 21) 257.1100 60.3660 47.0028 9.400
Present (9 � 9 grid) 62.2204 14.2841 10.4158 2.083
Present (17 � 17 grid) 257.5719 59.9865 46.3043 9.260
Present (33 � 33 grid) 258.0558 60.0714 46.3719 9.274
6. Numerical examples

Two numerical examples are considered. In both a regular grid
was used.

6.1. Three layer square sandwich plate in bending, under uniform load

A simply-supported sandwich plate under uniformly distrib-
uted load ðqÞ is considered. This is the classical sandwich plate
example of Srinivas [27]. The plate thickness is h ¼ 0:1. The thick-
ness of three layers are h1=h ¼ h3=h ¼ 0:1; h2=h ¼ 0:8. The plate
side is a ¼ 1. The material properties of the sandwich core are ex-
pressed in the stiffness matrix, Qcore as:

Qcore ¼

0:999781 0:231192 0 0 0

0:231192 0:524886 0 0 0

0 0 0:262931 0 0

0 0 0 0:266810 0

0 0 0 0 0:159914

2
6666664

3
7777775

Skins material properties are related with core properties by a fac-
tor R as

Qskin ¼ RQ core

Transverse displacement and stresses are normalized through
factors

�w ¼ wða=2; a=2;0Þ0:999781
hq

�r1
x ¼

rð1Þx ða=2; a=2;�h=2Þ
q

; �r2
x ¼

rð1Þx ða=2; a=2;�2h=5Þ
q

;

�r3
x ¼

rð2Þx ða=2; a=2;�2h=5Þ
q

�r1
y ¼

rð1Þy ða=2; a=2;�h=2Þ
q

; �r2
y ¼

rð1Þy ða=2; a=2;�2h=5Þ
q

;

�r3
y ¼

rð2Þy ða=2; a=2;�2h=5Þ
q

�s1
xz ¼

sð2Þxz ð0; a=2;0Þ
q

; �s2
xz ¼

sð2Þxz ð0; a=2;�2h=5Þ
q

Transverse displacement and stresses for a sandwich plate are
indicated in Tables 1–3 and compared with various formulations.
The transverse shear stresses are obtained directly from the consti-
tutive equations, at each layer’s middle surface. These formulations
provide very good results both for displacement and stresses. It can
be seen that the present formulation achieves very good results for
all cases, without the use of shear correction factors. The FSDT and
HSDT results of Pandya [28] cannot match our formulation for
�r1
y �r2

y �r3
y �s1

xz �s2
xz

38.93 30.33 6.065 3.089 2.566
36.65 29.32 5.864 3.313 2.444
36.622 29.297 5.860 4.5899 3.386
37.88 29.59 5.918 3.593 3.593
37.643 27.714 4.906 3.848 2.839
38.491 30.097 6.161 4.3641 3.2675

8 38.0694 29.9313 5.9863 3.8449 1.9650
6 38.3592 30.1642 6.0328 4.2768 2.2227
6 38.4563 30.2420 6.0484 4.5481 2.3910
2 13.7422 10.4223 2.0845 1.6244 �20.7302
9 38.3217 29.9783 5.9957 4.0404 2.5236
4 38.3745 30.0205 6.0041 4.0855 2.1780



Table 2
Square laminated plate under uniform load – R ¼ 10.

Method �w �r1
x �r2

x �r3
x �r1

y �r2
y �r3

y �s1
xz �s2

xz

HSDT [28] 152.33 64.65 51.31 5.131 42.83 33.97 3.397 3.147 2.587
FSDT [28] 131.095 67.80 54.24 4.424 40.10 32.08 3.208 3.152 2.676
CLT 118.87 65.332 48.857 5.356 40.099 32.079 3.208 4.3666 3.7075
Ferreira [26] 159.402 64.16 47.72 4.772 42.970 42.900 3.290 3.518 3.518
Ferreira (N = 15) [8] 158.55 62.723 50.16 5.01 42.565 34.052 3.400 3.596 3.053
Exact [27] 159.38 65.332 48.857 4.903 43.566 33.413 3.500 4.0959 3.5154
Third-order [15] (N = 11) 153.0084 64.7415 49.4716 4.9472 42.8860 33.3524 3.3352 2.7780 1.8207
Third-order [15] (N = 15) 154.2490 65.2223 49.8488 4.9849 43.1521 33.5663 3.3566 3.1925 2.1360
Third-order [15] (N = 21) 154.6581 65.3809 49.9729 4.9973 43.2401 33.6366 3.3637 3.5280 2.3984
Present (9 � 9 grid) 57.4138 15.1284 10.1106 1.0111 16.9339 12.3352 1.2335 4.3155 �29.3453
Present (17 � 17 grid) 158.2166 64.8058 48.4108 4.8411 43.3641 33.2844 3.3284 3.9014 3.1020
Present (33 � 33 grid) 158.7656 64.9739 48.5442 4.8544 43.4739 33.3722 3.3372 3.9665 2.5452

Table 3
Square laminated plate under uniform load – R ¼ 15.

Method �w �r1
x �r2

x �r3
x �r1

y �r2
y �r3

y �s1
xz �s2

xz

HSDT [28] 110.43 66.62 51.97 3.465 44.92 35.41 2.361 3.035 2.691
FSDT [28] 90.85 70.04 56.03 3.753 41.39 33.11 2.208 3.091 2.764
CLT 81.768 69.135 55.308 3.687 41.410 33.128 2.209 4.2825 3.8287
Ferreira [26] 121.821 65.650 47.09 3.140 45.850 34.420 2.294 3.466 3.466
Ferreira (N = 15) [8] 121.184 63.214 50.571 3.371 45.055 36.044 2.400 3.466 3.099
Exact [27] 121.72 66.787 48.299 3.238 46.424 34.955 2.494 3.9638 3.5768
Third-order [15] (N = 11) 113.5941 66.3646 49.8957 3.3264 45.2979 34.9096 2.3273 2.1686 1.5578
Third-order [15] (N = 15) 114.3874 66.7830 50.2175 3.3478 45.5427 35.1057 2.3404 2.6115 1.9271
Third-order [15] (N = 21) 114.6442 66.9196 50.3230 3.3549 45.6229 35.1696 2.3446 3.0213 2.2750
Present (9 � 9 grid) 61.4771 12.4621 5.3235 0.3549 96.9302 69.2177 4.6145 8.5351 �50.4572
Present (17 � 17 grid) 120.6174 66.1364 47.7599 3.1840 46.1655 34.7910 2.3194 3.8100 3.4344
Present (33 � 33 grid) 121.1937 66.3714 47.9463 3.1964 46.3274 34.9210 2.3281 3.8865 2.7341

Table 4
[0�/90�/90�/0�] square laminated plate under sinusoidal load.

a
h Method �w �rxx �ryy �szx �sxy

4 HSDT [29] 1.8939 0.6806 0.6463 0.2109 0.0450
HSDT [31] 1.8937 0.6651 0.6322 0.2064 0.0440
FSDT [30] 1.7100 0.4059 0.5765 0.1398 0.0308
Elasticity [32] 1.954 0.720 0.666 0.270 0.0467
Ferreira et al. [15] (N = 21) 1.8864 0.6659 0.6313 0.1352 0.0433
Ferreira (layerwise) [12] (N = 21) 1.9075 0.6432 0.6228 0.2166 0.0441
Present (17 � 17 grid) 1.9091 0.6429 0.6265 0.2173 0.0442
Present (33 � 33 grid) 1.9091 0.6429 0.6265 0.2173 0.0443

10 HSDT [29] 0.7149 0.5589 0.3974 0.2697 0.0273
HSDT [31] 0.7147 0.5456 0.3888 0.2640 0.0268
FSDT [30] 0.6628 0.4989 0.3615 0.1667 0.0241
Elasticity [32] 0.743 0.559 0.403 0.301 0.0276
Ferreira et al. [15] (N = 21) 0.7153 0.5466 0.4383 0.3347 0.0267
Ferreira (layerwise) [12] (N = 21) 0.7309 0.5496 0.3956 0.2888 0.0273
Present (17 � 17 grid) 0.7303 0.5487 0.3966 0.2993 0.0273
Present (33 � 33 grid) 0.7303 0.5487 0.3966 0.2993 0.0273

20 HSDT [29] 0.5061 0.5523 0.3110 0.2883 0.0233
HSDT [31] 0.5060 0.5393 0.3043 0.2825 0.0228
FSDT [30] 0.4912 0.5273 0.2957 0.1749 0.0221
Elasticity [32] 0.517 0.543 0.309 0.328 0.0230
Ferreira (layerwise) [12] (N = 21) 0.5121 0.5417 0.3056 0.3248 0.0230
Ferreira et al. [15] (N = 21) 0.5070 0.5405 0.3648 0.3818 0.0228
Present (17 � 17 grid) 0.5113 0.5407 0.3073 0.3256 0.0230
Present (33 � 33 grid) 0.5113 0.5407 0.3073 0.3256 0.0230

100 3strip[29] 0.4343 0.5507 0.2769 0.2948 0.0217
HSDT [31] 0.4343 0.5387 0.2708 0.2897 0.0213
FSDT [30] 0.4337 0.5382 0.2705 0.1780 0.0213
Elasticity [32] 0.4347 0.539 0.271 0.339 0.0214
Ferreira et al. [15] (N = 21) 0.4365 0.5413 0.3359 0.4106 0.0215
Ferreira (layerwise) [12] (N = 21) 0.4374 0.5420 0.2697 0.3232 0.0216
Present (17 � 17 grid) 0.4347 0.5389 0.2710 0.3358 0.0214
Present (33 � 33 grid) 0.4348 0.5391 0.2711 0.3359 0.0214
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sandwich laminates where skin properties are quite different than
core properties, which is the typical industrial case. Therefore, for
R P 15, this formulation should be adopted. The work of one of
the authors in laminated shell finite elements [26] and multiquad-
rics [8] using a first order shear deformation approach is also
compared. The results are as good or better than the present for-
mulation. However, this was achieved by a shear correction proce-
dure [8] that is dependent on some assumptions that may not be
general, although quite good for all tested cases so far. The present
layerwise formulation is better than the third-order formulation
presented by Ferreira et al. [15], particularly in sandwich plates
with skin properties much higher than core properties.

6.2. Four layer (0/90/90/0) square cross-ply laminated plate under
sinusoidal load

A simply supported square laminated plate of side a and thick-
ness h is composed of four equally layers oriented at [0�/90�/90�/
0�]. The plate is subjected to a sinusoidal vertical pressure of the
form

pz ¼ P sin
px
a

� �
sin

py
a

� �
with the origin of the coordinate system located at the lower left
corner on the midplane.

The orthotropic material properties are given by

E1 ¼ 25:0E2 G12 ¼ G13 ¼ 0:5E2 G23 ¼ 0:2E2 m12 ¼ 0:25

In Table 4 the present method is compared with a finite strip formu-
lation by Akhras [29,30] who used three strips, an analytical solu-
tion by Reddy [7,31] using a higher-order formulation and an
exact three dimensional solution by Pagano [32]. The present solu-
tion is also compared with another higher-order solution by the
authors [15]. The in-plane displacements, the transverse displace-
ments, the normal stresses and the in-plane and transverse shear
stresses are presented in normalized form as

�w ¼ 102wmaxh3E2

Pa4
�rxx ¼

rxxh2

Pa2
�ryy ¼

ryyh2

Pa2
�szx ¼

szxh
Pa

�sxy ¼
sxyh2

Pa2

The transverse shear stresses are calculated directly from the con-
stitutive equations. This is a feature of this theory, whereas other
equivalent single layer theories such as Reddy’s third order theory
[7,31] one may calculate transverse shear stresses using the equilib-
rium equations. The present layerwise theory discretized with
wavelets presents better results than previous results by Ferreira
et al. [15]. Results for transverse displacements and stresses are bet-
ter than Akhras and Reddy when referred to the exact solutions.

7. Conclusions

The first-order and the third-order shear deformation theories
are equivalent single-layer theories, with laminate degrees of free-
dom, where all layers have the same rotations. Layerwise formula-
tions can accommodate better kinematics of some laminates,
particularly the sandwich laminates, where core and skin materials
are of different stiffness.

In this paper the static analysis of sandwich plates by the use of
a wavelet collocation technique, and using a layerwise theory with
independent rotations in each layer is performed here for the first
time. The equations of motion were derived and interpolated.
Boundary conditions interpolation was schematically formulated.
Composite laminated plate and sandwich plate were considered
for testing of the present methodology and results obtained
showed excellent accuracy for all cases. The method produces
highly accurate results for isotropic, laminated composites and
sandwich plates.
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