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a b s t r a c t

We use the Airy stress function to derive exact solutions for plane strain deformations of a functionally
graded (FG) hollow cylinder with the inner and the outer surfaces subjected to different boundary con-
ditions, and the cylinder composed of an isotropic and incompressible linear elastic material. For the
shear modulus given by either a power law or an exponential function of the radius r, we derive explicit
expressions for stresses, the hydrostatic pressure and displacements. Conversely, we find the variation
with r of the shear modulus for a linear combination of the radial and the hoop stresses to have a pre-
assigned variation in the cylinder; this inverse problem is usually called material tailoring. The shear
modulus found while solving the inverse problem must be positive everywhere. Results for a few prob-
lems are computed and presented graphically. It seems that the Airy stress function approach is used here
for the first time to analyze two-dimensional problems for incompressible materials. When studying axi-
symmetric deformations of an FG cylinder, it is found that for the hoop stress to be uniform through the
cylinder thickness the shear modulus must be proportional to the radial coordinate r as found earlier by
Batra [Batra RC. Optimal design of functionally graded incompressible linear elastic cylinders and
spheres. AIAAJ 2008;46(8):2005–7.] and for the maximum in-plane shear stress to be constant the shear
modulus must vary as r2. The expression for the maximum in-plane shear stress in terms of pressures and
the radii of the inner and the outer surfaces of the cylinder is a universal result valid for all materials for
which the shear modulus is proportional to r2. For a hollow cylinder fixed on the inner surface and sub-
jected to tangential tractions on the outer surface (or vice versa) the through-the-thickness in-plane
shear stress distribution is also universal and is determined by surface tractions and the outer radius
of the cylinder; it is independent of the spatial variation of the shear modulus.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

With the increase in the use of rubberlike materials in various
engineering and biological applications, and the fact that the re-
sponse of an incompressible material may be different from that
of a compressible material, research on the analysis and design
of components composed of isotropic and incompressible linear
elastic materials is gaining importance. Whereas only isochoric
(volume preserving) deformations are admissible in incompress-
ible materials, a compressible material can undergo both isochoric
and non-isochoric deformations. Rubberlike materials are gener-
ally assumed to be incompressible. Because of the incompressibil-
ity constraint, the constitutive equation involves a hydrostatic
pressure that cannot be determined from the deformation field
but is found by solving the boundary-value problem. The equation
ll rights reserved.
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corresponding to the incompressibility constraint and three equa-
tions expressing the balance of linear momentum are solved for
the three components of displacements and the hydrostatic pres-
sure at a point. However, the pressure field can be determined un-
iquely only if normal tractions are prescribed on a part of the
boundary. In general, the solution of a boundary-value problem
for an incompressible material cannot be obtained from that of
the corresponding problem for a compressible material by setting
Poisson’s ratio equal to 0.5. For isotropic, unconstrained, homoge-
neous and linear elastic materials, the solution for a plane stress
problem can be obtained from that for a plane strain problem by
modifying Young’s modulus and Poisson’s ratio. However, such is
not the case for incompressible materials.

Inhomogeneities may be introduced in rubberlike materials
either during vulcanization or uneven interaction with thermal,
radiative and oxidative environments [1]. Here we consider only
those inhomogeneous rubberlike materials for which material
properties vary continuously in one or more directions, and call
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Fig. 1. Schematic sketch of the problem studied.
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them Functionally Graded Incompressible Materials (FGIMs). An
advantage of FGIMs is that the material property can be tailored
to optimize the performance of a structure.

For a given spatial variation of material properties, one can ana-
lyze initial-boundary-value problems and delineate points where
maximum stresses and deflections occur, and also find frequencies
of structures. Alternatively, one can find the spatial variation of
material properties so as to optimize a suitable combination of
stresses (or another design variable). We study these two classes
of problems for plane strain deformations of a hollow cylinder. Be-
low we briefly review the literature on FG cylinders.

Horgan and Chan [2] analyzed two-dimensional (2D; plane
stress/strain) deformations by assuming the material to be isotro-
pic, compressible and linear elastic with Young’s modulus varying
only in the radial direction by a power law relation but keeping
Poisson’s ratio constant; Li and Peng [3] have recently extended
this work to include spatial variation of Poisson’s ratio. Jabbari
et al. [4] used the method of separation of variables and the Fourier
series to analyze 2D steady-state thermoelastic deformations of a
hollow thick cylinder with material properties, except Poisson’s
ratio, depending on the radius by a power law function. Shao and
Ma [5] scrutinized thermo-mechanical deformations of FG hollow
circular cylinders subjected to mechanical loads and linearly
increasing temperature on the boundary by employing the Laplace
transform technique, assuming the solution of the resulting ordin-
ary differential equations in the form of a series, and taking the
thermo-mechanical properties to be temperature independent
and varying continuously in the radial direction only.

We note that Lechnitskii’s book [6] has solutions for several
problems involving inhomogeneous linear elastic materials. One
could also divide the thickness of an FG cylinder into several layers,
regard material properties in each layer as uniform, and use the ap-
proach outlined in Timoshenko and Goodier’s book [7] for compos-
ite cylinders. With an increase in the number of layers, the solution
for the layered cylinder will approach that for the FG cylinder; Pan
and Roy [8], and Liew et al. [9] followed this approach to analyze
deformations of a cylinder composed of an FG linear elastic com-
pressible material. By assuming that all elastic constants are power
law functions of the radius with the same exponent, Tarn [10], and
Tarn and Chang [11] have provided exact solutions for FG aniso-
tropic cylinders subjected to thermal and mechanical loads. Oral
and Anlas [12] expressed governing equations for an inhomoge-
neous cylindrical anisotropic body in terms of stress potentials,
and provided closed-form expressions for the potentials and stress
distribution when Young’s modulus is a power law function of the
radius and Poisson’s ratio is constant. Obata and Noda [13] found
steady-state thermal stresses in FG hollow cylinders and spheres,
and Kim and Noda [14] used the Green function to solve the corre-
sponding transient problem. Most of these works have considered
a known power law variation of the elastic modulus.

The literature on FGIMs is limited. Batra [15] studied numerically,
with the finite element method, axisymmetric deformations of a cyl-
inder made of a Mooney–Rivlin material with two material param-
eters varying smoothly in the radial direction, and compared his
results with the analytical solution of the problem; he did not call
the inhomogeneous material an FGM. Bilgili [16] investigated axial
shearing deformations of a homogeneous and isotropic hollow
rubber tube under isothermal and non-isothermal conditions. Bilgili
[17] presented closed-form analytical solutions to rectilinear
shearing of rubber slabs, and found that the spatial variation of the
shear modulus can induce highly localized stresses in them. Batra
[18] used the principle of virtual work to derive a higher-order shear
and normal deformable theory for a plate comprised of an FGIM.
Batra [19] derived closed-form solutions for axisymmetric plane
strain deformations of a FG hollow circular cylinder and a hollow
sphere loaded on inner and outer surfaces by uniform hydrostatic
pressures with the shear modulus an arbitrary function of the radius.
He found that the optimal hoop or the circumferential stress in a cyl-
inder and a sphere is a constant and occurs for the linear variation in
the radial direction of the shear modulus. Batra and Iaccarino [20]
obtained exact solutions for axisymmetric plane strain deforma-
tions of a FG circular cylinder composed of an isotropic and incom-
pressible second-order elastic material with the two moduli
varying only in the radial direction. Batra and Bahrami [21] studied
axisymmetric deformations of a circular cylinder composed of an
inhomogeneous Mooney–Rivlin material with the two material
parameters varying continuously through the cylinder thickness
either by a power law or an affine relation. They showed that when
the two material parameters are linear functions of the radius the
hoop stress in an internally pressurized cylinder is uniform.

Whereas the afore-mentioned investigations study boundary-
value problems, the other challenging problem is that of finding
the spatial variation of material properties to achieve a given
objective, i.e., tailoring material properties for producing the de-
sired stress distribution in a given body and under prescribed
boundary conditions. For plane strain axisymmetric deformations
of an FG cylinder composed of an orthotropic compressible mate-
rial, Leissa and Vagins [22] assumed that all material moduli are
proportional to each other and found their spatial variation to
make either the hoop stress or the maximum in-plane shear stress
uniform in the cylinder. We analytically study here, using the Airy
stress function, the two classes of problems for a cylinder made of
an FGIM. We also analyze plane strain/stress axisymmetric and
non-axisymmetric deformations of an FG hollow cylinder with
the shear modulus varying only in the radial direction. It seems
that the Airy stress method has not been used earlier to analyze
2D problems for incompressible linear elastic materials.

2. Problem formulation

A schematic sketch of the problem studied is depicted in Fig. 1.
We consider an infinitely long hollow cylinder of inner radius rin,
outer radius rou, assume that a plane strain state of deformation
prevails in the cylinder, and describe its deformations by using
cylindrical coordinates (r, h, z) with the origin at the center of the
cross-section and the z-axis along cylinder’s centroidal axis.

In the absence of body forces equilibrium equations are

@rrr

@r
þ 1

r
@rrh

@h
þ rrr � rhh

r
¼ 0;

@rrh

@r
þ 1

r
@rhh

@h
þ 2

r
rrh ¼ 0;

ð1a;bÞ
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where rrr ;rrh and rhh are the stress components. The pertinent
boundary conditions on the inner and the outer surfaces are

at r ¼ rin; rrrðrin; hÞ ¼ �pinðhÞ rrhðrin; hÞ ¼ qinðhÞ; ð2a;bÞ

at r ¼ rou; rrrðrou; hÞ ¼ �pouðhÞ; rrhðrou; hÞ ¼ qouðhÞ: ð2c;dÞ

That is, pressures pinðhÞ and pouðhÞ and tangential tractions qinðhÞ and
qouðhÞ act on cylinder’s inner and outer surfaces, respectively. The
prescribed surface tractions (2) must have null resultant force and
moment in order for the problem to have a solution. For the trac-
tion-value problem displacements can only be determined within
a rigid body motion.

The cylinder is assumed to be composed of an FGIM. Thus only
isochoric (volume preserving) deformations satisfying

err þ ehh ¼ 0; ð3Þ

are admissible. Here err ; ehh and erh are components of the infinites-
imal strain tensor. Assuming that the shear modulus, GðrÞ, varies
only in the radial direction, constitutive equations are

rrr ¼ �pðr; hÞ þ 2GðrÞerr ;

rhh ¼ �pðr; hÞ þ 2GðrÞehh;

rrh ¼ GðrÞerh;

ð4Þ

where the hydrostatic pressure pðr; hÞ is not determined from the
deformation field, but from Eqs. (1)–(4).

Stresses satisfying Eqs. (1)–(4) must also satisfy the following
compatibility condition written in terms of strain components.

@2ehh

@r2 þ
1
r2

@2err

@h2 þ
2
r
@ehh

@r
� 1

r
@err

@r
¼ 1

r
@2erh

@r@h
þ 1

r2

@erh

@h
; ð5Þ

which can be simplified by using Eq. (3).

3. A general solution

We introduce the Airy stress function, uðr; hÞ, and observe that
stresses computed from

rrr ¼
1
r
@u
@r
þ 1

r2

@2u
@h2 ; rhh ¼

@2u
@r2 ; rrh ¼ �

@

@r
1
r
@u
@h

� �
;

ð6a;b; cÞ

identically satisfy equilibrium Eq. (1). Substituting for stresses from
Eq. (6) into Eq. (4) and using Eq. (3) we get the following expression
for the hydrostatic pressure.

pðr; hÞ ¼ � 1
2r2

@2u
@h2 �

1
2r

@u
@r
� 1

2
@2u
@r2 : ð6dÞ

Substitution for the hydrostatic pressure from Eq. (6d) and for stres-
ses from Eq. (6a,b,c) into Eq. (4), solving the resulting equations for
strains, and then using the compatibility Eq. (5) we obtain the fol-
lowing partial differential equation for the Airy stress function
uðr; hÞ:

@4/
@r4 þ

1
r4

@4/

@h4 þ
2
r2

@4/

@r2@h2 þ y1ðrÞ
@3/
@r3 � y2ðrÞ

@3/

@r@h2 � y3ðrÞ
@2/
@r2

þ y4ðrÞ
@2/

@h2 þ y5ðrÞ
@/
@r
¼ 0; ð7Þ

where

y1ðrÞ ¼
2
r
� 2

GðrÞ
dGðrÞ

dr
;

y2ðrÞ ¼
2
r3 þ

2
r2GðrÞ

dGðrÞ
dr

;

y3ðrÞ ¼
1

rGðrÞ
dGðrÞ

dr
� 2

G2ðrÞ
dGðrÞ

dr

� �2

þ 1
GðrÞ

d2GðrÞ
dr2 þ 1

r2 ;

y4ðrÞ ¼
3

r3GðrÞ
dGðrÞ

dr
� 2

r2G2ðrÞ
dGðrÞ

dr

� �2

þ 1
r2GðrÞ

d2GðrÞ
dr2 þ 4

r4 ;

y5ðrÞ ¼
1
r3 þ

1
r2GðrÞ

dGðrÞ
dr
� 2

rG2ðrÞ
dGðrÞ

dr

� �2

þ 1
rGðrÞ

d2GðrÞ
dr2 :

We assume that the stress function can be written as

uðr; hÞ ¼ urðrÞuhðhÞ: ð8Þ

Substitution from Eq. (8) into Eq. (7) gives the following differential
equation for the unknown functions ur and uh:

d4uh

dh4 þ f1ðurÞ
d2uh

dh2 þ f2ðurÞuh ¼ 0; ð9Þ

where

f1ðurÞ ¼ 4þ 2r2

ur

d2ur

dr2 �
1
r

dur

dr

 !

þ 1
GðrÞ

dGðrÞ
dr

3r � 2r2

ur

dur

dr
� 2r2

GðrÞ
dGðrÞ

dr

� �
þ r2

GðrÞ
d2GðrÞ

dr2 ;

ð10aÞ

f2ðurÞ ¼
r4

ur

d4ur

dr4 þ
2r4

ur

1
r
� 1

GðrÞ
dGðrÞ

dr

� �
d3ur

dr3

þ r4

urGðrÞ
2

GðrÞ
dGðrÞ

dr

� �2

� d2GðrÞ
dr2 � 1

r
dGðrÞ

dr
� GðrÞ

r2

 !
d2ur

dr2

þ r3

urGðrÞ
GðrÞ
r2 þ

1
r

dGðrÞ
dr
� 2

GðrÞ
dGðrÞ

dr

� �2

þ d2GðrÞ
dr2

 !
dur

dr

ð10bÞ

and we have tacitly assumed that ur – 0 and GðrÞ – 0. It is realistic
to assume that the shear modulus everywhere is positive. Assuming
that df1ður Þ

dr – 0 and uh – 0, the result of differentiation of both sides
of Eq. (9) with respect to r can be written as

1
uh

d2uh

dh2 ¼ �
df2ðurÞ

dr
df1ðurÞ

dr
¼ �k2

�
; ð11aÞ

where k is a constant. Thus for k – 0,

uh ¼ C1 cosðkhÞ þ C2 sinðkhÞ; ð11bÞ

where C1 and C2 are constants. For k ¼ 0

uh ¼ C1hþ C2: ð11cÞ

The constant k can be associated with the circumferential wave
number. Substitution for uh from Eq. (11) into Eq. (9) gives the fol-
lowing fourth-order ordinary differential equation with variable
coefficients for determining the function ur:

k4 � k2f1ðurÞ þ f2ðurÞ ¼ 0: ð12Þ

Having found ur and uh for different values of k we get the follow-
ing expression for the stress function uðr; hÞ from Eq. (8):

uðr; hÞ ¼
X

i

urðki; rÞuhðki; hÞ: ð13Þ

The corresponding stresses and the hydrostatic pressure are
computed from Eqs. (6a,b,c) and (6d). Strains are then found from
Eq. (4) and displacements by integrating the following strain–dis-
placement relations:

err ¼
@ur

@r
; ehh ¼

ur

r
þ 1

r
@uh

@h
; erh ¼

1
r
@ur

@h
þ @uh

@r
� uh

r
; ð14Þ
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where ur and uh are displacements in the radial and the circumfer-
ential directions respectively.

A boundary-value problem for a linear elastic material has a un-
ique solution, within a superimposed rigid body motion, provided
that the shear modulus is everywhere positive. For some bound-
ary-value problems it may suffice to consider only one value of k
in (11a,b) while for other problems, one may need to express the
Airy stress function in terms of a series with terms corresponding
to different values of k in Eq. (11b). When the boundary conditions
vary as sinðmhÞ or cosðmhÞ then it suffices to consider only one va-
lue of k ¼ m in Eq. (11b).

4. Solutions for specified variations of the shear modulus

4.1. Power law variation

We first consider the case when the shear modulus is given by

GðrÞ ¼ G0ðr=rouÞn ð15Þ
where G0 equals the shear modulus at a point of the outer surface,
and the index n is a real number. For n ¼ 0, the shear modulus is
constant, and the cylinder material is homogeneous. Substitution
from Eq. (15) into Eq. (10) and the result into Eq. (12) yields

d4ur

dr4 þ
2ð1� nÞ

r
d3ur

dr3 þ
n2 � 2k2 � 1

r2

d2ur

dr2

þ ðnþ 1Þð2k2 � nþ 1Þ
r3

dur

dr
þ k2ðn2 � 2n� 4þ k2Þ

r4 ur ¼ 0: ð16Þ

For n ¼ 1 and n ¼ �1, some terms in Eq. (16) vanish. Solutions
of Eq. (16) for vanishing and non-vanishing k are given below.

Case 1: k ¼ 0
For n ¼ 0, Eq. (16) has the solution

ur ¼ C1 ln r þ C2r2 þ C3r2 ln r þ C4; ð17aÞ

where constants C1; C2; C3; C4 are to be determined from the
boundary conditions. Note that constants C1; C2; C3; C4 appearing
in different expressions below and also in Eq. (11) need not have the
same values. The stress function in Eq. (17a) is the same as that for a
compressible material.

For n ¼ �2, and n ¼ 2, solutions of Eq. (16), respectively, are

ur ¼ C1r�2 þ C2 ln r þ C3r2 þ C4; ð17bÞ
ur ¼ C1r2 þ C2r2 ln r þ C3r4 þ C4; ð17cÞ

For n – � 2, 2 and 0, we get

ur ¼ C1r2 þ C2
rnþ2

nþ 2
þ C3

rn

n
þ C4: ð17dÞ

Case 2: k – 0.
For n ¼ 0, and k ¼ 1 and k – 1, solutions of Eq. (16), respec-

tively, are

ur ¼ C1r�1 þ C2r þ C3r ln r þ C4r3; ð18aÞ
ur ¼ C1r�k þ C2r2�k þ C3rk þ C4r2þk: ð18bÞ

For n – 0, Eq. (16) has the solution

ur ¼
X4

i¼1

Cirni ; ð18cÞ

where

n1 ¼
1
2
ð2þ n� n6Þ; n2 ¼

1
2
ð2þ nþ n6Þ; n3 ¼

1
2
ð2þ n� n7Þ;

n4 ¼
1
2
ð2þ nþ n7Þ; n5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 4k2 � n2k2

q
;

n6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ n2 þ 4k2 � 4n5

q
; n7 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ n2 þ 4k2 þ 4n5

q
:

4.1.1. Axisymmetric deformations of a homogeneous hollow cylinder
As noted above, for a cylinder composed of a homogeneous

material, n ¼ 0. For axisymmetric deformations it suffices to set
k ¼ 0 in Eq. (12). Thus the Airy stress function is given by Eq.
(17a), and substitution from Eq. (17a) into Eq. (6) gives

rrr ¼ C1r�2 þ 2C2 þ 2C3 ln r þ C3;

rhh ¼ �C1r�2 þ 2C2 þ 2C3 ln r þ 3C3;

rrh ¼ 0;pðr; hÞ ¼ �2ðC2 þ C3 ln r þ C3Þ: ð19a;b; c;dÞ

Substitution into Eq. (4) for stresses and the hydrostatic pres-
sure from Eq. (19) and for the shear modulus from Eq. (15), we ob-
tain expressions for the strain components which when integrated
give

ur ¼ �
C1 þ C3r2

2G0r
; uh ¼

C3hr
G0
þ f ðrÞ; ð20a;bÞ

where f ðrÞ is an arbitrary function of r and represents circumferen-
tial displacements due to rigid body rotation about the z-axis.
Henceforth, we eliminate this rigid body motion by setting
f ðrÞ ¼ 0. In order for the displacements to be single-valued, the con-
stant C3 in Eq. (20b) must be zero. Substitution for stresses from Eq.
(19) into the boundary conditions (2a, c), constants C1 and C2 can be
determined. We thus get the following expressions for stresses, the
hydrostatic pressure and displacements:

rrr ¼
�pou r2

in � r2
� �

r2
ou � pin r2 � r2

ou

� �
r2

in

r2 r2
in � r2

ou

� � ;

rhh ¼
�pin r2 þ r2

ou

� �
r2

in þ pou r2 þ r2
in

� �
r2

ou

r2 r2
in � r2

ou

� � ;

rrh ¼ 0; pðr; hÞ ¼ pinr2
in � pour2

ou

r2
in � r2

ou

; ð21a;b; c;dÞ

and

ur ¼
pou � pinð Þr2

inr2
ou

2G0r r2
in � r2

ou

� � ; uh ¼ 0: ð22a;bÞ

These expressions for stresses and displacements agree with
those derived in [20] where equilibrium equations are expressed
in terms of displacements.
4.1.2. Axisymmetric deformations of a pressurized FG cylinder
Recall that for axisymmetric deformations k ¼ 0 in Eq. (12). For

nonzero values of n the Airy stress function is given by Eq.
(17b,c,d). Following the procedure outlined in Subsection 4.1.1,
we give below the stress and the displacement fields for n = �2,
2 and for values other than these two.

For n ¼ �2, stresses, the hydrostatic pressure and displace-
ments are given by

rrr ¼
�pou r4

in � r4
� �

r4
ou � pin r4 � r4

ou

� �
r4

in

r4 r4
in � r4

ou

� � ;

rhh ¼
�pin r4 þ 3r4

ou

� �
r4

in þ pou r4 þ 3r4
in

� �
r4

ou

r4 r4
in � r4

ou

� � ;

rrh ¼ 0; pðr; hÞ ¼
pin r4 þ r4

ou

� �
r4

in � pou r4 þ r4
in

� �
r4

ou

r4 r4
in � r4

ou

� � ; ð23a;b; c;dÞ
ur ¼
ðpou � pinÞr4

inr2
ou

G0r r4
in � r4

ou

� � ; uh ¼ 0: ð24a;bÞ

For n ¼ 2, we get the following expressions for stresses, the
hydrostatic pressure and displacements:
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rrr ¼
ðpou � pinÞ ln r � pou ln rin þ pin ln rou

lnðrin=rouÞ
;

rhh ¼
ðpou � pinÞð1þ ln rÞ þ pin ln rou � pou ln rin

lnðrin=rouÞ
;

rrh ¼ 0; pðr; hÞ ¼ ðpin � pouÞð1þ 2 ln rÞ þ 2pou ln rin � 2pin ln rou

2 lnðrin=rouÞ
;

ð25a;b; c;dÞ

ur ¼
pinr2

ou � pour2
ou

4G0r lnðrou=rinÞ
; uh ¼ 0; ð26a;bÞ

which agree with those derived in [20]. Note that

rhh � rrr ¼
pin � pou

ln rou � ln rin
; ð27Þ

is constant throughout the cylinder thickness. One can derive Eq.
(27) simply by integrating with respect to the radius r the equilib-
rium Eq. (1a). Note that Eq. (27) does not involve material proper-
ties and hence is a universal relation in the sense that it is valid
for all hollow cylinders irrespective of their materials and the mag-
nitude of deformations.

For n – � 2; n – 2; n – 0, stresses, the hydrostatic pressure
and displacements are given by

rrr ¼
pou r2rn

in � rnr2
in

� �
r2

ou � pin r2rn
ou � rnr2

ou

� �
r2

in

r2 r2
inrn

ou � rn
inr2

ou

� � ;

rhh ¼ �pin �
pou � pinð Þ ðn� 1Þrn�2 � rn�2

in

� �
rn�2

ou � rn�2
in

;

pðr; hÞ ¼ �
nðpin � pouÞrnr2

inr2
ou þ 2r2 pourn

inr2
ou � pinr2

inrn
ou

� �
2r2 r2

inrn
ou � rn

inr2
ou

� � ; rrh ¼ 0;

ð28a;b; c;dÞ

ur ¼
ðpin � pouÞðn� 2Þr2

inr2þn
ou

4G0r rn
inr2

ou � r2
inrn

ou

� � ; uh ¼ 0: ð29a;bÞ
4.1.3. FG cylinder deformed by tangential tractions on the outer
surface

For a FG cylinder subjected to tangential tractions qou on the
outer surface with the inner surface rigidly clamped (i.e.,
ur ¼ uh ¼ 0 on r ¼ rin) we use the Airy stress function correspond-
ing to k ¼ 0, and set C2 ¼ 0 in Eq. (11c). For different values of the
exponent n, the Airy stress function is given below.

For n ¼ 0; u ¼ ðC1 ln r þ C2r2 þ C3r2 ln r þ C4Þh; ð30aÞ
For n ¼ �2; u ¼ ðC1r�2 þ C2 ln r þ C3r2 þ C4Þh; ð30bÞ
For n ¼ 2; u ¼ ðC1r2 þ C2r2 ln r þ C3r4 þ C4Þh; ð30cÞ

For n – 0; n – � 2; n – 2; u ¼ ðC1r2 þ C2
rnþ2

nþ 2
þ C3

rn

n
þ C4Þh:

ð30dÞ

We provide details of the solution procedure only for n = 0. Sub-
stitution for the stress function from Eq. (30a) into Eqs. (6a,b,c,d)
gives

rrr ¼
C1

r2 þ 2C2 þ C3 þ 2C3 ln r
� �

h;

rhh ¼ �C1

r2 þ 2C2 þ 3C3 þ 2C3 ln r
� �

h;

rrh ¼ �
C1ð1� ln rÞ þ C2r2 þ C3r2ð1þ ln rÞ � C4

r2 ;

pðr; hÞ ¼ �2ðC2 þ C3ð1þ ln rÞÞh: ð31a;b; c;dÞ
Substitution for stresses from Eq. (31) and for G(r) from Eq. (15)
into Eq. (4), solving them for strains, substituting from strains into
Eq. (14), and integrating the resulting equations we arrive at

ur ¼�
h C1þ r2C3
� �

2G0r
þ f ðhÞ; uh ¼

rh2C3

2G0
�
Z

f ðhÞdhþ f1ðrÞ; ð32a;bÞ

where

f1ðrÞ ¼ �
C1 ln r
2G0r

� C2r ln r
G0

� C3r ln rð1þ ln rÞ
2G0

� C4

2G0r
þ rC5;

f ðhÞ ¼ C6 sinðhÞ þ C7 cosðhÞ: ð33a;bÞ
Using boundary conditions on the inner and the outer surfaces

of the hollow cylinder and requiring the displacements to be sin-
gle-valued functions of h, we get

rrr ¼ 0; rhh ¼ 0; rrh ¼
qour2

ou

r2 ; ð34a;b; c;dÞ

ur ¼ 0; uh ¼
qouðr2 � r2

inÞr2
ou

2G0r2
inr

: ð35a;bÞ

Following the same procedure for other values of n, we find the
corresponding stress and displacement fields. Note that Eq. (34c)
follows from the overall equilibrium of a hollow cylinder of inner
radius r and outer radius rou, and is a universal result since it does
not depend upon the shear modulus. Moreover, it is applicable for
both large and small deformations. Since ur = 0 for all values of n,
we list below only expressions for uh.

For n ¼ �2; uh ¼
qourðln r � ln rinÞ

G0
: ð36Þ

For n ¼ 2; uh ¼
qouðr4 � r4

inÞr4
ou

4G0r4
inr3

: ð37Þ

For n – 0; n – � 2; n – 2; uh ¼
qouðr2r�2�n

in � r�nÞr2þn
ou

G0ð2þ nÞr : ð38Þ

Thus circumferential displacements depend upon the inhomo-
geneity of the material but the in-plane shear stress is independent
of the shear modulus.

4.2. Exponential variation

We now assume that

GðrÞ ¼ G0exp½mðr=rouÞ�; ð39Þ
where G0 and m are real numbers, and for a homogeneous material
m = 0. Substitution from Eq. (39) into Eq. (12) yields the following
4th order ordinary differential equation for ur:

d4ur

dr4 þ
2
r
� 2m

rou

� �
d3ur

dr3 þ
�2k2 � 1

r2 þm2

r2
ou
� m

rrou

 !
d2ur

dr2

þ 2k2 þ 1
r3 þ 2mk2 þm

r2rou
� m2

rr2
ou

 !
dur

dr

þ k4 � 4k2

r4 � 3mk2

r3rou
þm2k2

r2r2
ou

 !
ur ¼ 0: ð40Þ

Since m = 0 for a homogeneous material, it suffices to consider
m – 0. For k ¼ 0 we get

ur ¼ C1r2 þ C2f2ðrÞ þ C3f3ðrÞ þ C4; ð41Þ
where

f2ðrÞ ¼ expðmr=rouÞ �mrour � r2
ou

� �
=r2

ou � 2Eiðmr=rouÞ
þm2r2Eiðmr=rouÞ=r2

ou;

f 3ðrÞ ¼ expðmr=rouÞ �rour=mþ r2
ou=m2� �

þ r2Eiðmr=rouÞ;

and EiðzÞ ¼ �
Z 1

�z

e�t

t
dt;

is the exponential integration function.
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For k – 0, Eq. (40) is solved by using the Frobenius series meth-
od, i.e., we assume a solution of the form

ur ¼
X1
k¼0

akrkþs; ð42Þ

substitute it into Eq. (40), equate terms of like powers of r on both
sides of the resulting equation, and obtain the following recursive
formula for ak:

a1 ¼
m 2s� 5s2 þ 2s3 þ 3k2 � 2sk2� �

a0

rouðs� k� 1Þðs� kþ 1Þðsþ k� 1Þðsþ kþ 1Þ ; ð43aÞ

ak ¼
b1ak�2 þ b2ak�1

r2
ouðkþ s� k� 2Þðkþ s� kÞðkþ sþ k� 2Þðkþ sþ kÞ ;

k ¼ 2;3; ð43bÞ
uðrÞ ¼ r1�kðpouððk� 1Þrkþbþ1 þ ðbþ 2Þrkþbþ1
in Þrkþ1

ou � pinrkþ1
in ððk� 1Þrkþbþ1 þ ðbþ 2Þrkþbþ1

ou ÞÞ
ðk� 1Þðbþ 2Þðrkþbþ1

in � rkþbþ1
ou Þ

; when k – 1 or b – � 2 or kþ b – � 1;

ð49aÞ
where b1 ¼ �m2ð8þ k2 þ 2kðs� 3Þ � 6sþ s2 þ k2Þ; b2 ¼ �mrouð9�
2k3þ k2ð11� 6sÞ þ 11s2 � 2s3 � 5k2 þ 2sðk2 � 9Þ þ 2kð�9þ 11s�
3s2 þ k2ÞÞ.

Equating the coefficient of a0 to zero gives the indicial equation

ðs� k� 2Þðsþ k� 2Þðs� kÞðsþ kÞ ¼ 0; ð44Þ

for determining s in terms of k. It is evident that roots of Eq. (44) are
distinct. According to the Frobenius method, the solution corre-
sponding to the maximum root smax ¼maxðs1;; s2; s3; s4Þ is

ur1 ¼
X1
k¼0

akrkþsmax ; ð45aÞ

and the solution for the other roots of Eq. (44) is

uri ¼
X1
k¼0

ðs� siÞakf gs¼si
rkþsi ln r þ

X1
k¼0

d
ds
½ðs� siÞak�

� 	
s¼si

rkþsi ;

i ¼ 2;3;4; ð45bÞ

where we have assumed that s1 is the maximum root of Eq. (44).
Thus

urðrÞ ¼
X4

i¼1

ciuri; ð46Þ

where c1;; c2; c3 and c4 are constants. Substitution from Eqs. (46)
and (11) into Eq. (8) gives the stress function.

5. Material tailoring

We now study the inverse problem of finding the variation with
the radius of the shear modulus for a pre-specified variation of the
stress distribution.

5.1. Axisymmetric deformations of pressurized hollow cylinders

We require that the radial and the hoop stresses at a point sat-
isfy the constraint

re ¼ krrr þ rhh ¼ C1rb; ð47Þ

where C1, k and b are known constants, and find the corresponding
variation of the shear modulus. For k ¼ 0 and b ¼ 0, Eq. (47) implies
that the hoop stress is constant through the cylinder thickness, and
for k ¼ �1 and b ¼ 0 the in-plane shear stress is uniform through
the cylinder thickness. Note that, except for the trivial case of null
stresses everywhere, the radial stress cannot be uniform through
the cylinder thickness.

For axisymmetric deformations, the stress function depends
only on the radial coordinate of a point, and the compatibility
equation in terms of strains is

d
dr
ðrehhÞ � err ¼ 0: ð48Þ

Substituting for stresses from Eq. (6) into Eq. (47) and assum-
ing that cylinder’s inner and outer surfaces are loaded by pres-
sures only, we obtain the following expression for the stress
function.
uðrÞ ¼
rbþ2 �pinr2

in þ pour2
ou

� �
� ðbþ 2Þr2

inr2
ou pourb

in � pinrb
ou

� �
ln r

ðbþ 2Þðrbþ2
in � rbþ2

ou Þ
;

when k ¼ 1 and b – � 2; ð49bÞ

uðrÞ ¼
r�k rk

inrk
ourðpinr2

in � pour2
ouÞ þ ðk� 1Þrinrourkðpinrkþ1

in � pourkþ1
ou Þ ln r

� �
ðk� 1Þ �rk

inrou þ rinrk
ou

� � ;

when k – 1 and b ¼ �2; ð49cÞ

uðrÞ ¼
ln r �pinr2

in þ pour2
ou

� �
ln r � 2pour2

ou ln rin þ 2pinr2
in ln rou

� �
2 lnðrin=rouÞ

;

when k ¼ 1 and b ¼ �2; ð49dÞ

uðrÞ ¼ rðpinrin � pourou þ ðpourou � pinrinÞ ln r � pourou ln rin þ pinrin ln rouÞ
lnðrin=rouÞ

;

when k ¼ 0 and b ¼ �1; ð49eÞ

uðrÞ ¼ r2ððpin � pouÞð1� 2 ln rÞ � 2pou ln rin þ 2pin ln rouÞ
4 lnðrin=rouÞ

;

when k ¼ �1 and b ¼ 0: ð49fÞ

Substitution from Eq. (49) into Eqs. (6) and (4) and then into Eq.
(48) gives

GðrÞ ¼ Gourbþ1r�k�b�2
ou ð�brkþbþ1ðpinrkþ1

in � pourkþ1
ou Þ þ ðkþ 1Þrkþ1

in rkþ1
ou ðpourb

in � pinrb
ouÞÞ

�ðkþ bþ 1Þpinrkþ1
in rb

ou þ pouððkþ 1Þrkþbþ1
in þ brkþbþ1

ou Þ
;

when k – 1 or b – � 2 or kþ b – � 1; ð50aÞ

GðrÞ ¼ Gouð�brbþ2ðpinr2
in � pour2

ouÞ þ 2r2
inr2

ouðpourb
in � pinrb

ouÞÞ
r2

ouð�ðbþ 2Þpinr2
inrb

ou þ pouð2rbþ2
in þ brbþ2

ou ÞÞ
;

when k ¼ 1 and b – � 2; ð50bÞ

GðrÞ ¼ Gour�kðpouð�2rkrin þ ðkþ 1Þrk
inrÞrkþ2

ou � pinrkþ2
in ð�2rourk þ ðkþ 1Þrk

ourÞÞ
rouðpinrkþ2

in ð1� kÞ þ pouðrk
inr2

ouð1þ kÞ � 2rinrkþ1
ou ÞÞ

;

when k – 1 and b ¼ �2; ð50cÞ

GðrÞ ¼ Gouððpinr2
in � pour2

ouÞð1� 2 ln rÞ � 2pour2
ou ln rin þ 2pinr2

in ln rouÞ
pinr2

in � pour2
ouð1þ 2 ln rin � 2 ln rouÞ

;

when k ¼ 1 and b ¼ �2; ð50dÞ
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GðrÞ ¼ Gourððpourou � pinrinÞð1� ln rÞ þ pourou ln rin � pinrin ln rouÞ
rouðpourou � pinrin þ pourou lnðrin=rouÞÞ

;

when k ¼ 0 and b ¼ �1; ð50eÞ

GðrÞ ¼ Gour2

r2
ou

; when k ¼ �1 and b ¼ 0 ; ð50fÞ

where Gou is the values of G(r) on the outer surface.
Setting k ¼ 0 and b ¼ 0 in Eq. (50a), we get GðrÞ ¼ Gour=rou. That

is for the hoop stress to be constant in the cylinder the shear mod-
ulus must be proportional to r which agrees with the result given
by Batra [19]. For k ¼ �1 and b ¼ 0, the in-plane shear stress is
constant through the cylinder thickness and Eq. (50f) implies that
the shear modulus must be proportional to r2. It follows from Eq.
(27) that the value of the constant shear stress depends upon the
pressures applied on the inner and the outer surfaces and their ra-
dii. For other pre-assigned variation of the linear combination of
the radial and the hoop stresses, we can find the corresponding
variation of the shear modulus from Eq. (50). For n = 1 and 2, the
corresponding displacement and stress fields can be obtained from
results given in Section 4.1.

5.2. FG cylinder deformed by tangential tractions on the outer surface

For the boundary conditions considered in Subsection 4.1.3
stresses are determined by the boundary conditions and the cylin-
der geometry. Thus they cannot be controlled by tailoring the
material properties.
6. Numerical examples

6.1. Analysis of FG cylinders

Example 1: For a cylinder with rin = 0.1 cm, rou = 1.0 cm, G0 =
1 MPa in Eq. (15), pin = 0, pou = 0.1 MPa and 0:1� cosð2hÞMPa;
and different values of the index n in Eq. (15) we have plotted in
Figs. 2 and 3 the through-the-thickness variation of the stresses.

For uniform distribution of pressure on the cylinder outer sur-
face the hoop stress in the cylinder with n = 1 is a constant, but that
is not the case for a non-uniform distribution of the pressure. For
n < 0 the maximum magnitude of the hoop stress occurs at points
on the inner surface of the cylinder, and large values of the hoop
stress occur at points near the inner surface. It is clear that the
through-the-thickness distribution of stresses can be controlled
by selecting an appropriate value of n. Even though results have
been plotted for integer values of n, the analysis presented above
is valid for all real values of n.
Fig. 2. Through-the-thickness variation of stre
Example 2: For a cylinder with rin = 0.2 cm, rou = 1.0 cm, G0 =
1 MPa in Eq. (39), pin = 0, pou = 0:1� cosð6hÞMPa, and different val-
ues of m in Eq. (39) we have plotted in Fig. 4 the through-the-thick-
ness variation of stresses.

For m = 5 and �5, the maximum value of the hoop stress oc-
curs at a point on the outer surface of the cylinder, and its mag-
nitude for m = 5 is nearly five times that of the hoop stress for
m = �5.

6.2. Material tailoring

Example 3: For a cylinder with rin = 0.2 cm, rou = 1.0 cm,
pin = 0, pou = 1.0 MPa, we find the through-the-thickness variation
of the shear modulus to attain a pre-specified through-the-thick-
ness variation of a linear combination of the radial and the hoop
stresses. For b = 0, 1 and k = �1, 0 and 1, we have exhibited in
Fig. 5 the computed variation of the shear modulus. The value
of the constant C1 in Eq. (47) depends upon the pressures pre-
scribed on cylinder’s inner and outer surfaces and the cylinder
geometry. Results exhibited in Fig. 5a reveal that in a homoge-
neous cylinder rrr þ rhh is a constant. For the hoop stress rhh

to be constant the shear modulus must vary linearly with the ra-
dius. The in-plane shear stress, (rrr � rhhÞ=2, is constant when
the shear modulus varies as r2. It is found from results plotted
in Fig. 5b that the shear modulus needs to increase gradually
from the inner surface to the outer surface in order to achieve
either linearly varying hoop stress or linearly varying in-plane
shear stress in the cylinder with pressure applied only on the
outer surface. Furthermore, essentially the same through-the-
thickness variation of the shear modulus makes the in-plane
shear stress and the sum of the hoop and the radial stress vary
linearly through the cylinder thickness. Note that the shear mod-
ulus on the inner surface is nearly 0.3% of that on the outer sur-
face implying that the material on the inner surface is very soft
relative to that on the outer surface. For pressure applied on the
inner surface or on both surfaces of the cylinder the through-
the-thickness variation of the shear modulus will be quantita-
tively different from that given in Fig. 5.

7. Remarks

The requirement that the shear modulus must be positive
everywhere in the cylinder may rule out tailoring the shear modu-
lus so as to attain a desired through-the-thickness variation of a
linear combination of the radial and the hoop stresses.

We have not addressed how to fabricate a cylinder with the
shear modulus varying by a factor of 300 over the cylinder thick-
ness; this exercise is left for material scientists.
sses in a cylinder for different values of n.
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A material scientist can vary elastic moduli of a fiber-reinforced
composite by changing the materials of the fibers and the matrix,
varying continuously the fiber layout in going from the bottom
Fig. 3. Through-the-thickness variation of stre

Fig. 4. Through-the-thickness variation of stres
layer to the top layer (e.g., see [23]), and changing the spacing be-
tween adjacent fibers in a single-layer plate (e.g., see [24,25]). For
the problem studied in [23] through-the-thickness material prop-
sses in a cylinder for different values of n.

ses in a cylinder for different values of m.



Fig. 5. Through-the-thickness variation of the shear modulus for k = �1, 0 and 1; (a) b = 0, (b) b = 1.
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erties depend continuously upon the fiber orientation angle and for
problems analyzed in [24,25] material properties vary continu-
ously in one of the in-plane directions. A problem in which mate-
rial properties vary continuously in both in-plane directions has
been analyzed in [26]. Materials studied in [23–26] are not incom-
pressible but present interesting possibilities that can be extended
to incompressible materials especially for scaffolds used in biolog-
ical applications.

For the material tailoring problem, we have found through-the-
thickness variation of the shear modulus to achieve a desired var-
iation of a linear combination of the radial and the hoop stresses. If
one were to optimize more than one variable, e.g., a stress compo-
nent and the first frequency of free vibrations of the structure, then
one could write an objective function with appropriate weights for
the stress component and the frequency to be optimized. One can
then find through-the-thickness variation of the shear modulus to
find an optimum value of the objective function. However, this dis-
tribution of the shear modulus will not, in general, simultaneously
optimize the stress component and the frequency included in the
objective function because for incompressible isotropic linear elas-
tic materials there is only material parameter to be varied. Optimi-
zation problems involving more than one variable to be optimized
have been studied, for example, in [27,28].

Batra [29] has studied the torsion of a cylinder composed of an
FGIM, and shown that the axial variation of the shear modulus can
be adjusted to control the angle of twist of a cross-section.

The paper [30] should have been cited earlier in the text along
with others dealing with the analysis of a thermoelastic deforma-
tions of an FG cylinder. The just accepted paper [31] deals with
infinitesimal deformations of a FG cylinder composed of an elas-
tic-plastic material. Finite thermo-elasto-visco-plastic deforma-
tions of FG structures have been studied in [32–34].

8. Conclusions

We have studied the problem of material tailoring to achieve
the desired stress distribution in a hollow cylinder composed of a
linear elastic incompressible material with the shear modulus
varying only in the radial direction. The Airy stress function ap-
proach employed herein enables one to analyze both axisymmetric
and non-axisymmetric problems, and seems to be the first use of
this technique for incompressible materials. It also enables one
to find deformations of the cylinder with known variations of the
shear modulus and prescribed displacements and tractions on
the inner and the outer surfaces. Analytical solutions for displace-
ments and stresses with the shear modulus given by either a power
law or an exponential function are derived and numerical results
for a few example problems are presented. One can, of course, con-
trol the through-the-thickness distribution of stresses by tailoring
the through-the-thickness variation of the shear modulus; how-
ever, not all conceivable stress states can be controlled since the
shear modulus must be positive everywhere in the cylinder.

Results presented here will be useful to both material scientists
in designing new materials, stress analysts, and designers. Also,
analytical solutions presented herein can serve as benchmarks
for comparison with the approximate solutions obtained
numerically.
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