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We analyze axisymmetric deformations of a rotating disk with its thickness, mass density, thermal
expansion coefficient and shear modulus varying in the radial direction. The disk is made of a rubberlike
material that is modeled as isotropic, linear thermoelastic and incompressible. We note that the hydro-
static pressure in the constitutive relation of the material is to be determined as a part of the solution of
the problem since it cannot be determined from the strain field. The problem is analyzed by using an Airy
stress function u. The non-homogeneous ordinary differential equation with variable coefficients for u is
solved either analytically or numerically by the differential quadrature method. We have also analyzed
the challenging problem of tailoring the variation of either the shear modulus or the thermal expansion
coefficient in the radial direction so that a linear combination of the hoop stress and the radial stress is
constant in the disk. For a rotating annular disk we present the explicit expression of the thermal expan-
sion coefficient for the hoop stress to be uniform within the disk. For a rotating solid disk we give the
exact expressions for the shear modulus and the thermal expansion coefficient as functions of the radial
coordinate so as to achieve constant hoop stress. Numerical results for a few typical problems are pre-
sented to illuminate effects of material inhomogeneities on deformations of a hollow and a solid rotating
disk.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded materials (FGMs) are composites in which
the volume fraction, sizes, and shapes of material constituents
can be varied to get desired smooth spatial variations of macro-
scopic properties such as the elastic modulus, the mass density,
the heat conductivity, etc. to optimize their performance. The
FGMs abound in nature, e.g., human teeth, bamboo stick, sea shell.
Engineered FGMs include ceramic–metal and fiber-reinforced
polymeric composites, concrete, and rubberlike materials [1–5].
Vulcanized rubber components typically exhibit a spatial variation
of mechanical properties caused either by thermal gradients dur-
ing their fabrication or chemical changes induced due to interac-
tion with the environment during their service [6–8]. For
example, in a commercial butyl rubber sheet and a chlorosulfonat-
ed polyethylene cable jacketing material the shear modulus was
found to be a quadratic function of the radius [9]. Note that during
the fabrication (vulcanization) of thick rubber parts the central
portion is cured less than the material near the boundary surfaces
ll rights reserved.
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unless the vulcanization time is sufficiently large [8,9]. Thus the
shear modulus at the center is less than that at the surfaces.

Rubberlike materials are widely used in aerospace, automotive,
and biomedical fields. They are usually regarded as incompressible,
can thus undergo only isochoric or volume preserving deforma-
tions, and their constitutive relation involves hydrostatic pressure
that cannot be determined from the deformation field but is to be
found as a part of the solution of the boundary-value problem
(BVP). The BVPs for functionally graded incompressible materials
(FGIMs) are challenging since the governing differential equations
have variable coefficients and it is difficult to find their exact solu-
tions. In general, the solution of a BVP for a structure composed of
an FGIM cannot be obtained from that of the corresponding prob-
lem for a compressible material by setting Poisson’s ratio equal to
0.5. Furthermore, the solution for a plane stress problem cannot be
obtained from that for a plane strain problem by modifying
Young’s modulus E and Poisson’s ratio v. We briefly review below
the literature on FG rotating disks and other works for FGIMs.

Deformations of a rotating disk composed of a linear elastic, iso-
tropic and homogeneous material have been studied thoroughly
[10] and those of a FG rotating disk have been investigated by Hor-
gan and Chan [11] by assuming that E is a power-law function of
the radius r. Jahed et al. [12] presented a procedure for minimum
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Fig. 1. Schematic sketch of the problem studied.
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mass design of rotating disks with variable material properties and
operating at a high temperature. Eraslan and Akis [13] obtained
closed-form solutions for FG rotating solid shafts and disks by
assuming that E is either an exponential or a parabolic function
of r. Kordkheili and Naghdabadi [14] used a semi-analytical ap-
proach to analyze axisymmetric thermoelastic deformations of
hollow and solid rotating FG disks with the thermomechanical
properties given by a power-law function of r. You et al. [15] de-
rived a closed-form solution for FG rotating disks subjected to a
uniform temperature change by taking E, the thermal expansion
coefficient and the mass density to vary according to power-law
functions of r. Hojjati and Jafari [16] introduced two analytical
methods, namely homotopy perturbation and Adomian’s decom-
position, to find stresses and displacements in rotating annular
elastic disks with uniform and variable thicknesses and mass den-
sities. Bayat et al. [17–20] solved the elastic and thermoelastic
problems for FG rotating disks with the assumption that the mate-
rial properties and disk thickness are given by power-law functions
of r and the temperature field is steady. Vullo and Vivio [21,22]
studied stresses and strains in variable thickness annular and solid
rotating elastic disks subjected to thermal loads and having a var-
iable density along the radius. Zenkour [23,24] investigated the
stress distribution in rotating three-layer sandwich solid disks
with face sheets made of different isotropic materials and a FG
core.

For FGIMs, Batra [25] numerically studied axisymmetric static
deformations of a Mooney–Rivlin cylinder with material parame-
ters taken to be quadratic functions of r. Batra et al. [26–28] have
found that the hoop stress in a cylinder is constant if the shear
modulus is a linear function of the radius. Bilgili et al. [4–
6,29,30] have analyzed shearing deformations of an inhomoge-
neous rubberlike slab or tube subjected to a thermal gradient
across its thickness or radius.

We note that most problems for FGMs have been studied by
assuming that material parameters vary either as a power-law
function or an exponential function in one direction. Here we study
infinitesimal deformations of a rotating disk composed of an iso-
tropic linear thermoelastic FGIM when the shear modulus is an
arbitrary smooth function of r. For a few specific variations of the
shear modulus we provide exact solutions, and for a general
smooth variation we solve the problem numerically by the differ-
ential quadrature method (DQM) [31]. Furthermore, we study the
material tailoring problem and find either the shear modulus or
the thermal expansion coefficient as a function of r to achieve a de-
sired radial variation of stresses. For plane strain axisymmetric
deformations of an FG cylinder composed of an orthotropic com-
pressible material, Leissa and Vagins [32] assumed that all material
moduli are proportional to each other and found their spatial var-
iation so to make either the hoop stress or the shear stress uniform
in the cylinder.

Qian and Batra [33] used a higher-order shear and normal
deformable plate theory [34] to find the spatial variation along
the axial and the thickness directions of the two constituents in a
FG cantilever plate to optimize the fundamental frequency. The
through-the-thickness variation of the fiber orientation angle in a
fiber-reinforced laminated composite plate to optimize one of the
first five lowest frequencies of a rectangular plate under different
boundary conditions is given in [35], and the axial variation of
the shear modulus to control the angle of twist per unit length
for the torsion of a FG cylinder in [36]. Batra [37] has derived a
higher-order plate theory for FGIM plates, and an exact solution
for frequencies of a simply supported plate made of an incompress-
ible material is provided in [38].

The rest of the paper is organized as follows. Section 2 gives the
problem formulation, and Section 3 presents exact solutions for
stresses and the radial displacement in rotating disks with the
shear modulus given by either a power-law or an exponential func-
tion of r. For a general variation of the shear modulus, the solution
of the problem by the DQM is provided. The material tailoring
problem is studied in Section 4, and Section 5 gives numerical
examples both for the material tailoring problem, and the stress
and the displacement variations in FGIM rotating disks of variable
thickness under different boundary conditions. Section 6 summa-
rizes conclusions of the work.

2. Problem formulation

Consider a circular disk of thickness h(r) > 0 varying in the radial
direction only, having inner radius, rin, and outer radius, rou, and
rotating at a constant angular velocity, x, about the centroidal axis
perpendicular to the plane of the disk, as shown in Fig. 1. Assuming
that rou=hmax P 10 we regard the state of deformation in it to be
that of plane stress, and investigate the effect of x on stresses in-
duced by taking its deformations to be axisymmetric; here hmax

equals the maximum thickness of the disk. We use cylindrical
coordinate system (r, h, z) with the origin at the disk center and
the z-axis perpendicular to the plane of the disk.

In the absence of gravitational forces, the equation of equilib-
rium in the radial direction is [10]

d
dr
ðhðrÞrrrrÞ � hðrÞrhh þ hðrÞqðrÞx2r2 ¼ 0; ð1Þ

where rrr and rhh are, respectively, the radial and the hoop stresses
at a point, and q(r) is the mass density. We solve the problem for
the following three sets of boundary conditions on the inner and
the outer surfaces of the disk.

Case 1: hollow disk with the inner and the outer surfaces trac-
tion free:

rrrðrinÞ ¼ 0:0; rrrðrouÞ ¼ 0:0: ð2a;bÞ

Case 2: hollow disk with the inner surface fixed and the outer
surface traction free:

urðrinÞ ¼ 0:0; rrrðrouÞ ¼ 0:0: ð2c;dÞ

Case 3: solid disk with the outer surface traction free:

urð0:0Þ ¼ 0:0; rrrðrouÞ ¼ 0:0; ð2e; fÞ

where ur is the radial displacement of a point.
Assuming that deformations are infinitesimal, the in-plane ra-

dial and hoop strains, err and ehh, respectively, are related to ur by

err ¼
dur

dr
; ehh ¼

ur

r
: ð3a;bÞ

The axial strain ezz in the z-direction is generally non-zero. The com-
patibility equation in terms of strains is

d
dr
ðrehhÞ � err ¼ 0: ð4Þ
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In linear thermoelasticity we can write strains as

err ¼ ee
rr þ eT

rr; ehh ¼ ee
hh þ eT

hh; ezz ¼ ee
zz þ eT

zz; ð5a;b; cÞ

where superscripts ‘e’ and ‘T’ denote the elastic and the thermal
components of strains, respectively. The thermal strains are given
by

eT
rr ¼ eT

hh ¼ eT
zz ¼ aðrÞDT; ð6Þ

where DT equals the uniform temperature change measured from a
stress free reference configuration, and the coefficient of thermal
expansion, a(r), varies with the radius. Because only isochoric (vol-
ume preserving) deformations are admissible in an incompressible
material, the elastic strain components must satisfy

ee
rr þ ee

hh þ ee
zz ¼ 0: ð7Þ

The pertinent constitutive equations for an isotropic linear elas-
tic FGIM are [40]

rrr ¼ �pðrÞ þ 2GðrÞee
rr;

rhh ¼ �pðrÞ þ 2GðrÞee
hh;

rzz ¼ �pðrÞ þ 2GðrÞee
zz;

ð8a;b; cÞ

where rzz is the axial stress in the z-direction, p(r) the hydrostatic
pressure not determined from the deformation field, and G(r) > 0
the shear modulus. Shear stresses and shear strains vanish identi-
cally for the problem being studied.

3. Solutions for stresses and the radial displacement

We assume that r > 0, and solve the problem for a solid disk by
taking the limit of rin approaching 0.

In terms of the Airy stress function u(r), stresses rrr and rhh gi-
ven by

rrr ¼
uðrÞ
hðrÞr ; rhh ¼

1
hðrÞ

duðrÞ
@r
þ qðrÞx2r2; ð9a;bÞ

identically satisfy the equilibrium Eq. (1). Since rzz = 0 for a state of
plane stress, Eq. (8c) gives

ee
zz ¼

pðrÞ
2GðrÞ : ð10Þ

Substitution from Eq. (10) into Eq. (7) gives the hydrostatic pressure

pðrÞ ¼ �2GðrÞðee
rr þ ee

hhÞ: ð11Þ

Thus elastic strains in Eq. (8a, b) can be expressed in terms of stres-
ses. In view of Eqs. (5) and (6) we get the total strains as

err ¼
2rrr � rhh

6GðrÞ þ aðrÞDT; ehh ¼
2rhh � rrr

6GðrÞ þ aðrÞDT: ð12a;bÞ

Substituting for stresses from Eq. (9) into Eq. (12) and then for
strains into Eq. (4), we get

d2uðrÞ
dr2 þ f1ðrÞ

duðrÞ
dr
þ f2ðrÞuðrÞ ¼ f3ðrÞ; ð13Þ

where

f1ðrÞ ¼
1
r
� 1

GðrÞ
dGðrÞ

dr
� 1

hðrÞ
dhðrÞ

dr
; f 2ðrÞ

¼ 1
2rGðrÞ

dGðrÞ
dr
þ 1

2rhðrÞ
dhðrÞ

dr
� 1

r2 ; f 3ðrÞ

¼ x2r2 hðrÞqðrÞ
GðrÞ

dGðrÞ
dr
�x2r2hðrÞdqðrÞ

dr
� 7

2
x2rhðrÞqðrÞ

� 3DTGðrÞhðrÞ daðrÞ
dr

:

Eq. (13) is 2nd order non-homogeneous ordinary differential equa-
tion (ODE) with variable coefficients for u(r). For given h(r), G(r),
q(r), and a(r), we solve Eq. (13) for u(r) and then find stresses from
Eq. (9), strains from Eq. (12), and ur from Eq. (3b).

We first present below exact solutions when G(r) is either a
power-law or an exponential function of r. Subsequently, for an
arbitrary variation of G(r) we numerically solve the problem
employing the DQM.

3.1. Hollow disk with power-law variation of the shear modulus, the
mass density, the thermal expansion coefficient and the disk thickness

We assume that

GðrÞ ¼ Gou
r

rou

� �k

; qðrÞ ¼ qou
r

rou

� �m

; aðrÞ ¼ aou
r

rou

� �t

;

hðrÞ ¼ hou
r

rou

� ��n

; ð0 < rin 6 r 6 rouÞ; ð14a—dÞ

where Gou, qou, aou and hou equal, respectively, the shear modulus,
the mass density, the thermal expansion coefficient and the disk
thickness at a point on the outer surface of the hollow disk, and k,
m, t and n are real numbers. For a homogeneous disk, k, m, t and
n equal zero. For a solid disk, k, m and t must be non-negative,
and n must be non-positive.

Substitution for G(r), q(r), a(r) and h(r) from Eq. (14) into Eq.
(13) yields

d2uðrÞ
dr2 þ 1þ n� k

r
duðrÞ

dr
� 2þ n� k

2r2 uðrÞ ¼ FðrÞ; ð15Þ

where

FðrÞ ¼ kx2houqourn�m
ou rm�nþ1 �mx2houqourn�m

ou rm�nþ1

� 7
2
x2houqourn�m

ou rm�nþ1 � 3tGouhouaouDTrn�t�k
ou rt�nþk�1: ð16Þ

The general solution of Eq. (15) can be written as

uðrÞ ¼ C1rs1 þ C2rs2 þUðrÞ; ð17Þ

where C1 and C2 are arbitrary constants to be determined by using
boundary conditions in Eq. (2); s1 and s2 are real roots of the qua-
dratic equation

s2 þ ðn� kÞsþ 1
2
ðk� n� 2Þ ¼ 0; ð18Þ

and

UðrÞ ¼ �4houðv1 � v2Þrn�m�t�k
ou r1�n

v3v4
; ð19Þ

is the particular solution of Eq. (15), where

v1 ¼ qoux
2rtþk

ou rmþ2ð2m�2kþ 7Þð2t2 � nð2tþ3Þ þ2tðkþ2Þ þ3kÞ;
v2 ¼ 6tGouaouDTrm

ourtþkð2m2 � 2mðnþ k� 6Þþ nð2k� 7Þ � 5kþ16Þ;
v3 ¼ 4mðnþ k�6Þ þ nð14�4kÞ þ 10k� 4m2 � 32;

v4 ¼ nð4tþ 6Þ � 2ð2t2 þ 3kþ2tðkþ2ÞÞ:

Knowing the stress function u(r), we get following expressions
for stresses and the hydrostatic pressure:

rrr ¼
C1rs1þn�1

hourn
ou
þ C2rs2þn�1

hourn
ou
þUðrÞrn�1

hourn
ou

;

rhh ¼
C1s1rs1þn�1

hourn
ou

þ C2s2rs2þn�1

hourn
ou

þ rn

hourn
ou

dUðrÞ
dr
þ qoux2rmþ2

rm
ou

;

pðrÞ ¼ �C1ðs1 þ 1Þrs1þn�1

3hourn
ou

� C2ðs2 þ 1Þrs2þn�1

3hourn
ou

� rn

3hourn
ou

dUðrÞ
dr
� rn�1UðrÞ

3hourn
ou
� qoux2rmþ2

3rm
ou

: ð20a;b; cÞ
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Substitution for stresses from Eq. (20) into Eq. (12b) and the result
into Eq. (3b) gives

ur ¼
rn�kþ1

3houGourn�k
ou

dUðrÞ
dr
� rn�kUðrÞ

6houGourn�k
ou
þqoux2rm�kþ3

3Gourm�k
ou

þaou
rtþ1

rt
ou

DTþFðrÞ;

ð21aÞ

where

FðrÞ ¼ C1ð2s1 � 1Þrs1þn�k þ C2ð2s2 � 1Þrs2þn�k

6houGourn�k
ou

: ð21bÞ

Constants C1 and C2 in Eqs. (20) and (21) are determined from
boundary conditions (2). We thus have the exact solution for stres-
ses and the radial displacement in a uniformly heated FGIM rotating
disk with the shear modulus, the mass density, the thermal expan-
sion coefficient, and the disk thickness varying as power-law func-
tions of the radius.

3.2. Hollow disk with exponential variation of the shear modulus but
constant mass density, thermal expansion coefficient and disk
thickness

Suppose that G(r) is given by

GðrÞ ¼ G0 expðbr=rouÞ; ðb – 0Þ; ð22Þ

where G0 equals the shear modulus at a point of the disk, and b is a
constant. The disk has a uniform thickness h0 and mass density q0.
Substitution for G(r) from Eq. (22) into Eq. (13) gives

d2uðrÞ
dr2 þ 1

r
� b

rou

� �
duðrÞ

dr
þ b

2rour
� 1

r2

� �
uðrÞ ¼ gðrÞ; ð23Þ

where gðrÞ ¼ x2bh0q0r2=rou � 7
2 x2h0q0r: Note from Eq. (23) that

there are no thermal stresses in a uniformly heated rotating disk
with constant thermal expansion coefficient.

The general solution of the homogeneous equation associated
with Eq. (23) is

ugðrÞ ¼ A1rUða1;3; a2Þ þ A2rL2
�a1
ða2Þ; ð24Þ

where constants A1 and A2 are determined by boundary conditions
(2), U(a, b, z) is the confluent hypergeometric function

Uða; b; zÞ ¼ ð1=CðaÞÞ
Z 1

0
e�ztta�1ð1þ tÞb�a�1dt;

La
nðxÞ is the generalized Laguerre polynomial, and a1 ¼ 1

2 ; a2 ¼ br
rou

.
We employ the power series method to derive the particular

solution of Eq. (23). Considering the form of the non-homogeneous
term g(r), the particular solution of Eq. (23) is assumed to be

upðrÞ ¼
X3

i¼0

biri; ð25Þ

where coefficients bi, i = 0, 1, 2, 3, are to be determined. Substituting
from Eq. (25) into Eq. (23) and equating coefficients of like powers
of r on both sides of the resulting equation, we get

upðrÞ ¼ x2h0q0ð6r2
our þ brour2 � 2b2r3Þ

5b2 : ð26Þ

Thus the solution of Eq. (23) is

uðrÞ ¼ ugðrÞ þupðrÞ; ð27Þ

and we can find the corresponding stresses and the radial
displacement.
3.3. Arbitrary variations of the shear modulus, mass density, thermal
expansion coefficient and disk thickness

For an arbitrary smooth function G(r) we are unable to find a
closed-form solution of Eq. (13). Here we use the DQM [31] which
postulates that for a continuous function f(n) defined for n e [0, 1]
the value of the nth derivative of the function at an arbitrary point
ni in [0, 1] can be approximated by the linear sum of weighted val-
ues of f(n) at N discrete points in [0, 1]. That is,

dnf ðniÞ
dnn ¼

XN

j¼1

wðnÞij f ðnjÞ; ðn ¼ 1;2; . . . ;N � 1Þ; ð28Þ

where N is the total number of sampling points in [0, 1], wðnÞij are the
weights for the nth order derivative. Explicit expressions for wðnÞij , gi-
ven in Shu [31], are omitted here. Three ways to choose sampling
point distributions are to place them uniformly in the domain,
use the Chebyshev–Gauss–Lobatto grid, and a grid with coordinates
that are roots of the Chebyshev polynomial [31].

We first write Eq. (13) in terms of the following non-dimen-
sional variables:

R ¼ r
rou

; H ¼ h
h0
; �q ¼ q

q0
; �u ¼ u

h0q0x2r3
ou
;

�G ¼ G
q0x2r2

ou
; Ur ¼

ur

rou
; �rrr ¼

rrr

q0x2r2
ou
;

�rhh ¼
rhh

q0x2r2
ou
; �p ¼ p

q0x2r2
ou
; ð29Þ

where h0 and q0 are values of the thickness and the mass density at
a point of the disk. Setting

fGðrÞ ¼
1

GðrÞ
dGðrÞ

dr
; ð30Þ

we get fGðrÞ ¼ fGðRÞ=rou and the non-dimensional form of Eq. (13) is

d2 �uðRÞ
dR2 þ d1

d �uðRÞ
dR

þ d2 �uðRÞ ¼ d3; ð31Þ

where

d1 ¼
1
R
� fGðRÞ �

1
H

dH
dR

; d2 ¼
f�GðRÞ
2R
� 1

R2 þ
1

2HR
dH
dR

;

d3 ¼ H�qfGðRÞR
2 � 7

2
H�qR� H

d�q
dR

R2 � 3GðRÞDTH
da
dR

:

Applying the DQM to Eq. (31) with sampling points
Ri(i = 1, 2, . . . , N) with R1 = rin/rou and RN = 1, we get the following
set of N � 2 simultaneous algebraic equations for i = 2, . . . , N � 1:

XN

j¼1

wð2Þij
�uðRjÞ þ c1

XN

j¼1

wð1Þij
�uðRjÞ þ c2 �uðRiÞ ¼ c3; ð32Þ

where

c1 ¼
1
Ri
� fGðRiÞ �

1
HðRiÞ

XN

j¼1

wð1Þij HðRjÞ;

c2 ¼
fGðRiÞ
2Ri

� 1
R2

i

þ 1
2HðRiÞRi

XN

j¼1

wð1Þij HðRjÞ;

c3 ¼ HðRiÞ�qðRiÞfGðRiÞR2
i �

7
2

HðRiÞ�qðRiÞRi � HðRiÞR2
i

XN

j¼1

wð1Þij
�qðRjÞ

� 3GðRiÞDTHðRiÞ
XN

j¼1

wð1Þij aðRjÞ:

Equations corresponding to i = 1 and N are obtained by satisfying
the discrete form of the two boundary conditions. The solution of
these N algebraic equations provides values of the stress function
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at the N discrete points. For Ri – 0, stresses and the hydrostatic
pressure at the discrete points are given by

�rrrðRiÞ ¼
�uðRiÞ

Ri
; �rhhðRiÞ ¼

XN

j¼1

wð1Þij
�uðRjÞ þ R2

i ;

�pðRiÞ ¼ �
1
3

XN

j¼1

wð1Þij
�uðRjÞ �

�uðRiÞ
3Ri

� R2
i

3
: ð33a;b; cÞ

For Ri – 0, the radial displacement at Ri (i = 1,2, . . . , N)is obtained by
substituting for stresses into Eq. (12b) and the result into Eq. (3b):

UrðRiÞ ¼
Ri

6GðRiÞ
2
XN

j¼1

wð1Þij
�uðRjÞ þ 2R2

i �
�uðRiÞ

Ri

 !
þ DTaðRiÞRi:

ð34Þ

For a solid disk, stresses and the displacement at the center R1 = 0 of
the disk obtained by the limiting process are given by

�rrrðR1Þ ¼ �rhhðR1Þ ¼
XN

j¼1

wð1Þ1j
�uðRjÞ þ R2

1; UrðR1Þ ¼ 0: ð35;36Þ
4. Material tailoring to achieve desirable stress states

We now analyze the problem of finding the function G(r) when
the hoop and the radial stresses satisfy the relation

krrr þ rhh ¼ D0; ð37Þ

where k is a known constant, and the constant D0 is consistent with
the specified boundary conditions. For k = 0, Eq. (37) implies that
the hoop stress is constant, and for k = �1 the in-plane shear stress
is constant.

Substituting for the mass density from Eq. (14b) and the disk
thickness from Eq. (14d) into Eq. (9) and the result into Eq. (37),
we get for m – �2 the following expressions for the stress function
in view of the boundary conditions (2a, b):

uðrÞ ¼ qouhoux2rn�m
ou ðg1r�k þ g2rm�nþ3 þ g3r1�nÞ

ðm� nþ kþ 3Þðrkþ1
in rn

ou � rn
inrkþ1

ou Þ
;

when k� nþ 1 – 0; ð38aÞ

uðrÞ ¼ qouhoux2r1�m
ou ððrmþ2

in � rmþ2
ou Þ ln r þ lnðrou=rinÞrmþ2 þ g4Þ

ðmþ 2Þ lnðrin=rouÞ
;

when k ¼ 0; n ¼ 1; ð38bÞ

uðrÞ ¼ qouhoux2r�m
ou rððrmþ2

in � rmþ2
ou Þ ln r þ lnðrou=rinÞrmþ2 þ g4Þ

ðmþ 2Þ lnðrin=rouÞ
;

when k ¼ �1; n ¼ 0; ð38cÞ

where g1 ¼ rkþ1
in rkþ1

ou rmþ2
ou � rmþ2

in

� �
g2 ¼ rn

inrkþ1
ou � rkþ1

in rn
ou, g3 ¼ rmþkþ3

in

rn
ou � rn

inrmþkþ3
ou , g4 ¼ rmþ2

ou ln rin � rmþ2
in ln rou. For m = �2, the stress

function equals zero and the disk must be hollow with the inner
and the outer surfaces traction free. In this case, the radial stress
identically vanishes, the hoop stress equals qou (rouxou)2. Hence-
forth, we assume that m – �2. Knowing u(r), q(r) and h(r), we ob-
tain the desired stress distribution (37) by tailoring the variation in
the radial direction of the shear modulus or the thermal expansion
coefficient.

Case 1: For constant thermal expansion coefficient a(r) = a0, the
function G(r) to attain the stress distribution (37) is given by

GðrÞ ¼ Gin exp
Z r

rin

f ðxÞdx

" #
; ð39Þ

where Gin equals the value of G at a point on the inner surface of the
disk, and
f ðxÞ ¼ f1ðxÞ
f2ðxÞ

; f 2ðxÞ ¼
duðxÞ

dx
�uðxÞ

2x
þx2x2hðxÞqðxÞ;

f 1ðxÞ ¼
d2uðxÞ

dx2 þ 1
x
� 1

hðxÞ
dhðxÞ

dx

� �
duðxÞ

dx
þ 1

2xhðxÞ
dhðxÞ

dx
� 1

x2

� �
uðxÞ

þx2x2hðxÞ dqðxÞ
dx
þ 7

2
x2xhðxÞqðxÞ:

It is difficult to evaluate in closed-form the integral in Eq. (39);
however, one can evaluate it numerically.

For a solid disk of constant mass density q0 and thermal expan-
sion coefficient a0 and uniform thickness h0, the variation of the
shear modulus for the hoop stress to be constant in the disk is gi-
ven by

GðrÞ ¼ Gin 1þ r2

r2
ou

� �5
2

; ð40Þ

where Gin equals the shear modulus at the disk center. The corre-
sponding stresses, the hydrostatic pressure and the radial displace-
ment are:

rrr ¼
q0x2

3
ðr2

ou � r2Þ; rhh ¼
q0x2r2

ou

3
;

pðrÞ ¼ q0x2

9
ðr2 � 2r2

ouÞ: ð41a;b; cÞ

ur ¼
q0x2r5

ou

18Gin
rðr2 þ r2

ouÞ
�3

2 þ a0DTr: ð42Þ

Case 2: For constant shear modulus G(r) = G0, the thermal
expansion coefficient to attain the stress distribution (37) is given
by

aðrÞ ¼ ain þ
Z r

rin

yðxÞ
3G0DThðxÞ dx; ð43Þ

where ain is the value of a at the point r = rin within the disk, and
y(x) = y1(x) + y2(x),

y1ðxÞ ¼ �x2x2hðxÞ dqðxÞ
dx
� 7

2
x2xhðxÞqðxÞ;

y2ðxÞ ¼ �
d2uðxÞ

dx2 � 1
x
� 1

hðxÞ
dhðxÞ

dx

� �
duðxÞ

dx
� 1

2xhðxÞ
dhðxÞ

dx
� 1

x2

� �
uðxÞ:

From Eq. (43), it is noticed that the desired stress field can be
achieved by adjusting the variation of the thermal expansion coef-
ficient with the radial coordinate even if the shear modulus of
FGIMs is constant.

For an annular disk of constant shear modulus G0, mass density
q0, and thickness h0 under the boundary condition in Eq. (2a, b),
the variation of the thermal expansion coefficient for the hoop
stress to be constant in the disk is given by

aðrÞ ¼ aou þ
q0x2ðrou � rÞð5r2 þ 5rour þ 4rinðrin þ rouÞÞ

36G0DTr
; ð44Þ

where aou equals the thermal expansion coefficient at the outer sur-
face of the disk. The corresponding stresses, the hydrostatic pres-
sure and the displacement are

rrr ¼�
q0x2

3r
ðr� rinÞðr� rouÞðrþ rin þ rouÞ;

rhh ¼
q0x2ðr2

in þ rinrou þ r2
ouÞ

3
;

pðrÞ ¼ q0x2

9r
ðr3 � 2ðr2

in þ rinrou þ r2
ouÞrþ rinrouðrin þ rouÞÞ; ð45a;b;cÞ

ur ¼
q0x2

36G0
ð�3r3þð7r2

ou�2r2
in�2rinrouÞrþ6rinrouðrinþ rouÞÞþaouDTr:

ð46Þ
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For a solid disk of constant shear modulus G0, mass density q0,
and thickness h0, the variation of the thermal expansion coefficient
for the hoop stress to be constant in the disk is given by

aðrÞ ¼ a0 �
5q0x2r2

36G0DT
; ð47Þ

where a0 equals the thermal expansion coefficient at the disk cen-
ter. The corresponding stresses are the same as those in Eq. (41) and
the displacement is

ur ¼
q0x2

36G0
ð�3r3 þ 2r2

ourÞ þ a0DTr: ð48Þ
5. Numerical examples

5.1. Stress analysis

Example 1. Hollow disk with power-law variations of G(r), q(r),
a(r) and h(r).
Fig. 2. For free–free hollow rotating disk of constant thickness, thermal expansion coeffi
hoop stress for three values of the gradation index k in the expression for the shear mo

Fig. 3. For free–free hollow rotating disk of constant mass density, thermal expansion coe
the hoop stress for three values of the gradation index n in the expression for the disk t

Fig. 4. For free–free hollow rotating disk of constant thickness, thermal expansion coeffic
hoop stress for three values of the gradation index m in the expression for the mass de
For a hollow disk with rin/rou = 0.2 rotating at a constant angular
velocity, and G(r), q(r), a(r) and h(r) given by Eqs. (14a–d), we have
plotted in Figs. 2–8 the non-dimensional stresses �rrr ¼ rrr=

ðqoux2r2
ouÞ, �rhh ¼ rhh=ðqoux2r2

ouÞ for k ¼ �1;0;1, m ¼ �1;0;1,
n ¼ �1;0;1, and thermal stresses for t = �1, 0, 1, and
DT ¼ qoux2r2

ou=ðGouaouÞ with disk’s inner surface either fixed or
traction free. Results in Figs. 2–8 for k ¼ m ¼ t ¼ n ¼ 0 are for a
homogeneous disk.

Stresses at a point depend continuously upon the variables m, n
and k since they do not exhibit any discontinuities for the three
discrete values assigned to m, n and k. In Fig. 2a and b, the qualita-
tive distribution of �rrr is same for the three values of k, but that for
�rhh is quite different for the three values of k. For k = 1, �rhh is nearly
constant throughout the disk. Recall that for a hollow cylinder
loaded by uniform pressures on the inner and the outer surfaces,
the hoop stress is constant when G(r) is a linear function of r. For
the disk the non-uniform distribution of the centrifugal force re-
quires that the hoop stress vary in the radial direction. The hoop
stress at the non-dimensional radius of 0.45 = (0.2)1/2 = (rinrou)1/2
cient and mass density, variations with the radius of (a) the radial stress and (b) the
dulus.

fficient and shear modulus, variations with the radius of (a) the radial stress and (b)
hickness.

ient and shear modulus, variations with the radius of (a) the radial stress and (b) the
nsity.



Fig. 5. For fixed–free hollow rotating disk of constant thickness, thermal expansion coefficient and mass density, variations with the radius of (a) the radial stress and (b) the
hoop stress for three values of the gradation index k in the expression for the shear modulus.

Fig. 6. For fixed–free hollow rotating disk of constant mass density, thermal expansion coefficient and shear modulus, variations with the radius of (a) the radial stress and (b)
the hoop stress for three values of the gradation index n in the expression for the disk thickness.

Fig. 7. For fixed–free hollow rotating disk of constant thickness, thermal expansion coefficient and shear modulus, variations with the radius of (a) the radial stress and (b)
the hoop stress for three values of the gradation index m in the expression for the mass density.

Fig. 8. For free–free hollow rotating disk of constant thickness, mass density and shear modulus, variations with the radius of (a) the radial stress and (b) the hoop stress for
three values of the gradation index t in the expression for the thermal expansion coefficient.

726 G.J. Nie, R.C. Batra / Composite Structures 92 (2010) 720–729



Fig. 9. For a rotating solid disk with uniform thickness, mass density and thermal expansion coefficient, variations with the radius of (a) the radial stress and (b) the hoop
stress for three values of the gradation index b in the expression for the shear modulus.
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is nearly the same for the three values of k; a similar result was ob-
tained in [27] for a hollow circular FG cylinder.

When h(r) is a power-law function of r, stresses exhibited in
Fig. 3a and b reveal that with an increase in the value of n from
�1 to 1 the point where the peak radial stress occurs moves
away from the inner surface of the hollow disk, and the maxi-
mum value of �rhh at a point on the inner surface decreases.
The effect of varying the mass density in the radial direction is
qualitatively similar to that of changing the disk thickness; cf.
Fig. 4a and b.

We have displayed in Fig. 5a and b stresses vs. the radius for a
hollow disk with the inner surface fixed, the outer surface traction
free and G(r) a power-law function of r. The stress distributions are
Table 1
Comparison of stresses in the solid disk from two methods.

R DQM solution Exact

N = 7 N = 11 N = 21

Hoop stress 0.0 0.369432 0.369432 0.369432 0.369432
0.5 0.359161 0.359161 0.359161 0.359161
1.0 0.193692 0.193692 0.193692 0.193692

Radial stress 0.5 0.293146 0.293146 0.293146 0.293146

Fig. 10. For a rotating solid disk with uniform thickness, mass density and thermal exp
radial displacement with the radius for different values of the gradation parameter g in
qualitatively similar for k = �1, 0, 1 with the maximum radial
stress occurring at a point on the inner fixed surface and the max-
imum hoop stress at a point inside the disk. The hoop stress at
r = 0.45rou is nearly the same for the three values of k. The compar-
ison of stress distributions in Figs. 2 and 5 reveals that fixing the
inner surface of the disk considerably reduces the peak hoop stress
but increases the maximum radial stress. The maximum radial
stress at a point on the inner surface of the fixed–free disk in
Fig. 6a for n = �1 is nearly 7.8 times of that for n = 1 and the two
values of the maximum hoop stress in Fig. 6b differ by a factor of
about 3.5. Note that for n = �1 and 1, the disk thickness is mini-
mum and maximum, respectively, at its inner surface. From plots
of stresses in Fig. 7 we conclude that changes in the mass density
have less dramatic effect on the peak radial and hoop stresses as
compared to those in the disk thickness. For example, the ratio of
the peak hoop stresses for m = 1 and �1 is about 2. For a fixed–free
hollow disk, the maximum radial stress is greater than the maxi-
mum hoop stress but the reverse holds for a free–free hollow disk.
Both for the free–free and the fixed–free disks, the maximum
stresses for k = �1, m = �1 or n = �1 are more than those for a
homogeneous disk. Thus an improper gradation of material or geo-
metric parameters may enhance peak stresses rather than reduce
them.
ansion coefficient, variations of (a) the radial stress, (b) the hoop stress, and (c) the
Eq. (49) for the shear modulus.



Fig. 11. For a free–free hollow rotating disk with uniform thickness, thermal
expansion coefficient and density, the required variation of the shear modulus
along the radial direction for achieving three different states of stress.

Fig. 13. For a free–free hollow rotating disk with uniform thickness, shear modulus
and density, the required variation of the thermal expansion coefficient along the
radial direction for achieving three different states of stress.
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As expected, results depicted in Fig. 8 reveal that no thermal
stresses are induced in the uniformly heated homogeneous disk
with the inner and the outer surfaces traction free. However, when
the coefficient of thermal expansion varies in the radial direction,
the radial stress is tensile when the gradation index t > 0 and is
compressive for t < 0. The maximum magnitude of the hoop stress
occurs at a point on the inner surface of the disk and signs of the
hoop stresses at points on the inner and the outer surfaces of the
disk are opposite of each other. These results agree qualitatively
with those reported in [39].

Example 2. Solid disk with exponential variation of the shear
modulus but constant mass density, thermal expansion coefficient
and disk thickness

The non-dimensional radial stress �rrr and hoop stress �rhh for a
solid disk with b = �1, 0, 1 in Eq. (22) are calculated from the ana-
lytical expressions given in Section 3.2, and are exhibited in Fig. 9;
results for b = 0 are for a homogeneous disk. These results evince
that the exponential variation of the shear modulus does not
change the stress distribution dramatically when b is varied from
�1 to 1.

For b = 1 stresses in the solid disk are also calculated with the
DQM using uniform spacing of sampling points with point 1 lo-
cated at the disk center, and are compared in Table 1 with those
obtained from the analytical solution. At point 1, boundary condi-
tion (36) replaces Eq. (32) and U(R) is not singular at R = 0. It is
clear that, at least for this problem, results from the DQM agree
well with those from the exact solution and the number of sam-
pling points has very little effect on the results.

Example 3. Solid disk of constant mass density, thermal expansion
coefficient and thickness but the shear modulus a function of the
radius.
Fig. 12. For a free–free hollow rotating disk with constant thermal expansion coefficien
different states of stress with (a) constant mass density but linearly varying thickness (m =
n = 0).
For a solid disk of uniform mass density, thermal expansion coeffi-
cient and thickness, and the shear modulus given by

GðrÞ ¼ G0ð1þ gr2=r2
ouÞ; ð49Þ

we have used the DQM to analyze the problem. The variation in
the radial direction of �rrr , �rhh and the non-dimensional radial dis-
placement Ur for two values of g are exhibited in Fig. 10; results
for g = 0 are for a homogeneous disk; and those for g = 2.5 have
been computed by taking eleven uniformly spaced points in
[0, 1]. These results evince that the radial and the hoop stresses
at the disk center are reduced by 20% when g in Eq. (49) is chan-
ged from 0 to 2.5. For g = 2.5, the hoop stress is nearly uniform
over the inner half of the disk implying that the material strength
is fully utilized. The radial displacement of a point on the outer
surface of the FG disk is nearly one-half of that for the identical
homogeneous disk.

5.2. Material tailoring

Example 4. Material tailoring for a free–free hollow disk of
variable mass density and thickness.

For a free–free hollow disk with rin/rou = 0.2 rotating at a con-
stant angular velocity with either constant thickness and mass
density or the mass density and the disk thickness varying linearly
in the radial direction, we have plotted in Figs. 11–13 the required
radial variation of the shear modulus or the thermal expansion
coefficient to have either the hoop stress or the sum of the radial
and the hoop stresses or the in-plane shear stress constant. It is
clear that for each case, the shear modulus and thermal expansion
coefficient vary smoothly with the radius. Whereas the shear mod-
ulus is an increasing function of the radius, the thermal expansion
coefficient is a decreasing function of the radius to achieve the
same desirable stress distribution in the disk. The ratio of the shear
t, the variation of the shear modulus along the radial direction for achieving three
0 and n = 1) and (b) linearly varying mass density but constant thickness (m = 1 and
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modulus at points on the outer and the inner surfaces is about 7.5
and that of the thermal expansion coefficient is 0.8. For a thermo-
elastic problem, one can tailor the variation of either the shear
modulus or the thermal expansion coefficient to achieve a given
stress state in a uniformly heated rotating disk. We have not con-
sidered the case of tailoring both the shear modulus and the coef-
ficient of thermal expansion to achieve the desired stress state in
the disk.

6. Conclusions

For a rotating hollow circular disk with the thickness, the mass
density, the thermal expansion coefficient and the shear modulus
given by power-law functions of the radius, we have given exact
solutions for stresses, the hydrostatic pressure and the radial dis-
placement. The analytical solution is also provided for the case of
the shear modulus varying exponentially but constant disk thick-
ness, thermal expansion coefficient and mass density for both hol-
low and solid disks. When the shear modulus, thermal expansion
coefficient, mass density and the thickness of hollow or solid disks
are arbitrary smooth functions of the radius, the problem is solved
numerically by the differential quadrature method. It is found from
numerical results for some example problems that fixing the inner
surface of a hollow disk considerably reduces the peak hoop stress
but increases the maximum radial stress. For a fixed–free hollow
disk, the maximum radial stress is greater than the maximum hoop
stress but the reverse holds for a free–free hollow disk. Improper
gradation of the shear modulus, the disk thickness and the mass
density can increase the maximum radial and hoop stresses as
compared to their values for a homogeneous disk of constant thick-
ness. In a uniformly heated FG rotating disk, the radial stress is ten-
sile (compressive) if the thermal expansion coefficient increases
(decreases) with the radius, and the magnitude of the hoop stress
is maximum at a point on the inner surface of the disk.

We have also analyzed the material tailoring problem of finding
the radial variation of the shear modulus or the thermal expansion
coefficient to achieve a constant value of either the hoop stress or
the in-plane shear stress or a linear combination of the radial and
the hoop stresses. For a rotating annular disk, we present the expli-
cit expression for the variation of the thermal expansion coefficient
to achieve uniform hoop stress in the disk. For a rotating solid disk,
we give the exact expressions for the shear modulus and thermal
expansion coefficient as functions of the radius for the hoop stress
to be constant in the disk.

The present results should serve as benchmarks for comparison
with those computed using numerical algorithms.
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