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A layer-wise third order shear and normal deformable plate/shell theory (TSNDT) incorporating all geo-
metric nonlinearities is used to study finite transient deformations of a curved laminated beam composed
of a St. Venant–Kirchhoff material. In the TSNDT all displacement components of a point are expressed as
3rd order polynomials in the thickness coordinate in each layer while maintaining the displacement con-
tinuity across adjoining layers. No shear correction factor is used. Transverse shear and transverse normal
stresses are found from the computed displacement fields and the constitutive relation (i.e., no stress
recovery technique is employed). For the St. Venant–Kirchhoff material the strain energy density is a qua-
dratic function of the Green-St. Venant strain tensor appropriate for finite deformations. The software
based on the finite element method (FEM) capable of solving static and transient nonlinear problems
has been verified by using the method of manufactured solutions. Furthermore, results computed with
the TSNDT have been found to agree well with those obtained using the commercial software ABAQUS,
and C3D20 elements. Significant contributions of the work include developing a TSNDT considering all
geometric nonlinearities and a materially objective constitutive relation, using the method of manufac-
tured solutions to verify the numerical solution of transient nonlinear problems, and showing that results
from the plate theory agree well with those from the analysis of plane strain nonlinear problems using
the finite elasticity theory. Plate problems using the TSNDT can be analyzed with piecewise linear basis
functions in the FEM.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Laminated composite structures are widely used in aerospace,
automobile and marine industries. Numerous plate and shell theo-
ries have been developed to analyze deformations of these struc-
tures, e.g., see the review articles [1–3]. The classical plate and
shell theory (CPT) like the Kirchhoff thin plate theory does not cor-
rectly predict results when the plate is moderately thick and shear
deformations are not negligible. The first order shear deformable
plate theory (FSDT) such as the Reissner–Mindlin theory [4,5] con-
siders transverse shear deformations and gives good results for
moderately thick plates but it needs a shear correction factor and
the transverse shear and transverse normal stresses are generally
computed by using a stress recovery technique. Reddy and Liu
[6] proposed a higher-order shear deformable plate theory (HSDT)
in which the transverse deflection is independent of the thickness
coordinate, z, and the two in-plane displacement components have
terms of degree zero, one and three in z. Coefficients of these terms
are such that for infinitesimal deformations, the transverse shear
ll rights reserved.
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strains vanish on the top and the bottom surfaces of the plate; thus
boundary-value problems involving tangential loads on these
surfaces may not be properly studied.

For laminated plates, in order for the transverse shear and the
transverse normal stresses to be continuous across an interface be-
tween adjoining layers, the transverse shear and the transverse nor-
mal strains should, in general, be discontinuous. As pointed out by
Carrerra [1], Lekhnitskii [7] was the first to propose a Zig–Zag theory
that satisfied the continuity of the transverse shear and the trans-
verse normal stresses in a layered beam. Assuming a plane state of
stress, Lekhnitskii used the Airy stress function to satisfy equilib-
rium equations in each layer. Strains were derived from stresses
by using Hooke’s law and strain–displacement equations were inte-
grated for displacements to ensure the continuity of displacements
across interfaces between adjoining layers. Ren [8,9] extended Lekh-
nitskii’s theory to orthotropic and anisotropic plates, using this the-
ory Ren and Owen [10] studied vibrations and buckling of beams.
Ambartsumian [11] extended the Reissner–Mindlin plate theory to
layered anisotropic plates and shells. The assumed displacement
field in each layer involved transverse shear stresses in a layer and
unknown functions of displacements. Whitney [12] applied and ex-
tended Ambartsumian’s theory to anisotropic and symmetrical and
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Fig. 1. Schematic sketch of a curved beam.
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nonsymmetrical plates. Reissner [13] used a mixed variational prin-
ciple to derive the governing equations. The assumed stress and dis-
placement fields a priori satisfy the continuity of displacements and
transverse shear stresses across interfaces between adjoining layers.
Carrerra [1] has pointed out Koiter’s [14] recommendation (KR) that
effects of transverse shear and normal stresses be considered in a
plate/shell theory. Rybov [15,16] seems to be the first one to incor-
porate KR in a plate theory by assuming expressions for transverse
displacement and transverse shear stresses. Rassakazov [17]
adopted KR in plate and shell theories and analyzed analytically
and numerically linear and nonlinear problems. The reader is re-
ferred to Carrerra’s [1] review paper for a historical development
and details of various Zig–Zag theories.

Carrera [18,19] developed the equivalent single layer (ESL) and
layer-wise Zig- Zag plate theories based on Reissner’s work. Di Sci-
uva [20] proposed a through-the-thickness piece-wise linearly
varying displacement field which satisfies the continuity of surface
tractions between adjoining layers and the number of unknowns is
independent of the number of layers. Cho and Parmerter [21] gen-
eralized Di Sciuva’s work by superposing a cubic varying displace-
ment field on a zig–zag varying displacement field. Wu and Chen
[22] developed a higher order theory based on global–local super-
position technique that can accurately predict transverse shear
stresses directly from constitutive relations and displacement
fields found using the plate theory.

The transverse normal deformation becomes important when
the plate is either thick or differences in values of elastic constants
of materials of adjoining layers are large or major surfaces of the
plate are subjected to equal and opposite normal tractions or the
plate material is soft. A typical sandwich structure is composed
of stiff face sheets and a flexible core; thus elastic constants of
materials of the core and the face sheets vary significantly. In order
to ascertain damage and failure of sandwich structures, it is critical
that stresses be accurately found. One way to do so is to adopt the
KR and modify higher order plate or shell theories that do not con-
sider the transverse normal deformation and incorporate in them
effects of transverse deformations. Batra and Vidoli [23,24] used
the Reissner mixed variational principle to derive a Kth order plate
theory in which the three displacement components are assumed
to be complete polynomials of degree K in the thickness coordinate
z. They considered infinitesimal deformations of a piezoelectric
material in [23] and also analyzed deformations of a thick beam
due to tangential tractions; they studied wave propagation in an
orthotropic non-piezoelectric material in [24]. Other higher-order
plate theories have been deduced by Carrerra [1] and Demassi
[25] to cite a few. Carrerra [26] has reviewed various plate theories
for multi-layered anisotropic laminates. Vel and Batra [27–29]
used the Eshelby–Stroh formalism to analytically analyze static
deformations of laminated composites with each layer made of a
linear elastic material. This approach satisfies the KR and the con-
tinuity of surface tractions and displacements at interfaces be-
tween adjacent plies.

Sandwich structures with a soft core undergo large deforma-
tions for which geometric and material nonlinear effects should
be considered. Reddy [30], amongst others, studied deformations
of laminated composite plates with a layer-wise theory consider-
ing von Karman geometric nonlinearity. Dvorkin and Bathe [31]
studied large deformations of plates and shells using four-node
shell elements, and derived governing equations for incremental
displacements with the virtual work principle. Arciniega and
Reddy [32] used a first-order shell theory with seven parameters
including thickness stretching, nonlinear strain–displacement rela-
tions, three-dimensional constitutive relations, and higher-order
elements with Lagrange interpolations.

Here we use a materially objective constitutive relation to study
finite deformations of a curved laminated beam, and express
displacements in each layer by using the TSNDT ensuring that dis-
placements are continuous across the interface between two
adjoining layers, consider all nonlinear effects in strain–displace-
ment relations, and assume that each layer is made of a St. Ve-
nant–Kirchhoff material. For this material and with the reference
configuration stress free, the 2nd Piola–Kirchhoff stress tensor is
a linear function of the Green-St. Venant strain tensor and satisfies
the principle of material objectivity. We note that the expression
for the first Piola–Kirchhoff stress involves terms that are at least
cubic in displacement gradients and that for the Cauchy stress is
a ratio of polynomials in displacement gradients. The continuity
of surface tractions across an interface between two layers is
implicitly satisfied by assuming that the total work done by these
surface tractions in any virtual displacement is zero. We use the
method of manufactured solutions (e.g., see the material just be-
fore and after Eq. (20) of [33]) to verify that numerical solutions
of nonlinear problems solved herein are accurate. The present
zig–zag TSNDT does not exhibit locking effects, incorporates the
KR, and transverse shear and transverse normal stresses are com-
puted by using the 3-D constitutive relations and displacement
fields found using the plate theory; thus no stress recovery tech-
nique is employed.

The rest of the paper is organized as follows: In Section 2, we
summarize equations governing finite static and dynamic defor-
mations of a curved beam in orthogonal curvilinear coordinates.
The weak form of governing equations is derived in Section 3,
and details of the FEM to numerically solve the initial-boundary-
value problem are provided. The layer-wise TSNDT displacement
field for a laminated beam is briefly summarized in Section 4.
The method of manufactured solutions is used in Section 5 to verify
the developed software, and results for several example problems
are presented and discussed. Conclusions of this work are summa-
rized in Section 6.

2. Problem formulation

2.1. Kinematics

We study finite plane strain deformations of a curved beam of
rectangular cross-section; a schematic sketch of the beam is shown
in Fig. 1. Let y1, y2, y3 be orthogonal curvilinear coordinate axes in
the reference configuration with y1-axis along the tangent to the
mid-surface of the beam, y2-axis pointing into the plane of the
paper, and y3-axis pointing along the local thickness direction.
Let X1, X2, X3 be fixed rectangular Carstesian coordinate axes, and
the y2-axis be parallel to the x2- and X2- axes. Let position vectors,
with respect to fixed rectangular Cartesian coordinate axes, of a
point p located at (y1,y2,y3) in the reference configuration be x
and X in the current and the reference configurations, respectively.
The displacement u of point p is given by
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u ¼ x� X ð1Þ

where u2 = 0 , u1 = u1 (y1, y3, t), u2 = u2 (y1, y3, t), t is the time.
The components, Gij, of the metric tensor in the reference config-

uration are given by

Gij ¼ Ai � Aj; Ai ¼
@X
@yi

ð2Þ

For orthogonal curvilinear coordinate axes Gij is non-zero only when
i = j. Let

H1 ¼
ffiffiffiffiffiffiffiffi
G11

p
; H2 ¼

ffiffiffiffiffiffiffiffi
G22

p
¼ 1; H3 ¼

ffiffiffiffiffiffiffiffi
G33

p
¼ 1;

~ei ¼
Ai

HðiÞ
ðno sum on iÞ ð3Þ

Here ð~e1; ~e2; ~e3Þ are unit base vectors for the curvilinear coordinate
axes in the reference configuration. We note that

H1 ¼ 1þ y3

R

� �
;

@~e1

@y1
¼ �

~e3

R
;

@~e3

@y1
¼

~e1

R
ð4Þ

where R is the radius of curvature at the point (y1,y2,y3).
Following [34], physical components of the displacement gradi-

ent, F, are given by

½F� ¼

1þ 1
H1

@u1
@y1
þ u3

R

� �
0 @u1

@y3

0 1 0

1
H1

@u3
@y1
� u1

R

� �
0 1þ @u3

@y3

2
66664

3
77775 ð5Þ

The Green-St. Venant strain tensor, E, defined by

E ¼ 1
2
ðFT F � 1Þ ð6Þ

where 1 is the identity tensor, has the following non-zero physical
components:

E11¼
1

H1

@u1

@y1
þu3

R

� �
þ 1

2H2
1
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@y1
þu3

R

� �2

þ @u3

@y1
�u1

R
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E33¼
@u3

@y3
þ1

2
@u1

@y3

� �2

þ @u3

@y3

� �2
" #

2E13¼
1

H1

@u3

@y1
�u1

R

� �
þ@u1

@y3
þ 1

H1

@u3

@y3

@u3

@y1
�u1

R

� �
þ@u1
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@u1
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þu3

R

� �� �
ð7Þ

We note that E incorporates all geometric nonlinearities including the
von Karman nonlinearity, and is valid for finite (or large) deformations
of a beam. The strain tensor for infinitesimal deformations is obtained
from Eq. (7) by neglecting the nonlinear terms included in brackets.

Recalling that beam’s dimension along the y3- (or the z-) axis is
considerably smaller than that along the y1-axis, we assume the
following 3rd order Taylor series expansion in y3 for u1 and u3:

u1ðy1; y3; tÞ ¼
X3

i¼0

ðy3Þ
iu1iðy1; tÞ ¼ Liðy3Þu1iðy1; tÞ ð8:aÞ

u3ðy1; y3; tÞ ¼
X3

i¼0

ðy3Þ
iu3iðy1; tÞ ¼ Liðy3Þu3iðy1; tÞ ð8:bÞ

Ljðy3Þ ¼ ðy3Þ
j
; j ¼ 0;1;2;3 ð8:cÞ

L0jðy3Þ ¼ DjiLiðy3Þ ðsummed on i; i; j ¼ 0;1;2;3Þ ð8:dÞ

½D� ¼

0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0

2
6664

3
7775 ð8:eÞ
Here and below a repeated index implies summation over the range
of the index, and a repeated index enclosed in parentheses does not
imply summation. In Eq. (8), u10 and u30 are, respectively, the axial
and the transverse displacements of a point on beam’s mid-surface,
u1i and u3i(i = 1, 2, 3) may be interpreted as generalized axial and
transverse displacements of a point. The first subscript on u corre-
sponds to the displacement direction, and the second subscript to
the power of y3. For u10 = u12 = u13 = u31 = u32 = u33 = 0, we get the
Euler–Bernoulli beam theory when u11 ¼ � @u30

@y1
and the Timoshenko

beam theory when u11 is an arbitrary function of y1 and time t. The
displacement field (8) is a special case of the Kth order displace-
ment field considered, amongst others, by Batra and Vidoli
[23,24], Carerra [1], Lo et al. [35], and Cho et al. [36]. We call the
beam theory based on Eq. (8) as the third-order shear and normal
deformable theory (TSNDT). Note that it accounts for the transverse
normal strain and does not assume the transverse shear strain at
the top and the bottom surfaces to be zero. Substitution for u1

and u3 from Eq. (8) into Eqs. (5) and (7) gives the following expres-
sions for physical components of deformation gradient F and non-
zero physical components of the Green-St. Venant strain tensor E:
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R
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R
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1
2
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2E13 ¼ Lj
1
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LiLj Dbiu3b
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where indices i, j, b, d, l = 0, 1, 2, 3, and summation on repeated indi-
ces is implied. We note that expressions for E11, E33 and E13 have
terms of order 6, 4 and 5, respectively, in y3. Eq. (9) can be written
in the index notation as follows:

Fma ¼ dma þ
1

HðaÞ
Lbeb

ma ð10:aÞ

Eab ¼
1
2

Lb
1

HðbÞ
eb
ab þ

1
HðaÞ

eb
ba

� �
þ LbLd

1
HðaÞHðbÞ

gbd
ab

� �
ð10:bÞ

gbd
ab ¼ eb

iaed
ib ð10:cÞ

Here indices b, d = 0,1,2,3 and the other indices take values 1 and
3,dma is the Kronecker delta, and the repeated index enclosed in
parentheses is not summed. The non-zero components of ej

ab are
listed below.

ej
11 ¼

@u1j

@y1
þ u3j

R
; ej

13 ¼ Dbju1b; ej
31 ¼

@u3j

@y1
� u1j

R
;

ej
33 ¼ Dbju3b; j; b ¼ 0;1;2;3 ð11Þ
2.2. Kinetics

The in-plane displacements (u1,u3) of a point are governed by
the following equations expressing the balance of linear momen-
tum written in the Lagrangian description of motion using physical
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components T11, T13, T31, T33, of the first Piola–Kirchhoff stress
tensor [34], and initial and boundary conditions.

q0€u1 ¼
1

H1

@T11

@y1
þ 1

H1

@ðH1T13Þ
@y3

þ 1
H1R

T31 þ f1 ð12:aÞ

q0€u3 ¼
1

H1

@T31

@y1
þ 1

H1

@ðH1T33Þ
@y3

� 1
H1R

T11 þ f3 ð12:bÞ

uiðy1; y3;0Þ ¼ u0
i ðy1; y3Þ ð12:cÞ

_uiðy1; y3;0Þ ¼ _u0
i ðy1; y3Þ ð12:dÞ

TijNj ¼ �tiðy1; y3; tÞ on Ct ð12:eÞ
uiðy1; y3; tÞ ¼ �uiðy1; y3; tÞ on Cu ð12:fÞ

Here i and j equal 1 and 3. In Eq. (12) f1 and f3 are components of the
body force per unit reference volume along the y1- and the y3- axes,
respectively, q0 is the mass density in the reference configuration,
and €ui ¼ @2ui

@t2 . The initial displacement u0
i and the initial velocity _u0

i

are known functions of y1 and y3. Furthermore, N is a unit outward
normal in the reference configuration at a point on the boundary Ct

where surface tractions are prescribed as �ti. On the remaining
boundary, Cu, displacements are prescribed as �ui.

Let xa(y1,y3)(a = 1, 3) be smooth functions that vanish on Cu.
We multiply both sides of Eqs. (12.a) and (12.b) with x1 and x3,
respectively, and integrate the resulting equations over the domain
to obtain the following.

Z L

0

Z H=2

�H=2
x1q0€u1H1dy3dy1 ¼

Z L

0

Z H=2

�H=2
x1

� @T11

@y1
þ @ðH1T13Þ

@y3
þ 1

R
T31 þ H1f1

� �
dy3dy1

Z L

0

Z H=2

�H=2
x3q0€u3H1dy3dy1 ¼

Z L

0

Z H=2

�H=2
x3

� @T31

@y1
þ @ðH1T33Þ

@y3
� 1

R
T11 þ H1f3

� �
dy3dy1 ð13Þ

In Eq. (13), H and L are the thickness and the length of the beam,
respectively. Recalling that functions x1, x3, u1 and u3 do not de-
pend upon y2, the integration with respect to y2 has been carried
out in Eq. (13) and the common factor (i.e., the width) has been
canceled out.

As for ua(y1,y3) in Eq. (8), we write xa (y1,y3) as

xaðy1; y3Þ ¼ Ljðy3Þxj
aðy1Þ; a ¼ 1;3; j ¼ 0;1;2;3 ð14Þ

Substituting from Eq. (14) into Eq. (13) and integrating with respect
to y3, we getZ L

0
xj

1ðAji€u1iÞdy1 ¼
Z L

0
xj

1
@Mj

11

@y1
� DjiM

i
13 þ

1
R

Mj
31 þ �f j

1 þ Bj
13

 !
dy1

Z L

0
xj

3ðAji€u3iÞdy1 ¼
Z L

0
xj

3
@Mj

31

@y1
� DjiM

i
33 �

1
R

Mj
11 þ �f j

3 þ Bj
33

 !
dy1

ð15Þ

where

Mj
mnðy1; tÞ ¼

Z H=2

�H=2
Ljðy3ÞTmnHðnÞdy3; Hð1Þ ¼ 1; Hð3Þ ¼ H1 ð16:aÞ

Bj
13ðy1; tÞ ¼ LjðH=2ÞH1T13ðH=2; tÞ � Ljð�H=2ÞH1T13ð�H=2; tÞ ð16:bÞ

Bj
33ðy1; tÞ ¼ LjðH=2ÞH1T33ðH=2; tÞ � Ljð�H=2ÞH1T33ð�H=2; tÞ ð16:cÞ

�f j
aðy1; tÞ ¼

Z H=2

�H=2
Ljðy3ÞfaH1dy3 ð16:dÞ

Ajiðy1; tÞ ¼
Z H=2

�H=2
Ljðy3ÞLiðy3Þq0H1dy3 ð16:eÞ
and indices m, n, a = 1, 3, and i, j = 0, 1, 2, 3. The quantity Mj
mn equals

jth order moment of the stress Tmn about the y2-axis; M0
mn is usually

called the resultant force, and M1
mn the bending moment. The quan-

tities Bj
13 and Bj

33 equal jth order moments about the y2-axis of the
tangential surface traction T13 and the normal surface traction T33

applied on the top and the bottom surfaces of the beam; for j = 0
these equal the resultant forces and for j = 1 their first-order mo-
ments about the y2-axis. Similarly, �f j

a equals jth order moment of
the body force fa about the y2-axis, and Aji the inertia tensor associ-
ated with the generalized displacements u1i and u3i.

Requiring Eq. (15) to hold for all choices of xj
a, we obtain follow-

ing eight equations governing transient deformations of the beam.

Aji€u1i ¼
@Mj

11

@y1
� DjiM

i
13 þ

1
R

Mj
31 þ �f j

1 þ Bj
13; j; i ¼ 0;1;2;3 ð17:aÞ

Aji€u3i ¼
@Mj

31

@y1
� DjiM

i
33 �

1
R

Mj
11 þ �f j

3 þ Bj
33; j; i ¼ 0;1;2;3 ð17:bÞ

After expressions for moments Mj
mn in terms of displacements have

been substituted in Eq. (17), we obtain ‘‘governing equations of mo-
tion’’ for the present shell theory which are nonlinear coupled partial
differential equations (PDEs) for u1j and u3j. These PDEs involve sec-
ond-order derivatives of u1j and u3j with respect to y1 and time t
and are to be solved under pertinent initial and boundary conditions.

The traction boundary conditions in Eq. (12.e) on the major sur-
faces (i.e., the top and the bottom) of the beam have been incorpo-
rated in Eq. (17); e.g., see Eqs. (16.b) and (16.c). At the beam edges,
y1 ¼ 0; y1 ¼ L, we specify a suitable combination of u1j, u3j and Mj

a1

given byZ H=2

�H=2
LjTa1dy3 ¼ Mj

a1; a ¼ 1;3; j ¼ 0;1;2;3 ð18Þ

We substitute from Eq. (8) into Eqs. (12.c) and (12.d), multiply both
sides of the resulting equations with q0Lj(y3), and integrate with re-
spect to y3 on the domain (�H/2,H/2) to obtain the following equa-
tions from which initial values uai (y1,0) and _uaiðy1;0Þ are
determined.

Ajiuaiðy1;0Þ ¼
Z H=2

�H=2
q0Ljðy3Þu0

aðy1; y3Þdy3 ¼ F ajðy1Þ ð19:aÞ

Aji _uaiðy1;0Þ ¼
Z H=2

�H=2
q0Ljðy3Þ _u0

aðy1; y3Þdy3 ¼ _F ajðy1Þ ð19:bÞ

Here a = 1,3 and i, j = 0, 1, 2, 3.

2.3. Constitutive relation

We assume that the beam material is St. Venant–Kirchhoff for
which the strain energy density, W, per unit reference volume is gi-
ven by

W ¼ 1
2

EmnCmnabEab; Cmnab ¼ Cabmn ¼ Cnmab ð20Þ

Here C is the fourth-order elasticity tensor having 21 independent
components for a general anisotropic material. The independent
components of C reduce to 9, 5 and 2 for an orthotropic, trans-
versely isotropic and isotropic material, respectively. The strain
energy density for the St. Venant–Kirchhoff material reduces to that
of a Hookean material if the finite strain tensor E is replaced in Eq.
(20) by the strain tensor ej

ab for infinitesimal deformations. Batra
[37] has compared the response of four elastic materials for which
a stress tensor is a linear function of an appropriate finite strain ten-
sor (e.g., the Cauchy stress tensor is a linear function of the Alman-
si–Hamel strain tensor). For infinitesimal deformations the four
constitutive relations give the same stress–strain curve, but their
predictions for finite deformations are quite different.
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For a nonlinear elastic material, physical components of the sec-
ond Piola–Kirchhoff stress tensor S are related to those of E by

Smn ¼
@W
@Emn

ð21Þ

Eqs. (20) and (21) give

Smn ¼ CmnabEab ð22Þ

For plane strain deformations of an orthotropic material with the
material principal axes coincident with the coordinate axes
(y1,y2,y3), Eq. (22) reduces to

S11

S33

S13

8><
>:

9>=
>; ¼

C1111 C1133 0
C3311 C3333 0

0 0 C1313

2
64

3
75

E11

E33

2E13

8><
>:

9>=
>; ð23Þ

Recalling that

T ¼ FS ð24Þ

where T is the 1st Piola–Kirchhoff stress tensor, we get

T11 T13

T31 T33

� �
¼

F11S11 þ F13S13 F11S13 þ F13S33

F31S11 þ F33S13 F31S13 þ F33S33

� �
ð25Þ

Substitution for F from Eq. (10.a) into Eq. (25), and for E from Eq.
(10.b) into Eq. (23) and the result into Eq. (25) gives expressions
for T in terms of generalized displacements u1i and u3i and four elas-
tic constants C1111, C1133, C3333, and C1313. It can be written as

Tmn ¼
1
2

dma þ
1

HðaÞ
Liei

ma

� �
Canab

� Lb
1

HðbÞ
eb
ab þ

1
HðaÞ

eb
ba

� �
þ LbLd

1
HðaÞHðbÞ

gbd
ab

� �
ð26Þ

Here, indices i, b, d = 0, 1, 2, 3 and other indices take values 1 and 3.
Even though components of S are quadratic in displacement gradi-
ents those of T are cubic in displacement gradients. Thus constitu-
tive relation (24) accounts for material nonlinearities in the sense
that components of T are nonlinear functions of displacement gra-
dients. We note that constitutive relations (21) and (24) are mate-
rially objective and are invariant under a rigid body motion
superimposed upon the present configuration.

Substituting from Eq. (26) into Eq. (16.a), we obtain

Mj
mn ¼

Z H=2

�H=2
Ljðy3ÞTmnHðnÞdy3 ¼

1
2

C1jb
anabdmaeb

ab þ C2jb
anabdmaeb

ba

h
þC3jbd

anabdmagbd
ab þ C4jib

anabei
maeb

ab þ C5jib
anabei

maeb
ba þ C6jibd

anabei
mag

bd
ab

i
ð27Þ

where

C1jb
anab ¼

Z H=2

�H=2
LjLbCanab

HðnÞ
HðbÞ

dy3; C2jb
anab ¼

Z H=2

�H=2
LjLbCanab

HðnÞ
HðaÞ

dy3

C3jbd
anab ¼

Z H=2

�H=2
LjLbLdCanab

HðnÞ
HðaÞHðbÞ

dy3;C
4jib
anab ¼

Z H=2

� H=2
LjLiLbCanab

HðnÞ
HðaÞHðbÞ

dy3

C5jib
anab ¼

Z H=2

�H=2
LjLiLbCanab

HðnÞ
HðaÞHðaÞ

dy3; C6jibd
anab ¼

Z H=2

� H=2
LjLiLbLdCanab

HðnÞ
HðaÞHðaÞHðbÞ

dy3

ð28Þ

Here, indices i, j, b, d = 0, 1, 2, 3 and other indices take values 1 and
3. The non-zero terms of Mj

mn for a beam are listed in Appendix A.
The true stress or the Cauchy stress, r, is related to the 1st Pio-

la–Kirchhoff stress by

r ¼ 1
J

TFT ; ð29Þ

where J is the determinant of the deformation gradient F.
We are unable to analytically solve the above formulated non-

linear problem; thus we analyze it numerically.
3. Numerical solution

3.1. Weak formulation

Let Hj
1 and Hj

3 be smooth functions of y1�½0;L�. We take the in-
ner product of both sides of Eqs. (17.a) and (17.b) with Hj

1 and Hj
3,

respectively, integrate the resulting equations with respect to y1 on
½0;L�, and then integrate by parts to arrive at the following
equations:
Z L

0
Hj

1ðAji €u1iÞdy1 ¼
Z L

0
�@H

j
1

@y1
Mj

11þHj
1

1
R

Mj
31þ�f j

1þBj
13�DjiM

i
13

� � !

dy1Bj
11

Z L

0
Hj

3ðAji €u3iÞdy1

¼
Z L

0
�@H

j
3

@y1
Mj

31þHj
3

�f j
3þBj

33�DjiM
i
33�

1
R

Mj
11

� � !
dy1þBj

31

ð30Þ

where

Bj
11 ¼ Hj

1ðLÞM
j
11ðLÞ �Hj

1ð0ÞM
j
11ð0Þ;

Bj
31 ¼ Hj

3ðLÞM
j
31ðLÞ �Hj

3ð0ÞM
j
31ð0Þ ð31Þ

Here indices i, j = 0, 1, 2, 3. If one thinks of Hj
1 and Hj

3 as virtual dis-
placements that vanish at boundary points where displacements
are prescribed, then Eq. (30) states the principle of virtual work.
Alternatively, Eq. (30) expresses a weak formulation of the problem
since it involves first-order derivatives of u1 and u3 with respect to
y1 whereas the PDEs (17) have second-order derivatives of u1 and u3

with respect to y1. Since T11, T13, T31 and T33 are nonlinear functions
of displacement gradients, Eq. (30) is nonlinear in u1 and u3.

3.2. Derivation of ordinary differential equations

We discretize the curve along the y1-axis into one-dimensional
finite elements (FEs) of not necessarily the same length. Let there
be N nodes on this curve and W1(y1), W2(y1), . . . , WN(y1) be the
FE basis functions. We write

uajðy1; tÞ ¼
XN

i¼1

Wiðy1Þ~daijðtÞ; j ¼ 0;1;2;3; a ¼ 1;3: ð32Þ

Substitution from Eq. (32) into Eq. (8) gives

uaðy1; y3; tÞ ¼
X3

j¼0

Ljðy3Þ
XN

i¼1

Wiðy1Þ~daijð tÞ; j ¼ 0;1;2;3; a ¼ 1;3

ð33Þ

Thus for N nodes along the y1-axis with node 1 at y1 = 0, we have
8 N unknown functions ~daijðtÞ;a ¼ 1;3; i ¼ 1;2; . . . ;N; j ¼ 0;1;2;3.
We write these as the 8 N-dimensional vector d(t), and the displace-
ment field uaj(y1, t) as 8-dimensional vector ~uðy1; tÞ. These can be
written as

f~uðy1; tÞg ¼ ½;ðy1Þ�fdðtÞg
f~uðy1; tÞg ¼ fu10 u11 u12 u13 u30 u31 u32 u33gT ð34Þ

where [;] is 8 � 8 N matrix and {d} is 8 N � 1 matrix. In index nota-
tion, Eq. (34) becomes

~ubðy1; tÞ ¼ ;bjðy1ÞdjðtÞ; b ¼ 1;2; . . . ;8; j ¼ 1;2; . . . ;8N ð35Þ

We can also write the displacement fields u1(y1,y3, t) and u3(y1,y3, t) as

u1ðy1; y3; tÞ
u3ðy1; y3; tÞ

	 

¼ ½uðy3Þ�½;ðy1Þ�fdðtÞg ¼ ½Uðy1; y3Þ�fdðtÞg ð36Þ

where [u(y3)] is 2 � 8 matrix, [; (y1)] is 8 � 8 N matrix and [U] is
2 � 8 N matrix.
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We use the Galerkin formulation and take the same basis func-
tions for the test functions Hj

1;H
j
3 as those for the trial solutions

u1j, u3j; e.g., see Eq. (32). That is

Hj
aðy1Þ ¼

XN

i¼1

Wiðy1Þc
j
ai; a ¼ 1;3; j ¼ 0;1;2;3 ð37Þ

where cj
ai are constants.

Substitution from Eqs. (35) and (37) into Eq. (30) and requiring
that the resulting equations hold for all values of constants cj

ai gives
the following set of coupled nonlinear ordinary differential equa-
tions (ODEs).

M€d ¼ Fext � F intðdÞ; ð38Þ

where

M ¼
Z L

0
½;ðy1Þ�

T½A�½;ðy1Þ�dy1; ½A� ¼
A 0
0 A

� �

Fext ¼
Z L

0
½;ðy1Þ�

T
vec �f j

1 þ Bj
13

� �
vec �f j

3 þ Bj
33

� �
8><
>:

9>=
>;dy1 þ ½;ðLÞ�

T
vec Mj

11ðLÞ
� �

vec Mj
31ðLÞ

� �
8><
>:

9>=
>;

� ½;ð0Þ�T
vec Mj

11ð0Þ
� �

vec Mj
31ð0Þ

� �
8><
>:

9>=
>;

F int ¼
Z L

0
½BL1�T vec Mj

11

� �
vec Mj

31

� �
vec DjiM

i
13� 1

R Mj
31

� �
vec DjiM

i
33þ 1

RMj
11

� �n oT
dy1

½BL1� ¼

diag @
@y1

� �
0

0 diag @
@y1

� �
diagð1Þ 0

0 diagð1Þ

2
666664

3
777775½;ðy1Þ�; diagðfÞ¼diagonalff f f fg

ð39Þ

diagðf jÞ ¼ diagonalðf0 f1 f2 f3Þ;vecðf jÞ ¼ ff0 f1 f2 f3g

Here M = MT is the consistent mass matrix, Fext represents the gen-
eralized 8 N-dimensional nodal force (Fext is 8 N � 1 matrix) equiv-
alent to the externally applied surface tractions on boundaries and
the body force (e.g., gravity). The 8 N-dimensional vector Fint repre-
sents forces due to internal stresses, and is a nonlinear function of
the generalized nodal displacement d since stresses T11, T13, T31

and T33 are nonlinear functions of u1 and u3. However, the weak for-
mulation involves only first-order derivatives of generalized dis-
placements. Thus lower order basis functions can be used to
numerically analyze the problem. For example, for plates made of
linear elastic materials, Qian et al. [38,44–49], Xiao et al. [39,50–
52] and Batra and Aimmanee [53] have used, respectively, basis
functions derived by the moving least squares approximation, radial
basis functions in meshless methods and the finite element method
to study transient deformations of thick plates using Kth order
shear and normal deformable plate theory. Here we consider mate-
rial and geometric nonlinearities and use the TSNDT.

We now find initial values of d(0) from u (y1,y3,0). Substituting
time t = 0 in Eq. (36) and using Eq. (12.c) we get

u1ðy1; y3;0Þ
u3ðy1; y3;0Þ

	 

¼ ½Uðy1; y3Þ�fdð0Þg ¼

u0
1ðy1; y3Þ

u0
3ðy1; y3Þ

( )
ð40Þ

Premultiplying both sides of Eq. (40) by q0[U]T(y1,y3) and integrat-
ing the result over X0 yield

Md0 ¼ F0; d0 ¼ dð0Þ; F0 ¼
Z

X0

q0½U�
T u0

1

u0
3

( )
H1dy1dy3 ð41Þ
The solution of Eq. (41) gives d0. We follow a similar procedure to
find _d0. The natural boundary conditions (12.e) are included in Eq.
(17). The essential boundary conditions (12.f) in terms of ~daijðtÞ
are satisfied during the solution of Eq. (38).

If the edge, y1 = 0, of the beam is simply supported, clamped or
free, boundary conditions there are, respectively, given by
Eqs. (42–44).

~d31jð0; tÞ ¼ 0; j ¼ 0;1;2;3; Mj
11ð0; tÞ ¼ 0; j ¼ 0;1;2;3;

ð42:a;b; cÞ

~da1jðtÞ ¼ 0; j ¼ 0;1;2;3; a ¼ 1;3; ð43Þ

Mj
11ð0; tÞ ¼ 0; Mj

31ð0; tÞ ¼ 0; j ¼ 0;1;2;3: ð44Þ

That is, at a simply supported edge the transverse displacement and
moments about the y2-axis of tractions due to T11 of orders 0
through 3 vanish. The boundary condition (42.b) eliminates rigid
body translation in the y1-direction and is needed only if the other
edge is either simply supported or free. At a clamped edge both the
axial and the transverse displacements identically vanish. At a free
edge, moments about the y2-axis of orders 0 through 3 of tractions
due to T11 and the transverse shear forces due to T31 vanish.

We note that the FE formulations for the Euler–Bernoulli and the
Timoshenko beam theories involve two unknowns at a node,
namely, the transverse displacement and the slope. Here, at a node
we have eight unknowns which may be associated with the dis-
placement, the slope, the curvature, and the curvature gradient.
The anticipated benefit of considering more unknowns at a node is
improved solution for the transverse normal, the transverse shear
and axial deformations of the beam. For a continuous elastodynamic
problem, there are two unknowns at a node. Thus the numbers of de-
grees of freedom for the TSNDT and the 2-D elasticity problem would
be the same if we take four nodes in the y3-direction for the elasticity
problem. The main benefit of using the TSNDT is savings in not
generating a 2-D FE mesh. In the continuous problem one can
approximate displacements in the y3-direction either with piece-
wise affine functions or piecewise quadratic functions or a cubic
polynomial; the last case corresponds to the displacement field as-
sumed in the TSNDT. Through numerical experiments, we will show
in Section 5 that even for thick beams the TSNDT gives as accurate
results as those obtained from the analysis of the continuum
problem.

3.3. Solution of nonlinear ODEs

We use the conditionally stable central-difference method to
integrate the coupled nonlinear ODEs (38). That is, with the
notation

dnþ1 ¼ dðtnþ1Þ; ð45Þ

we have

dnþ1 ¼ dn þ Dt _dn þ Dt2

2
€dn;

€dnþ1 ¼M�1½Fextðtnþ1Þ � F intðdnþ1Þ� ð46:a;bÞ

_dnþ1 ¼ _dn þ Dt
2
ð€dnþ1 þ €dnÞ ð46:cÞ

The critical time step size to compute a stable solution is deter-
mined by finding the maximum frequency, xmax, of free vibrations
and taking Dt 6 Dtcrit, Dtcrit = 2/xmax. Ideally, xmax should be found
after every time step since frequencies of a structure change as it is
deformed. The accuracy of the solution can be improved by taking
Dt� D tcrit but at the cost of increasing the computational time.



Fig. 2. Cross-section of a 3-layer beam.

Fig. 3. Schematic sketch of the problem studied.

Table 1
Comparison of beam centroid deflection w L

2 ; 0
� 


(82 uniform elements with piecewise
linear basis functions used to compute results with the TSNDT).

L/H 4 10 20 50 100

TSNDT 2.886 0.9312 0.6170 0.5268 0.5138
Elasticity 2.887 0.9316 0.6173 0.5270 0.5140
Difference (%) 0.0346 0.0429 0.0486 0.0380 0.0389
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Results presented in Section 5 have been computed with a con-
sistent mass matrix and Dt = 0.9Dtcrit for a linear problem but
Dt = 0.5Dtcrit for a nonlinear problem. For the nonlinear problems,
xmax found from analyzing frequencies of the undeformed beam is
used to ascertain Dtcrit.

For a static problem, we use the modified Newton–Raphson
method. That is, we iteratively solve

F intðdÞ ¼ Fext; ð47Þ

by first writing it as

KDd ¼ �ðF intð�dÞ � FextÞ; K ¼ @F int

@d

�����
d¼�d

; d ¼ �dþ Dd ð48:aÞ

K ¼
Z L

0
q0½BL1�T ½Q�½j�½BL2�dy1 ð48:bÞ

½BL2� ¼

diag @
@y1

� �
diag 1

R

� 

0 DT

DT 0
diag 1

R

� 

diag @

@y1

� �

2
666664

3
777775½;ðy1Þ� ð48:cÞ

½j� ¼

j11 j12 j13 j14

j21 j22 j23 j24

j31 j32 j33 j34

j41 j42 j43 j44

2
6664

3
7775; ½Q� ¼

Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44

2
6664

3
7775
ð48:dÞ

Here each term of [j] and ½Q� like j11;Q11 etc. is 4 � 4 matrix. The
non-zero terms of ½Q� are

Q
jb
11 ¼ djb; Q

jb
23 ¼ djb; Q

jb
33 ¼ Djb; Q

jb
34 ¼ �

1
R

djb;

Q
jb
42 ¼ Djb; Q

jb
41 ¼

1
R

djb ð49Þ

Here j, b = 0, 1, 2, 3, Djb is specified in Eq. (8.e). Expressions for
elements of [j] are listed in Appendix B.

The iterative process is terminated when the norm of the
residual load vector, R, defined by

R ¼ F intðdÞ � Fext; R ¼ maxðjRjÞN=SumðjFextjÞ ð50:a;bÞ

is less than the prescribed value. During a given load step the stiff-
ness matrix is evaluated only at the start of the load step. In Eq. (50)
N equals the number of degrees of freedom.

4. Curved laminated beam

For simplicity we consider a 3-layer curved laminated beam,
and denote displacements of a point in the top, the central, and
the bottom layers by superscripts t, c and b, respectively. With
the origin of the curvilinear coordinate axes located at the geomet-
ric centroid of the rectangular cross-section (e.g., see Fig. 2), we as-
sume the following displacement field in the beam.

uc
aðy1; y3; tÞ ¼

X3

i¼0

ðy3Þ
ilc
aiðy1; tÞ; a ¼ 1;3; jy3j 6 Hc ð51:aÞ

ut
aðy1; y3; tÞ ¼ uc

aðy1;H
c; tÞ þ

X3

i¼0

ððy3Þ
i � ðHcÞiÞlt

aiðy1; tÞ;

a ¼ 1;3;Hc < y3 < Hc þ Ht ð51:bÞ
ub
aðy1; y3; tÞ ¼ uc

aðy1;�Hc; tÞ þ
X3

i¼0

ððy3Þ
i � ð�HcÞiÞlb

aiðy1; tÞ;

a ¼ 1;3; �ðHb þ HcÞ 6 y3 6 �Hc ð51:cÞ

In Eq. (51) 2Hc equals the height of the central beam, and Ht and Hb

heights of the top and the bottom beams, respectively. The assumed
displacement field (51) is continuous across interfaces between the
central and the top and the bottom beams. The continuity of surface
tractions across these interfaces is implicitly satisfied during the
derivation of the weak formulation of the problem.

For each displacement component, Eqs. 51.a, 51.b, and 51.c have
four unknowns for the top, the central and the bottom layers. Thus
in the TSNDT the number of degrees or unknowns for N nodes on
the centroidal axis equals 24 N. For studying plane strain deforma-
tions of a laminated beam composed of three plies using 4-node
quadrilateral elements with three elements across the thickness
in each ply, the number of degrees of freedom for N nodes along
the y1-axis will equal 20 N.

The governing equations and the weak formulation derived,
respectively, in Section 2 and subsection 3.1 remain unaffected by
the number of plies. However, the displacement function Lj and
the matrix [D] need to be changed, and the material properties of
the pertinent layer are used while evaluating integrals in Eq. (28).

5. Results for example problems

5.1. Linear problems

When analyzing linear elastic problems, we omit all nonlinear
terms in expressions for the strain components, and note that dif-
ferences among the three stress tensors, namely, the 1st and the



Fig. 4. Comparison of through-the-thickness distributions of stresses derived from the analytical solution based on the linear elasticity theory and the TSNDT solution for (0�/
90�/0�) laminates; black curves represent the elasticity solution and red curves the TSNDT solution; (a) rxx at x ¼ L=2 for L=H ¼ 10; difference, �g ¼ 0:062%; (b) rxz at x = 0 for
L=H ¼ 10; difference, �g ¼ 0:146% ; (c) rzz at x ¼ L=2 for L=H ¼ 10 ; difference, �g ¼ 0:439%; (d) rxz at x = 0 for L=H ¼ 4; difference, �g ¼ 0:742%; (e) rxx at x ¼ L=2 for L=H ¼ 4 ;
difference, �g ¼ 0:439%; and (f) rzz at x ¼ L=2 for L=H ¼ 4; difference, �g ¼ 0:941%. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 5. Comparison of through-the-thickness variation of rxz at x = 0 for L=H ¼ 4
using the TSNDT, the EHOPT_C and the EHOPT_E; in EHOPT_C and EHOPT_E stresses
are computed, respectively, by using constitutive equations and by integrating
equilibrium equations.

Fig. 6. Schematic sketch of a 3-layer laminated curved beam loaded by a sinusoidal
normal traction on the top surface.
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2nd Piola–Kirchhoff and the Cauchy are negligible. Also, we use the
more common notation and replace y1 and y3 by x and z, respec-
tively, and u1 and u3 by u and w, respectively. Unless otherwise sta-
ted, integrals in Eqs. (38) and (28) are numerically evaluated,
respectively, by using 1 Gauss point in the x-direction, and 5 in
each layer in the z-direction.
5.1.1. Static infinitesimal deformations of straight laminated beam
We study static infinitesimal deformations of a simply sup-

ported (0�/90�/0�) straight beam loaded by a uniformly distributed
normal traction, q ¼ q0sin px

L
� 


, on the top surface with the bottom



Table 2
Comparison of the analytical solution of the shell centroid deflection, w L

2 ; 0
� 


, with
those obtained by using different meshes and the number of integration points in the
thick shell theory (the number of integration points in the z-direction are for each
layer and are used to numerically evaluate integrals in Eq. (28)).

v Number of
integration points
(x, z)

21
Nodes

41
Nodes

81
Nodes

161
Nodes

Exact[41]

4 1,5 0.457 0.458 0.458 – 0.457
3,5 0.446 0.455 0.457 –

10 1,5 0.143 0.144 0.144 – 0.144
3,5 0.136 0.142 0.144 –

50 1,5 0.0804 0.0807 0.0808 – 0.0808
3,5 – 0.0666 0.0768 0.0798

100 1,5 0.0782 0.0785 0.0785 – 0.0787
3,5 – 0.0429 0.0653 0.0747

Table 3
Comparison of the centroid deflection, w L

2 ;0
� 


; from the straight beam and the thick
shell theories computed with different number of nodes in the x-direction.

v 5
Nodes

11
Nodes

21
Nodes

41
Nodes

Exact
[41]

4 Thick shell 0.433 0.454 0.457 0.458 0.457
Straight
beam

0.333 0.385 0.397 0.405

10 Thick shell 0.132 0.142 0.143 0.144 0.144
Straight
beam

0.109 0.127 0.132 0.135

50 Thick shell 0.0710 0.0792 0.0804 0.0807 0.0808
Straight
beam

0.0600 0.0735 0.0768 0.0786

100 Thick shell 0.0688 0.0770 0.0782 0.0785 0.0787
Straight
beam

0.0582 0.0718 0.0750 0.0767

Table 4
Comparison of the deflection w L

2 ;0
� 


for the thin shell, the thick shell and the straight
beam theories computed using 161 nodes for the straight beam theory when v = 50
and 100, and 81 nodes for all other theories and other values of v.

v 4 10 50 100

Exact [41] 0.457 0.144 0.0808 0.0787
TSNDT-Thick shell 0.458 0.144 0.0808 0.0785
TSNDT-Thin shell 0.412 0.137 0.0800 0.0781
TSNDT-Straight beam 0.409 0.136 0.0798 0.0779
CST 0.0781 0.0777 0.0776 0.0776
FSDST [42] 0.289 0.113 0.0786 0.0776
HSDST [42] 0.382 0.128 0.0793 0.0777
EHOST [36] 0.455 0.143 0.0808 0.0787
Zig–zag [43] 0.441 0.143 0.0810 0.0788

Table 5
Comparison of stress rxx

L
2 ;� H

2

� 

from different theories; 161 nodes in the x-direction

for the straight beam theory when v = 50 and 100, and 81 nodes for all other cases.

v 4 10 50 100

Exact [41] �1.772 �0.995 �0.798 �0.786
1.367 0.897 0.782 0.781

TSNDT-Thick shell �1.772 �0.995 �0.798 �0.786
1.367 0.897 0.783 0.779

TSNDT-Thin shell �1.378 �0.905 �0.784 �0.779
1.398 0.895 0.781 0.778

TSNDT-Straight beam �1.371 �0.901 �0.780 �0.776
1.393 0.892 0.778 0.775

EHOST [36] �1.702 �0.967 �0.794 �0.785
1.599 0.928 0.786 0.780

Zig–zag [43] �1.792 �1.003 �0.799 �0.787
1.350 0.894 0.783 0.779

Table 6
Comparison of stress rxz(0,0) from different theories; 161 nodes in the x-direction for
the straight beam theory when v = 50 and 100, and 81 nodes for all other cases.

v 4 10 50 100

Exact [41] 0.476 0.525 0.526 0.523
TSNDT-Thick shell 0.476 0.525 0.525 0.523
TSNDT-Thin shell 0.427 0.501 0.520 0.520
TSNDT-Straight beam 0.425 0.498 0.518 0.519
EHOST [36] 0.516 0.545 0.537 0.535
Zig–zag [43] 0.447 0.524 0.525 0.524
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surface traction free; a schematic sketch of the problem studied is
shown in Fig. 3. Each layer is of the same thickness.

Values assigned to material parameters, taken from Pagano [40]
who solved the problem analytically, are

EL ¼ 172 GPa; ET ¼ 6:9 GPa; GLT ¼ 3:4 GPa;
GTT ¼ 1:4 GPa; mTL ¼ mTT ¼ 0:25 ð52Þ

Here subscript L denotes the direction parallel to the fiber, subscript
T the transverse direction, and m is Poisson’s ratio; i.e., ET and EL are
elastic moduli in the transverse and the longitudinal directions,
respectively, and GLT is the shear modulus.

The percentage error, �g, in the TSNDT solution for variable r is
defined by

�g ¼ 100
Z L

0
jrTSNDT � ranajdx

� ��Z L

0
jranajdx ð53Þ

where subscripts TSNDT and ana denote, respectively, numerical re-
sults computed by using the TSNDT and the analytical approach.
The deflection,w, is normalized by

w ¼ 100ET H3w
q0L4 ð54Þ

The normalized mid-point deflection of the beam from the TSNDT
and the analytical approach as well as the percentage difference be-
tween the two results is listed in Table 1. It is clear that for L=H vary-
ing from 4 to 100 the mid-point deflection computed using the
TSNDT differs from that found using the analytical approach by
0.04%. For L=H ¼ 4 and 10, we have exhibited in Fig. 4a–f through-
the-thickness variations of the axial, the transverse normal and the
transverse shear stresses computed using the TSNDT and the analyt-
ical approach. Stresses using the TSNDT are found from the constitu-
tive relations and the displacement fields. The difference �g between
stresses from the two approaches is less than 1% implying that the
TSNDT gives accurate values of stresses including those of the trans-
verse shear and the transverse normal stresses without using any
stress recovery technique. We note that the transverse normal and
the transverse shear stresses computed with the TSNDT are contin-
uous across interfaces between adjoining plies. In Fig. 5 we have
compared the presently computed values of the transverse shear
stress for a beam withL=H ¼ 4 with those given in [21] using an effi-
cient higher order plate theory, EHOPT, that assumes a combination
of zig–zag and a cubic variation in the z-direction of in-plane dis-
placements. The transverse shear stresses denoted as EHOPT-C and
EHOPT-E are computed, respectively, by using the constitutive equa-
tions and by integrating equilibrium equations. It is evident that the
present results obtained without using any stress recovery tech-
nique are closer to the analytical solution than those derived from
the EHOPT using the post-processing method.

5.1.2. Static infinitesimal deformations of curved laminated beam
The second problem studied is that of a simply supported (0�/

90�/0�) beam of constant radius of curvature, R = 25.4 cm, length
L ¼ Rp=3, ply thickness = H/3, subjected to sinusoidal normal trac-
tion q on the top surface as shown in Fig. 6, and material properties



Fig. 7. Comparison of through-the-thickness variation of stresses found from the
analytical and the TSNDT solutions; black curve - analytical solution, red curve -
TSNDT (thick shell theory), (a) rxx at x ¼ L=2 when R/H = 10; difference, �g ¼ 2:37%,
(b)rxz at x = 0 when R/H = 10; difference, �g ¼ 1:18%, (c) rzz at x ¼ L=2 when
R/H = 10; difference, �g ¼ 5:17%, and (d) rxz at x = 0 when R/H = 4; difference,
�g ¼ 1:01%. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 8. Through-the-thickness variation of rxz at x = 0 when R/H = 4 for different
theories, shear stresses in the HSDST and the EHOST are derived by integrating the
equilibrium equations.
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given in Eq. (52). Results are presented in terms of the following
non-dimensional variables:
w ¼ 10ET w
q0Hv4 ; rxx ¼

rxx

q0v2 ; rxz ¼
rxz

q0v
; rzz ¼

rzz

q0
; v ¼ R=H

ð55Þ

The analytical results obtained by digitizing plots in [41] are com-
pared with those computed with the TSNDT, the CST [41], the FSDST
[42], the HSDST [42], the EHOST [36], and the zig–zag [43] shell the-
ory. The shell theory discussed in Section 2 that considers (does not
consider) the variation of the radius of curvature through the shell
thickness is called ‘‘thick (thin) shell theory’’. Deformations of a
curved beam can also be analyzed by dividing it into small seg-
ments and approximating each segment as a straight line; the anal-
ysis based on this technique is called the ‘‘straight beam theory’’.
This approach does not consider through-the-thickness variation
of the radius of curvature.

The centroidal deflections and stresses at two points obtained
with different theories are compared with the analytical solution
in Tables 2–6. The TSNDT results presented in Table 2 with differ-
ent number of integration points in the x- and the z-directions for
evaluating integrals in Eqs. (38) and (28), respectively, suggest that
using 1 Gauss point in the x-direction in each FE and five in each
layer in the z-direction provides sufficiently accurate results for
v between 4 and 100. Unless otherwise specified, results presented
below have been computed with 1 Gauss point in the x-direction in
each 1-D FE. Values of centroidal deflection from the thick shell
and the straight beam theories listed in Table 3 suggest that the
deflection using the thick shell theory converges significantly fas-
ter than that derived from the straight beam theory.

For v = 4, 10, 50 and 100, converged values of stresses at critical
points based on different shell theories are compared with their
values from the analytical solution in Tables 4–6. For v = 50 and
100, all theories give very good values of stresses. However, for
v = 4 and 10, the thick shell theory gives superior results than
those obtained with the other shell theories considered here. For
v = 4 and 10, the through-the-thickness variations of stresses
found with the thick shell TSNDT are compared in Figs. 7 and 8
with those from the analytical solution of Ren [41]. The maximum
difference in the two values of a stress component is about 2% ex-
cept for 5.1% for rzz when v = 10 which most likely is due to digi-
tization errors as the plot of rzz in [41] is not clear. Results
presented in Section 5.5 will show that the thick shell TSNDT pre-
dicts rzz for v = 10 in agreement with that obtained using the com-
mercial FE software, ABAQUS. In Fig. 8 we have exhibited through-
the-thickness variation of the transverse shear stress found from
three shell theories and the analytical solution of the boundary va-
lue problem. The three shell theories predict continuous variation
of rxz, and results from the thick shell TSNDT are in better



Table 7
For different node numbers along the x-axis in the TSNDT and for different FE meshes in ABAQUS, values at critical points of the centroidal deflection and stresses from the linear
and the nonlinear theories.

L/H Nodes Linear Nonlinear

w/H rxx/q0 rxz/q0 w/H rxx/q0 rxz/q0

ðL=2;0Þ ðL=2;�H=2Þ ðL=4;0Þ ðL=2;0Þ ðL=2;�H=2Þ ðL=4;0Þ

TSNDT 21 0.8043 �96.3 7.851 0.6254 �57.49 6.910
61 0.8147 �100.4 7.463 0.6270 �57.71 6.693

20 101 0.8147 �100.4 7.500 0.6271 �57.70 6.722
161 0.8153 �100.4 7.500 0.6271 �57.70 6.722

ABAQUS 11,161 (z,x) 0.8140 �100.4 7.520 0.6267 �57.70 6.730
31,61 (z,x) 0.8124 �100.4 7.101 0.6258 �57.71 6.445
31,161 (z,x) 0.8147 �100.4 7.560 0.6270 �57.70 6.790
61,301 (z,x) 0.8152 �100.4 7.489 0.6272 �57.70 6.714

Fig. 9. Comparison of through-the-thickness variations of stresses computed from
the linear and the nonlinear theories using the TSNDT and the elasticity (ABAQUS)
theories. (a) rxz at =L=4;L=H ¼ 20; q0 ¼ 30MPa; differences in the TSNDT and
ABAQUS results from the linear and the nonlinear theories are 0.343% and 0.238%,
respectively, and the two sets of results overlap in the Fig. (b) rxx at
x ¼ L=2;L=H ¼ 20; q0 ¼ 30MPa; differences in the TSNDT and ABAQUS results from
the linear and the nonlinear theories are 0.068% and 0.254%, respectively, and the two
sets of results overlap in the Fig. (c) rzz at x ¼ L=2;L=H ¼ 20; q0 ¼ 30MPa; differences
in the TSNDT and ABAQUS results from the linear and the nonlinear theories are 1.27%
and 1.27%, respectively, and the two sets of results overlap in this figure.

Fig. 10. Variation of @w
@z through the thickness at x ¼ L=4 for the linear and the

nonlinear theories found from the TSNDT solution.

Fig. 11. Deformed and undeformed positions of lines computed using linear and
nonlinear theories. (a) Deformed configurations of a line initially perpendicular to
the centroidal axis at x ¼ L=4, (b) Deformed shapes of the beam centroidal axis.
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Table 8
Non-dimensional deflection, w/H, of the beam centroid with different shape
functions, number of nodes along the x-axis, and number of Gauss integration points
along the x-axis which are indicated in parentheses.

21 Nodes 41 Nodes 81 Nodes Analytical

Linear (1) 0.0321 0.0308 0.0306 0.0303
Linear (3) 0.0287 0.0300 0.0303
Quadratic (3) 0.0304 0.0304 0.0305

Fig. 12. Comparison of the analytical and the numerical solutions computed using
the TSNDT, 81 nodes along the x-axis and piecewise quadratic basis functions. (a)
rxx at x = 0.186 m; difference, �g ¼ 0:417%; the two solutions overlap each other. (b)
rzz at x = 0.186 m; difference, �g ¼ 0:943%; the two solutions overlap each other. (c)
rxz at x = 0.186 m; difference, �g ¼ 0:715%; the two solutions overlap each other. (d)
Deflection of the mid-surface, z = 0, of the beam; difference,�g ¼ 3:33%; the two
curves overlap each other.
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agreement with the analytical values than those from the HSDST
and EHOST that use post-processing methods.

5.2. Finite static deformations of homogeneous straight beam

5.2.1. Comparison of results from the TSNDT with those from ABAQUS
Static finite deformations of clamped–clamped straight 15 cm

thick beam with L=H ¼ 20, made of an isotropic and homogeneous
St. Venant–Kirchhoff material having E = 172.4 GPa and m = 0.3 and
loaded by a uniform pressure q0 = 30 MPa on the bottom surface
are analyzed as a plane strain problem with ABAQUS and with
the TSNDT. We note that the direction of the normal pressure
changes as the beam deforms. Values of the centroidal deflection
and stresses at critical points from the two approaches and using
linear and nonlinear theories are listed in Table 7. For both the lin-
ear and the nonlinear theories, converged values of the centroidal
deflections and stresses at the point ðL=4;0Þ found from the TSNDT
and ABAQUS agree well with each other. The computed value of
rxx/q0 at the point L

2 ;� H
2

� 

from the linear theory in which the pres-

sure always acts in the z-direction is nearly twice of that found
from the nonlinear theory. The value of rxz

q0
at the point L

4 ;0
� 


from
the linear theory is 11.6% higher than that from the nonlinear the-
ory. Thus a stress based failure criterion will predict early failure of a
material point if stresses from the linear theory are used in it.
Through-the-thickness variations of the axial stress, rxx, and the
transverse stresses, rxz and rzz, from the TSNDT and ABAQUS are
exhibited in Fig. 9; the percentage differences between the two
values of the stress is defined as 100

R H=2
�H=2 jrTSNDT � rABAjdz=R H=2

�H=2 jrABAjdz where subscripts TSNDT and ABA denote, respec-
tively, values from the TSNDT and ABAQUS solutions. The two val-
ues of the percentage difference listed in the figure legends are for
results from the linear and the nonlinear theories. With the error of
1.27%, it is clear that stresses computed from the TSNDT and ABA-
QUS are very close to each other. Whereas rxx is an affine function
of z for both the linear and the nonlinear theories, the values of z
where rxx = 0 are quite different. Through-the-thickness distribu-
tions of rzz from the linear and the nonlinear theories are both
qualitatively and quantitatively quite different. Fig. 10 exhibits
through-the-thickness variation of @w

@z at the section x ¼ L=4 found
from the linear and the nonlinear theories. Values of @w

@z are always
negative for the nonlinear theory but those from the linear theory
are positive at points near the top surface and negative at points
near the bottom surface. At a point along the thickness, the magni-
tude of @w

@z for the nonlinear theory is more than that from the linear
theory. The deformed positions of a line initially perpendicular to
the centroidal axis at x ¼ L=4 found from the linear and the nonlin-
ear theories are plotted in Fig. 11. It is evident that the linear and
the nonlinear theories give quite different deformed positions of
the line.

5.2.2. Verification of the software by the method of manufactured
solutions

We use the method of manufactured solutions (e.g., see the
material just before and following Eq. (20) of [33]) to verify the
code developed for analyzing nonlinear deformations of the beam
of Section 5.2.1. For the clamped–clamped beam we begin by
assuming the following displacement field



Table 9
Comparison of centroidal deflection and stresses at critical points of curved beam computed by using the TSNDT and ABAQUS.

v q0 Nodes Linear Nonlinear

w/H rxx/q0 rxz/q0 w/H rxx/q0 rxz/q0

ðL=2;0Þ ðL=2;H=2Þ ð3L=4;0Þ ðL=2;0Þ ðL=2;H=2Þ ð3L=4;0Þ

TSNDT 21 0.9080 14.02 �1.144 0.5628 9.845 �1.338
61 0.9126 14.06 �1.153 0.5622 9.885 �1.346

10 1.38 Gpa 11, 161 0.9128 14.07 �1.114 0.5620 9.885 �1.343
ABAQUS (z,x)

31, 161 0.9130 14.07 �1.156 0.5620 9.886 �1.347
(z,x)

Fig. 13. Comparison of through-the-thickness variation of stresses for the curved
beam computed from the linear and the nonlinear theories. (a) rxz at
x ¼ 3L=4;v ¼ 10; q0 ¼ 1:38 GPa ; differences in the TSNDT and the ABAQUS results
from the linear and the nonlinear theories are 0.107% and 0.331%, respectively, and
results computed using the TSNDT and ABAQUS overlap each other. (b) rzz at
x ¼ 3L=4;v ¼ 10; q0 ¼ 1:38 GPa ; differences in the TSNDT and the ABAQUS results
from the linear and the nonlinear theories are 0.279% and 0.706%, respectively, and
results computed using the TSNDT and ABAQUS overlap each other. (c) rxx at
¼ L=2;v ¼ 10; q0 ¼ 1:38 GPa; differences in the TSNDT and the ABAQUS results
from the linear and the nonlinear theories are 0.190% and 0.122%, respectively, and
the results computed using the TSNDT and ABAQUS overlap each other.
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u ¼ 0:2H
z
H

� �3
þ sin 4

z
H

� �� �
1� x
L

� � x
L e

2x
L ð56:aÞ

w ¼ 0:2H
z
H

� �4
þ cos 2

z
H

� �� �
1� x
L

� � x
L e�

x
L ð56:bÞ

and find strains from Eq. (7) and stresses from Eqs. (23) and (25).
Substitution for stresses with acceleration terms set equal to zero
in Eq. (12) gives expressions for the body force needed to satisfy
equilibrium equations. We find surface tractions on the bounding
surfaces from the computed stress field. We now numerically solve
the problem with the in-house developed code by using the above
found values of the body force and essential boundary conditions
applied at both ends of beam and natural boundary conditions on
the top and the bottom surfaces of the beam. For the displacement
field (56), stress components in Eq. (12) were evaluated numerically
by using Eqs. (5), (7), (23) and (25), the spatial derivatives of stres-
ses in Eq. (12) were evaluated by the central difference method, and
numerical values of the body force components at each node were
read as input into the code.

For L=H ¼ 5 and L ¼ 0:75m, the computed centroidal deflection
is compared with its analytical value in Table 8 for piecewise linear
and piecewise quadratic basis functions along the x-axis, and using
eight integration points in the z-direction in Eq. (28).

It is clear that the converged values of the centroidal deflection
are in excellent agreement with the corresponding analytical va-
lue. In Fig. 12, the computed through-the-thickness variation of
stresses and the deformed shape of the beam are compared with
the corresponding ones obtained from the assumed analytical solu-
tion. These plots evince that the computed results match well with
the corresponding analytical ones.

5.3. Finite static deformations of homogeneous curved beam

The clamped–clamped curved beam studied in subsection
5.1.2 is assumed to be made of an isotropic and homogeneous
St. Venant–Kirchhoff material with Young’s modulus
E = 172 GPa and Poisson’s ratio m = 0.3 and subjected to a sinusoi-
dally varying distributed pressure q0 on the top surface. The
centroidal deflections and stresses at critical points from the
TSNDT and ABAQUS solutions listed in Table 9 reveal the follow-
ing. The centroidal deflection, the axial stress rxx at ðL=2;H=2Þ,
and the transverse shear stress rxz at ðL=4;H=2Þ from the linear
theory equal 1.624, 1.422 and 0.857 times those from the non-
linear theory. Here L equals the beam length along the centroi-
dal axis. Through-the-thickness stresses computed from the
linear and the nonlinear theories are plotted in Fig. 13. The max-
imum difference between results from the TSNDT and the ABA-
QUS is less than 0.8% implying that the TSNDT gives results close
to those obtained from the analysis of plane strain deformations
of the curved beam using nonlinear elasticity theory. Fig. 14
exhibits through-the-thickness variation of @w

@z at the section
x ¼ L=2.
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5.4. Transient deformations

5.4.1. Homogeneous straight beam
5.4.1.1. Verification of the software by the method of manufactured
solutions. We use the method of manufactured solutions described
in subsection 5.2.2 for verifying the in-house developed code for a
beam made of a homogeneous and isotropic material and set

E ¼ 172:4 GPa; t ¼ 0:3; q ¼ 4000
kg
m3 ;

H ¼ 0:15 m; L=H ¼ 20 ð57Þ

We assume the following displacement field for a clamped–
clamped beam

u ¼ 2000H
z
H

� �3
þ sin 4

z
H

� �� �
1� x
L

� � x
L e2x

Lðet � t � 1:0Þ ð58:aÞ

w ¼ 2000H
z
H

� �4
þ cos 2

z
H

� �� �
1� x
L

� � x
L e�

x
Lðet � t � 1:0Þ ð58:bÞ

The procedure outlined in Section 5.2.2 is used to numerically solve
the problem. The maximum frequency of the undeformed beam,
xmax = 1.97 � 106 rad/s, and the time step used to integrate Eq.
(46) is 5.0 � 10�7 s which is less than the critical time step, Dtcrit.
The time history of the centroidal deflection and through-the-thick-
ness variations of stresses from the numerical and the presumed
solutions are shown in Fig. 15. The maximum difference for the
centroidal deflection between the TSNDT and the analytical solu-
tions is 3.38% mainly due to the numerical computation of the body
forces and inputting those into the code. Through-the-thickness dis-
tributions of stresses from the two solutions are very close to each
other.

5.4.1.2. Comparison of results from the TSNDT and ABAQUS. For uni-
formly distributed pressure q0 = 20MPa applied on the bottom sur-
face of a homogeneous and isotropic straight beam, Fig. 16 shows
the time history of the centroidal deflection and deformed posi-
tions of the centroidal axis computed using the linear and the non-
linear theories. For each theory, results from the TSNDT and
ABAQUS are very close to each other.

5.4.2. Homogeneous curved beam
For the clamped–clamped homogeneous curved beam of Sec-

tion 5.4 with v = 10, mass density = 10,684 kg/m3, and uniformly
distributed pressure, q0 = 689 MPa, we have exhibited in Fig. 17
time histories of the centroidal deflection computed using the lin-
ear and the nonlinear theories. One can see that results from the
TSNDT agree well with those from ABAQUS, and the maximum
deflection from the nonlinear theory is considerably less than that
from the linear theory. The maximum frequency,xmax, of the beam
was found to be 8.43 � 107 rad/s and Dt = 1.5 � 10�8 s, which is
less than Dtcrit, was used to integrate Eq. (46).
Fig. 14. For the curved beam, variation of @w
@z through-the-thickness at x ¼ L=2 from

the linear and the nonlinear theories.

Fig. 15. Comparison of results computed by using the TSNDT with 101 nodes in the
x-direction and the analytical solution for the method of manufactured solutions.
(a) Time history of deflection at point ðL=2;0Þ ; the difference in the TSNDT and the
analytical results from the nonlinear theories is 3.48%, and results from the TSNDT
are very close to analytical solution. (b) rxx at x = 0.726 m when t = 15 ms; the
difference in the TSNDT and the analytical results from the nonlinear theories
equals 0.7%, and results from the TSNDT are very close to analytical solution. (c) rxz

at x = 0.726 m when t = 15 ms; the difference in the TSNDT and the analytical
results from the nonlinear theories equals 0.65%, and results from the TSNDT are
very close to analytical solution. (d) rzz at x = 0.726 m when t = 15 ms; the
difference in the TSNDT and the analytical results from the nonlinear theories
equals 0.25%, and results from the TSNDT are very close to analytical solution.



Fig. 16. Comparison of results computed by using the TSNDT and ABAQUS with and
without considering geometric nonlinearities. (a) Time histories of the centroidal
deflection from the linear and the nonlinear theories; for each theory results from
the TSNDT and ABAQUS essentially overlap each other. (b) Deformed positions of
the centroidal axis at t = 2 and 4 ms from the linear and the nonlinear theories
computed using the TSNDT.

Fig. 17. Comparison of results computed by using the TSNDT (61 nodes) and
ABAQUS with and without considering geometric nonlinearities. (a) Time histories
of the deflection of the beam centroid from the linear and the nonlinear theories;
for each theory results from the TSNDT and ABAQUS essentially overlap each other.
(b) Deformed positions of the centroidal axis at t = 0.1 and 0.15 ms from the linear
and the nonlinear theories computed using the TSNDT (x and z are global coordinate
in this plot).
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6. Conclusions

A third order shear and normal deformable beam theory
(TSNDT) for analyzing finite deformations of a curved laminated
beam made of a St. Venant–Kirchhoff material has been developed.
It has been used in combination with the finite element method
(FEM) to analyze static and dynamic deformations of straight and
curved beams by considering all geometric nonlinear effects.
Equations governing deformations of the beam are written in the
Lagrangian description of motion using continuum mechanics
principles, and a weak form of the governing equations has been
derived. No shear correction factor is used, and stresses are derived
from the displacement field and the constitutive relation without
using any post-processing technique. The method of manufactured
solutions has been used to verify the in-house developed software
capable of analyzing static and dynamic problems. Furthermore,
for both straight and curved beams, deflections and stresses
computed using the TSNDT for linear and nonlinear theories agree
very well with those obtained using the commercial FE software
ABAQUS that analyzes plane strain deformations of the beam mod-
eled as a continuum. For a curved beam made of a homogeneous
and isotropic material and radius of curvature/beam thick-
ness = 10, it is found that the maximum transverse deflections
and axial stresses at critical points computed using the linear
theory are nearly 60% and 40% more than those obtained from
the nonlinear theory. However, the transverse shear stresses from
the linear theory equal about 86% of those from the nonlinear
theory. Thus a stress based failure criterion will predict premature
failure of the beam if stresses are derived from the linear elasticity
theory.
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Appendix A

Expressions of non-zero terms of Mj
mn are listed below.
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Here i, j, b, d = 0, 1, 2, 3
For the beam made of an isotropic material with Young’s mod-

ulus E and Poisson’s ratio t, we set

l0 ¼
Eð1� tÞ

ð1� 2tÞð1þ tÞ ; l1 ¼
Et

ð1� 2tÞð1þ tÞ ;

l2 ¼
E1

2ð1þ tÞ ðA:2Þ

When the beam is either straight or the curved beam is thin enough
to neglect through-the-thickness variation of H1, Eq. (A.1) are sim-
plified into Eq. (A.3).
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where

C2jb ¼
Z H=2

�H=2
LjLbdy3 ¼ Ijþb

C3jbd ¼
Z H=2

�H=2
LjLbLddy3 ¼ Ijþbþd

C4jibd ¼
Z H=2

�H=2
LjLiLbLddy3 ¼ Ijþiþbþd

Ih ¼
Z H=2

�H=2
zhdy3; h ¼ 0;1; � � �12

ðA:4Þ

The seven non-zero terms of Ih are

I0 ¼ H; I2 ¼ H3

12
; I4 ¼ H5

80
; I6 ¼ H7

448
; I8 ¼ H9

2304
;

I10 ¼ H11

11;264
; I12 ¼ H13

53;248
ðA:5Þ

In order to explicitly write constitutive equations (A.3) for the first
order shear and normal deformable plate theory (FSNDT) for a thin
shell made of an isotropic and homogeneous material, we set
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where vmn
ibd = vmn

idb, m, n = 1, 3.
Thus constitutive equations (A.3) for the FSNDT become
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ðA:7Þ

where indices m, n = 1, 3, and those for the TSNDT can be simplified
into the following expressions.
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ðA:8Þ
where m, n = 1, 3.

Appendix B

Expressions of components of [j] are listed below.
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Here i, j, b, d = 0, 1, 2, 3.
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