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A layer-wise third order shear and normal deformable plate/shell theory (TSNDT) incorporating a cohe-
sive zone model (CZM) is used to study the initiation and growth of delamination in straight and curved
laminated beams. Upon satisfaction of the delamination criteria at a point on the interface between two
layers, displacements there of two abutting points on the interface between the two layers are made dis-
continuous. Delaminations under mode-I, mode-II and mixed-mode static and transient loadings have
been studied. All geometric nonlinearities, including the von Karman nonlinearity, are considered. The
material of each layer is assumed to be St. Venant–Kirchhoff for which the second Piola–Kirchhoff stress
tensor is a linear function of the Green-St. Venant strain tensor. Example problems studied also include
delamination growth during axial buckling of a three-layer beam. It is found that the consideration of
inertia forces noticeably delays the buckling load and significantly affects the deformed shape of an axi-
ally compressed laminated beam.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Delamination is a common failure mode in sandwich structures
because of low values of the interfacial strength. Methods em-
ployed to analyze delamination include linear elastic fracture
mechanics (LEFM) such as the virtual crack closure technique [1],
the strain energy release rate (SERR) or the J-integral [2], the vir-
tual crack extension [3], and the cohesive zone model (CZM) [4].
Critical ingredients of these methods are the delamination initia-
tion and growth criteria. Here we use the CZM mainly because it
is easy to implement in software, one can readily compute the en-
ergy dissipated during delamination and relate it to the critical
SERR and the interfacial strength. In the CZM surface tractions at
a point on an interface are expressed as a non-monotonic function
of the jump in displacements there with the area under the curve
equaling the critical SERR. These functions include cubic/exponen-
tial [4], bilinear [5], and trapezoidal [6]. Zou et al. [7] proposed a
damage surface by combining the conventional stress-based and
fracture mechanics-based criteria for mixed-mode failures. A scalar
damage parameter is used to describe softening of the interface
due to damage induced by delamination growth in laminated com-
posites. Camanho and Dávila [8] described damage of the interface
in terms of the mixed-mode relative displacement. Cohesive ele-
ments can be either continuum interface elements [9] or nonlinear
springs connected to the corresponding nodes [10] on the two
sides of the interface.

A layer-wise plate/beam theory can correctly predict through-
the-thickness distributions of transverse shear and transverse nor-
mal stresses, and delamination can be simulated by using the CZM.
For example, Allix and Corigliano [11] studied delamination of a
laminated composite beam using the CZM and the layer-wise first
order shear deformable beam theory (FSDT) considering all geo-
metric nonlinearities. Zhang and Wang [12] incorporated the
layer-wise FSDT and the crack closure method to study delamina-
tion growth in laminated composites.

Here we use the CZM and the layer-wise third order shear and
normal deformable plate/shell theory (TSNDT) to study delamina-
tion in laminated composite beams. As shown by Batra and Xiao
[13] the TSNDT correctly predicts all components of surface trac-
tions on the interface. All geometric nonlinearities are considered
in our formulation, and the initiation and propagation of delamina-
tion under mode-I, mode-II and mixed-mode static and dynamic
loading are studied. The 2nd Piola–Kirchhoff stress tensor is ex-
pressed as a linear function of the Green-St. Venant strain tensor.
Thus a materially objective constitutive relation is employed. Com-
puted results are found to agree well with those available in the lit-
erature. Significant contributions of the work include studying
post-delamination and post-buckling deformations of beams de-
formed under quasi-static and dynamic loadings.

The rest of the paper is organized as follows. In Section 2 we
summarize governing equations, boundary conditions and the
CZM. We derive governing equations and boundary conditions
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for the TSNDT as well as a weak form of governing equations in
Section 3. We also briefly review in Section 3 the finite element
method (FEM) used to numerically solve the problem. Results for
the delamination growth in double cantilever beams (DCBs) under
pure and mixed-mode static and transient loads are given in Sec-
tion 4. The delamination growth in an initially delaminated com-
posite beam under axial compression is also studied in this
section. Conclusions of this work are summarized in Section 5.

2. Formulation of the problem

2.1. Brief review of the continuum theory

2.1.1. Kinematics
A schematic sketch of the problem studied is shown in Fig. 1.

The position vector of point p in the reference configuration is de-
scribed by using orthogonal curvilinear coordinate axes y1, y2, y3 in
the reference configuration with y1-axis along the tangent to the
mid-surface of the beam, y2-axis pointing into the plane of the pa-
per, and y3-axis pointing along the local thickness direction. Let X1,
X2, X3 be fixed rectangular Cartesian coordinate axes, and the y2-
axis be parallel to the X2-axis. Let position vectors, with respect
to fixed rectangular Cartesian coordinate axes, of point p located
at (y1,y2,y3) in the reference configuration be x and X in the current
and the reference configurations, respectively.

Components, Gij, of the metric tensor in the reference configura-
tion are given by [14]

Gij ¼ Ai � Aj; Ai ¼
@X
@yi

ð1Þ

For orthogonal curvilinear coordinate axes the metric tensor, Gij, is
non-zero only when i = j. We set

H1 ¼
ffiffiffiffiffiffiffiffi
G11

p
; H2 ¼

ffiffiffiffiffiffiffiffi
G22

p
¼ 1; H3 ¼

ffiffiffiffiffiffiffiffi
G33

p
¼ 1;

~ei ¼
Ai

HðiÞ
ðno sum on iÞ ð2Þ
(a)

(b)

Fig. 1. Schematic sketches of curved beam (a) and of cohesive interface CC (b). X2-,
x2-, y2- and �y2-axes pointing into the plane of the paper are not shown in the figure.
Here ð~e1; ~e2; ~e3Þ are unit base vectors along the y1, y2 and y3 axes,
respectively, and

H1 ¼ 1þ y3

R

� �
;

@~e1

@y1
¼ �

~e3

R
;

@~e3

@y1
¼

~e1

R
ð3Þ

where R is the radius of curvature at the point (y1,y2,y3).
We study finite plane strain deformations in the X1X3-plane,

and for simplicity assume that the curved beam is of rectangular
cross-section. The displacement u of point p is given by

u ¼ x� X ð4Þ

where u is a function of y1 and y3, and u2 = 0. Physical components
of the displacement gradient, F, are given by [14]

½F� ¼
1þ 1

H1

@u1
@y1
þ u3

R

� �
0 @u1

@y3

0 1 0
1

H1

@u3
@y1
� u1

R

� �
0 1þ @u3

@y3

2
664

3
775 ð5Þ

The Green-St. Venant strain tensor, E, defined by

E ¼ 1
2
ðFT F � 1Þ ð6Þ

where 1 is the identity tensor, has following non-zero physical
components:

E11¼
1

H1

@u1

@y1
þu3

R

� �
þ 1

2H2
1

@u1

@y1
þu3

R

� �2

þ @u3

@y1
�u1

R

� �2
" #

E33¼
@u3

@y3
þ1

2
@u1

@y3

� �2

þ @u3

@y3

� �2
" #

2E13¼
1

H1

@u3

@y1
�u1

R

� �
þ@u1

@y3
þ 1

H1

@u3

@y3

@u3

@y1
�u1

R

� �
þ@u1

@y3

@u1

@y1
þu3

R

� �� �
ð7Þ

We note that E incorporates all geometric nonlinearities including
the von Karman nonlinearity, and is valid for finite (or large) defor-
mations of a beam. The strain tensor for infinitesimal deformations
is obtained from Eq. (7) by neglecting the nonlinear terms included
in brackets.

2.1.2. Kinetics
The in-plane displacements (u1,u3) of a point are governed by

the following equations expressing the balance of linear momen-
tum written in the Lagrangian description of motion using physical
components T11, T13, T31, T33, of the first (not necessarily symmet-
ric) Piola–Kirchhoff stress tensor [14], and initial and boundary
conditions.

q0€u1 ¼
1

H1

@T11

@y1
þ 1

H1

@ðH1T13Þ
@y3

þ 1
H1R

T31 þ f1 ð8:aÞ

q0€u3 ¼
1

H1

@T31

@y1
þ 1

H1

@ðH1T33Þ
@y3

� 1
H1R

T11 þ f3 ð8:bÞ

uiðy1; y3;0Þ ¼ u0
i ðy1; y3Þ; _uiðy1; y3;0Þ ¼ _u0

i ðy1; y3Þ ð8:c;dÞ

TijN
t
j ¼ �tiðy1; y3; tÞ on Ct; uiðy1; y3; tÞ ¼ �uiðy1; y3; tÞ on Cu

ð8:e; fÞ

TijN
Cþ
j ¼ �f Cþ

i ; TijN
C�
j ¼ �f C�

i on CC ð8:gÞ
�f C�

1 ¼ âðR11rt þ R31rnÞ; �f C�
3 ¼ âðR13rt þ R33rnÞ; �f Cþ

i ¼ ��f C�
i on CC ð8:hÞ

½R� ¼
cos h 0 sin h

0 1 0
� sin h 0 cos h

2
64

3
75 ð8:iÞ

In Eq. (8) i and j equal 1 and 3, f1 and f3 are components of the body
force per unit reference volume along the y1- and the y3 -axes,
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respectively, q0 the mass density in the reference configuration, and
€ui ¼ @2ui

@t2 . The initial displacement u0
i and the initial velocity _u0

i are
known functions of y1 and y3. Nt is a unit outward normal in the ref-
erence configuration at a point on the boundary Ct where surface
tractions are prescribed as �ti. On boundary Cu, displacements are
prescribed as �ui. NC� is the outward unit normal on the correspond-
ing interface C�C ; â equals the area into which a unit surface area in
the reference configuration is deformed, Rij the rotation matrix, h
the angle between y1-and �y1-axes, �f C�

i the traction on the cohesive
interface C�C , and rt and rn the tangential and the normal tractions
in the current configuration of the cohesive interface. Tractions rt

and rn are related to jumps in displacements on the cohesive inter-
face as discussed in subsection 2.1.4. As outward normals at corre-
sponding points on the upper and the lower surfaces of a cohesive
interface may not be parallel to each other, we use a mean cohesive
interface Cm

C (see Fig. 1) to find surface tractions and jumps in tan-
gential and normal displacements on the cohesive interface.
Accordingly, we introduce local coordinate axes �y1 and �y3, respec-
tively, along the tangent and the normal to the deformed mean
cohesive interface Cm

C . The unit outward normal n�C on C�C in the
current configuration is found from values of the deformation gra-
dient on the corresponding interface. We assume that the rotation
angle h of the mean cohesive interface Cm

C equals the average of
the rotation angles of unit normals n�C . The deformed area â of the
mean cohesive interface Cm

C is taken equal to the average of areas
into which unit areas on CþC and C�C are deformed. We note that
tractions on CþC and C�C are equal and opposite.

Using the transformation matrix Rij, the jump displacements dt

and dn, of corresponding points on CþC and C�C are given by

dt ¼ R1j uþj ðy1; y3; tÞ � u�j ðy1; y3; tÞ
� �

on CC; j ¼ 1;3 ð9:aÞ

dn ¼ R3j uþj ðy1; y3; tÞ � u�j ðy1; y3; tÞ
� �

on CC; j ¼ 1;3 ð9:bÞ

where uþi ðy1; y3; tÞ and u�i ðy1; y3; tÞ represent, respectively, displace-
ments of a point on CþC and C�C with respect to y1 and y3 coordinate
axes, dt and dn equal jumps in the tangential and the normal dis-
placements of corresponding points on CþC and C�C with respect to
�y1 and �y3 coordinate axes on the mean cohesive interface Cm

C .

2.1.3. Constitutive relations
We assume that the beam material is St. Venant–Kirchhoff for

which the strain energy density, W, is given by

W ¼ 1
2

EijCijklEkl;Cijkl ¼ Cklij ¼ Cjikl ð10Þ

where C is the fourth-order elasticity tensor having 21 independent
components for three-dimensional deformations of a general aniso-
tropic material. The independent components of C with respect to
the material principal axes reduce to 9, 5 and 2 for an orthotropic,
transversely isotropic and isotropic material, respectively. The
strain energy density for the St. Venant–Kirchhoff material reduces
to that of a Hookean material if the finite strain tensor E is replaced
in Eq. (10) by the strain tensor for infinitesimal deformations. Batra
[15] has compared the response of four elastic materials for which a
stress tensor is a linear function of an appropriate strain tensor (e.g.,
the Cauchy stress tensor is a linear function of the Almansi–Hamel
strain tensor). For infinitesimal deformations the four constitutive
relations give the same stress–strain curve for simple tensile and
simple shear deformations, but their predictions for finite deforma-
tions are quite different.

For a nonlinear elastic material, physical components of the sec-
ond Piola–Kirchhoff stress tensor S are related to E by

Sij ¼
@W
@Eij
¼ CijklEkl ð11Þ
However, S has no physical interpretation. Other stress tensors such
as the Cauchy or the 1st Piola–Kirchhoff stress tensor can be derived
from S only if the deformation gradient F is known [15]. For plane
strain deformations of an orthotropic material with the material
principal axes coincident with the coordinate axes (y1,y2,y3), Eq.
(11) reduces to

S11

S33

S13

8><
>:

9>=
>; ¼

C1111 C1133 0
C3311 C3333 0

0 0 C1313

2
64

3
75

E11

E33

2E13

8><
>:

9>=
>; ð12:aÞ

C1111 ¼
1� m23m32

E2E3D
; C3333 ¼

1� m12m21

E1E2D
;

C1133 ¼ C3311 ¼
m31 þ m21m32

E2E3D
; C1313 ¼ G13 ð12:bÞ

D ¼ 1
E1E2E3

1 �m21 �m31

�m12 1 �m32

�m13 �m23 1

									

									
ð12:cÞ

Here E1, E2 and E3 represent, respectively, Young’s moduli along the
y1-, the y2-and the y3-axes, G13 is the shear modulus in the y1y3-
plane, t12, t13 and t23 are Poisson’s ratios.

Recalling that [15]

T ¼ FS ð13Þ

where T is the 1st Piola–Kirchhoff stress tensor, we get

T11 T13

T31 T33

� �
¼

F11S11 þ F13S13 F11S13 þ F13S33

F31S11 þ F33S13 F31S13 þ F33S33

� �
ð14Þ

Substitution for F from Eq. (5) into Eq. (14), for E from Eq. (7) into
Eq. (12) and the result into Eq. (14) gives expressions for T in terms
of displacements u1 andu3 and the four elastic constants C1111, C1133,
C3333, and C1313. Even though components of S are quadratic in dis-
placement gradients those of T are cubic in displacement gradients.
We note that constitutive relations (11) and (13) are materially
objective, i.e., are invariant under a rigid body motion superim-
posed upon the present configuration.

The true stress or the Cauchy stress, r, is related to the 1st Pio-
la–Kirchhoff stress by [15]

r ¼ 1
J

TFT ; ð15Þ

where J is the determinant of the deformation gradient F. Thus r
need not be a polynomial function of the displacement gradients.

We now substitute for T into Eq. (8), and solve the resulting
nonlinear coupled partial differential equations (PDEs) for u1 and
u3 under pertinent initial and boundary conditions. These PDEs in-
volve second-order derivatives of u1 and u3 with respect to y1 and
y3 and time t.

2.1.4. Cohesive zone model
2.1.4.1. Mode-I or mode-II deformations. We first describe the CZM
for mode-I and mode-II deformations, and then for mixed-mode
deformations. We postulate the traction–separation relations de-
picted in Fig. 2a and b for mode-I and mode-II deformations,
respectively. For relative normal (tangential) displacement dn(dt)
of adjoining points on the two sides of the interface less than
d0

n d0
t


 �
corresponding to point A in Fig. 2a (Fig. 2b), the traction–

separation relation represented by straight line OA is completely
reversible. For monotonically increasing values of dn(dt) greater
than d0

n d0
t


 �
the traction–separation relation is given by straight

line AB. For dn ¼ df
n dt ¼ df

t

� �
there is complete separation (sliding)

at the interface for mode-I (mode-II) deformations. For mode-I



(a)

(b)

Fig. 2. Traction–separation relations at cohesive interface; (a) Mode-I, (b) Mode-II.
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deformations, the separated surfaces are traction free and for
mode-II deformations the sliding surfaces are assumed to be
smooth or frictionless. Should the relative displacement dn(dt)
exceeding d0

n d0
t


 �
but less than df

n df
t

� �
begin to decrease, then the

traction–separation relation follows the path CO for dn and COD
for dt. The area of the triangle OAB equals the critical strain energy
release rate GIc (GIIc) for mode-I (mode-II) deformations.

Values of GIc (GIIc) and r0
n r0

t


 �
characterize the interface. Here

r0
n r0

t


 �
equals the interface strength for mode-I (mode-II) deforma-

tions. The slope, ks, of straight line OA is estimated. Then

ri ¼ ksdi; d0
i ¼

r0
i

ks
; i ¼ t;n ð16:a;bÞ

where ks is called the initial interface stiffness. Thus, the delamina-
tion initiates when rn ¼ r0

n rt ¼ r0
t


 �
, and complete separation oc-

curs when

df
n ¼

2GIc

r0
n
; df

t ¼
2GIIc

r0
t

ð17Þ

The interface stiffness ks should be such that it does not make the
system of simultaneous equations to be solved ill-conditioned and
effectively prevents interpenetration between two contacting layers
during compressive normal traction on the interface. One way to se-
lect the value of ks for a beam of thickness H is to set

ks ¼
H
K max r0

n;r
0
t


 �
ð18Þ

where K is a small number.

2.1.4.2. Mixed mode deformations. For mixed-mode deformations,
dn > 0 and dt – 0. We follow the approach of Ref. [8], and postulate
that the delamination at a point on the interface initiates when

rn

r0
n

� �2

þ rt

r0
t

� �2

¼ 1 ð19Þ
and complete separation occurs when

GI

GIc

� �b

þ GII

GIIc

� �b

¼ 1 ð20Þ

Here rn and rt are the normal and the tangential tractions on the
interface under mixed-mode deformations. Similarly, GI (GII) is the
strain energy release rates for mode-I (mode-II) deformations for
mixed-mode loading. For composites, the exponent b is usually as-
signed the value 1 or 2; here we have taken it to equal 2. The exact
value needs to be determined from the test data.

We define the equivalent mixed-mode relative displacement de

by

de ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdtÞ2 þ ðdnÞ2

q
¼ dt

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

q
¼ dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

q
ð21Þ

where ldn = dt, and note that l = 0 for mode-I, and l ?1 for mode-
II deformations.

Assuming that under mixed-mode loading, the interface stiff-
ness for the tangential and normal traction–separation modes also
equals ks, then substituting for rn and rt in terms of dt and dn into
Eq. (19), the separation will initiate when

dn

r0
n

� �2

þ dt

r0
t

� �2

¼ 1=ðksÞ2 ð22Þ

or equivalently,

d0
e ¼ d0

t d
0
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

d0
t


 �2 þ ld0
n


 �2

vuut ð23Þ

where d0
t and d0

n ar given by Eq. (16.b). We assume that the mode-
mixity ratio l at a point on the interface stays constant during the
delamination process, however, the value of l can vary from point
to point. The value of l at a point is determined at the instant dn be-
comes positive. This assumption is reasonable since delamination
usually occurs very quickly and any error introduced by a change
in the mode mixity will be negligible.

In order to find the value df
e of de at complete separation, we as-

sume that the effective traction–effective separation relation under
mixed-mode loading is also triangular, i.e., similar to that for
mode-I and mode-II loadings. Thus values of GI and GII at complete
separation are given by

GIð1þ l2Þ ¼ ksd
0
ed

f
e

2
; GII ¼ l2GI ð24Þ

Substitution from Eq. (24) into Eq. (20) gives

df
e ¼

2ð1þ l2Þ
ksd

0
e

1
GIc

� �b

þ l2

GIIc

� �b
" #�1=b

ð25Þ

Because of the assumption of l staying constant at a point, should
unloading occur for d0

e < de < df
e, the unloading curve follows a path

similar to the straight line CO in Fig. 2a for mode-I deformations.

2.2. Equations for the layerwise TSNDT

2.2.1. Displacement field
For simplicity we consider a 3-layer curved sandwich beam and

denote displacements of a point in the top, the central, and the bot-
tom layers by superscripts t, c and b, respectively. With the origin
of the curvilinear coordinate axes located at the geometric centroid
of the rectangular cross-section (e.g., see Fig. 3), we assume the fol-
lowing displacement field in the three layers of the beam.

uc
aðy1; y3; tÞ ¼

X3

i¼0

ðy3Þ
i
uc

aiðy1; tÞ; a ¼ 1;3; jy3j < hc ð26:aÞ



(a) (b)

Fig. 3. Cross-section of a 3-layer beam ((a) before delamination, (b) after
separation).
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ut
aðy1; y3; tÞ ¼ uc

aðy1;h
c
; tÞ þ ut

a0ðy1; tÞ þ
X3

i¼1

ððy3Þ
i � ðhcÞiÞut

aiðy1; tÞ;

a ¼ 1;3;hc
6 y3 6 hc þ ht

ð26:bÞ

ub
aðy1;y3; tÞ ¼ uc

aðy1;�hc
; tÞ � ub

a0ðy1; tÞ þ
X3

i¼1

ððy3Þ
i � ð�hcÞiÞub

aiðy1; tÞ;

a¼ 1;3;�ðhb þ hcÞ6 y3 6�hc

ð26:cÞ

Here uc
10 and uc

30 are, respectively, the axial and the transverse dis-
placements of a point on the beam mid-surface, uc

ai;u
b
ai and

ut
aiða ¼ 1;3; i ¼ 1;2;3Þ may be interpreted as generalized axial and

transverse displacements of a point, ut
a0 and ub

a0ða ¼ 1;3Þ equal
jumps, if any, in displacements at the top and the bottom interfaces,
respectively. The bottom interface is between the bottom layer and
the core, and the top interface between the top layer and the core.
We note that the displacement field given by Eq. (26) allows for the
thickness of each layer to change, and incorporates both transverse
normal and transverse shear strains. It can be written as

uaðy1; y3; tÞ ¼
X3

j¼0

‘c
j ðy3Þuc

ajðy1; tÞ þ ‘t
j ðy3Þut

ajðy1; tÞ þ ‘b
j ðy3Þub

ajðy1; tÞ
� �

;

a ¼ 1;3

ð27Þ

where

‘c
j ðy3Þ ¼

ðhcÞj; hc
6 y3 6 hc þ ht

ðy3Þ
j
; jy3j < hc

ð�hcÞj; �ðhb þ hcÞ 6 y3 6 �hc

8>><
>>: ; j ¼ 0;1;2;3 ð28:aÞ

‘t
j ðy3Þ ¼

ðy3Þ
j � ðhcÞj; hc

6 y3 6 hc þ ht

0; �ðhb þ hcÞ 6 y3 6 hc

(
; j ¼ 1;2;3

ð28:bÞ

‘b
j ðy3Þ ¼ 0; �hc

6 y3 6 hc þ ht

ðy3Þ
j � ð�hcÞj; �ðhb þ hcÞ 6 y3 6 �hc

8><
>: ; j ¼ 1;2;3

ð28:cÞ

‘t
0ðy3Þ ¼

1; hc
6 y3 6 hc þ ht

0; �ðhb þ hcÞ 6 y3 6 hc

(
;

‘b
0 ¼

0; �hc
6 y3 6 hc þ ht

�1; �ðhb þ hcÞ 6 y3 6 �hc

( ð28:dÞ
We can thus rewrite Eq. (26) as

uaðy1; y3; tÞ ¼
X12

j¼1

Ljðy3Þuajðy1; tÞ; a ¼ 1;3 ð29Þ

where

Lj ¼
‘c

j�1; j ¼ 1;2;3;4

‘t
j�5; j ¼ 5;6;7;8

‘b
j�9; j ¼ 9;10;11;12

8>><
>>: ; uaj ¼

uc
aðj�1Þ; j ¼ 1;2;34

ut
aðj�5Þ; j ¼ 5;6;7;8

ub
aðj�9Þ; j ¼ 9;10;11;12

8>><
>>:

ð30Þ

Displacements dn and dt at the interface between the top layer and
the core appearing in Eq. (16.a) are related to the displacement field
ua(y1,y3, t) by substituting from Eq. (29) into Eq. (9). Thus for the top
layer

dt ¼ R1aut
a0; dn ¼ R3aut

a0;a ¼ 1;3; summed on a ð31Þ
2.2.2. Governing equations
We multiply both sides of Eq. (8a,b) with Lj(y3) (j = 1, 2, . . . , 12),

integrate both sides of the resulting equation over the beam thick-
ness (i.e., with respect to y3), and obtain
Z hcþht

�hc�hb
Ljðy3Þq0€u1H1dy3¼

Z hcþht

�hc�hb
Ljðy3Þ

@T11

@y1
þ@ðH1T13Þ

@y3
þ1

R
T31þH1f1

� �
dy3Z hcþht

�hc�hb
Ljðy3Þq0€u3H1dy3¼

Z hcþht

�hc�hb
Ljðy3Þ

@T31

@y1
þ@ðH1T33Þ

@y3
�1

R
T11þH1f3

� �
dy3

ð32Þ

Substituting from Eq. (30) into Eq. (32) and integrating by parts the
2nd term in brackets in the integrand on the right-hand side of Eq.
(32) with respect to y3, we get

Aji€u1i¼
@Mj

11

@y1
�Mj

13þ
1
R

Mj
31þ�f j

1þBj
13þC

j
13; i; j¼1;2; � � � ;12 ð33:aÞ

Aji€u3i¼
@Mj

31

@y1
�Mj

33�
1
R

Mj
11þ�f j

3þBj
33þC

j
33; i; j¼1;2; . . . ;12 ð33:bÞ

where

Mj
mnðy1;tÞ¼

Z hcþht

�hc�hb
Ljðy3ÞTmnHðnÞdy3; Hð1Þ ¼1;Hð3Þ ¼H1;m;n¼1;3 ð34:aÞ

Mj
mnðy1;tÞ¼

Z hcþht

�hc�hb

dLjðy3Þ
dy3

TmnHðnÞdy3; Hð1Þ ¼1;Hð3Þ ¼H1;m;n¼1;3 ð34:bÞ

Bj
13ðy1;tÞ¼LjðhcþhtÞH1T13ðhcþht

;tÞ�Ljð�hc�hbÞH1T13ð�hc�hb
;tÞ ð34:cÞ

Bj
33ðy1;tÞ¼LjðhcþhtÞH1T33ðhcþht

;tÞ�Ljð�hc�hbÞH1T33ð�hc�hb
;tÞ ð34:dÞ

Cj
13ðy1;tÞ¼ðLjðhc�Þ�LjðhcþÞÞH1

�f C�
1 ðh

cÞþðLjð�hc�Þ�Ljð�hcþÞÞH1
�f C�

1 ð�hcÞ ð34:eÞ
Cj

33ðy1;tÞ¼ðLjðhc�Þ�LjðhcþÞÞH1
�f C�

3 ðh
cÞþðLjð�hc�Þ�Ljð�hcþÞÞH1

�f C�
3 ð�hcÞ ð34:fÞ

�f j
aðy1;tÞ¼

Z hcþht

�hc�hb
Ljðy3ÞfaH1dy3;a¼1;3 ð34:gÞ

Ajiðy1;tÞ¼
Z hcþht

�hc�hb
Ljðy3ÞLiðy3Þq0H1dy3 ð34:hÞ

The quantity Mj
mn equals jth order moment of the stress Tmn about

the y2 -axis. Quantities Bj
13 and Bj

33 equal, respectively, jth order mo-
ments about the y2-axis of the tangential surface traction T13 and
the normal surface traction T33 applied on the top and the bottom
surfaces of the beam, and quantities Cj

13 and Cj
33 equal, respectively,

jth order moments about the y2-axis of the tangential surface trac-
tion �f C�

1 and the normal surface traction �f C�
3 acting on the cohesive

interface of the beam. Similarly, �f j
a equals jth order moment of the

body force fa about the y2-axis, and Aji is the inertia tensor associ-
ated with the generalized displacements u1i and u3i. The quantity
Lj(�hc±) equals the value of the function Lj(y3) at the interface be-
tween the core and the bottom layer, and hc± equals the value of
y3 on C�C .
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Assuming that we have cohesive surfaces at the two interfaces
between the core and the two surrounding layers, �f C�

1 ðh
cÞ and

�f C�
3 ðh

cÞ represent, respectively, the tangential and the normal trac-
tions on the cohesive interface between the top layer and the core.
Similarly, �f C�

1 ð�hcÞ and �f C�
3 ð�hcÞ represent, respectively, the tan-

gential and the normal tractions on the cohesive interface between
the bottom layer and the core. These tractions are measured per
unit area in the reference configuration, and are related to the
cohesive stresses rn and rt given by Eq. (8.f). Substituting for �f C�

1

and �f C�
3 from the traction–separation relations similar to those in

Eq. (16.a) into Eqs. (34.e) and (34.f) we express Cj
13 and Cj

33 in terms
of displacements dn and dt, or equivalently in terms of ut

a0 and ub
a0

because of Eq. (31).
Eq. (33a, b) governing deformations of the beam incorporates

surface tractions acting on the top and the bottom surfaces of
the beam. Substitution for Tmn in terms of displacement gradients
from Eqs. (12) and (14) into Eq. (34) gives expressions for moments
Mj

mn;M
j
mn and Cj

mn in terms of displacements. Substituting these in
Eq. (33), we obtain nonlinear coupled partial differential equations
(PDEs) for u1j and u3j for the TSNDT. These 24 PDEs involve second-
order derivatives of u1j and u3j with respect to y1 and time t, and
are to be solved under pertinent initial and boundary conditions.

We consider the case of zero initial displacements and veloci-
ties. Thus

u0
ajðy1; tÞ ¼ 0; _u0

ajðy1; tÞ ¼ 0 a ¼ 1;3; j ¼ 1;2; . . . ;12 ð35:a;bÞ

Boundary conditions at a clamped, simply supported and traction
free edge, say y1 = 0, respectively, are

uajð0; tÞ ¼ 0;a ¼ 1;3; j ¼ 1;2; � � � ;12 ð36:aÞ
u3jð0; tÞ ¼ 0;Mj

11ð0; tÞ ¼ 0; ð36:bÞ
Mj

11ð0; tÞ ¼ 0;Mj
31ð0; tÞ ¼ 0 ð36:cÞ
3. Finite element formulation of the problem

3.1. Weak formulation

Let Hj
1 and Hj

3 be smooth functions of y1�½0;L�. We take the in-

ner product of both sides of Eqs. (33.a) and (33.b) with Hj
1 and Hj

3,
respectively, integrate the resulting equations with respect to y1 on

½0;L�, and then integrate by parts the terms involving
@Mj

11
@y1

and
@Mj

31
@y1

to arrive at the following equations:

Z L

0
Hj

1ðAji €u1iÞdy1¼
Z L

0
�@H

j
1

@y1
Mj

11þHj
1

1
R

Mj
31þ�f j

1þBj
13þC

j
13�Mj

13

� � !
dy1þB11

Z L

0
Hj

3ðAji €u3iÞdy1¼
Z L

0
�@H

j
3

@y1
Mj

31þHj
3

�f j
3þBj

33þC
j
33�Mj

33�
1
R

Mj
11

� � !
dy1þB31

ð37Þ

where

B11 ¼ Hj
1ðLÞM

j
11ðLÞ �Hj

1ð0ÞM
j
11ð0Þ;

B31 ¼ Hj
3ðLÞM

j
31ðLÞ �Hj

3ð0ÞM
j
31ð0Þ ð38Þ

Here indices i, j = 1, 2, . . . , 12. If one thinks of Hj
1 and Hj

3 as virtual
displacements that vanish at boundary points where displacements
are prescribed, then Eq. (37) states the principle of virtual work.
Alternatively, Eq. (37) expresses a weak formulation of the problem
since it involves first-order derivatives of u1 and u3 with respect to
y1 whereas the PDEs (33) have second-order derivatives of u1 and u3

with respect to y1. Since T11, T13, T31 and T33 are nonlinear functions
of displacement gradients, Eq. (37) is nonlinear in u1 and u3.
3.2. Derivation of ordinary differential equations

We discretize the curve along the y1-axis into one-dimensional
finite elements (FEs) of not necessarily the same length. Let there
be N nodes on this curve and W1(y1), W2(y1), . . . , WN(y1) be the
FE basis functions. We write

uajðy1; tÞ ¼
XN

i¼1

Wiðy1Þ~daijðtÞ; j ¼ 1;2; . . . ;12; a ¼ 1;3 ð39Þ

Thus we have 24 N unknown functions ~daijðtÞ;a ¼ 1;3; i ¼ 1;
2; . . . ;N; j ¼ 1;2; . . . ;12. We write these as the 24 N-dimensional
vector d(t), and the displacement field uaj(y1, t) as 24-dimensional
vector ~uðy1; tÞ. These can be written as

f~uðy1; tÞg ¼ ½;ðy1Þ�fdðtÞg
f�uðy1; tÞg ¼ fu1j u3jgT

; j ¼ 1;2; . . . ;12
ð40Þ

where [;] is 24 � 24 N matrix and {d} is 24 N � 1 matrix. In index
notation, Eq. (40) becomes

~uiðy1; tÞ ¼ ;ijðy1ÞdjðtÞ; i ¼ 1;2; . . . ;24; j ¼ 1;2; . . . ;24N ð41Þ

We can also write the displacement fields u1(y1,y3, t) and u3(y1,y3, t)
as

u1ðy1; y3; tÞ
u3ðy1; y3; tÞ

� 

¼ ½/ðy3Þ�½;ðy1Þ�fdðtÞg ¼ ½Uðy1; y3Þ�fdðtÞg ð42Þ

where ½/ðy3Þ� ¼
Lðy3Þ 0

0 Lðy3Þ

� �
is 2 � 24 matrix, [;(y1)] is 24 � 24 N

matrix and [U] is 2 � 24 N matrix.
We use the Galerkin formulation and take the same basis func-

tions for the test functions Hj
1;H

j
3 as those for the trial solutions

u1j, u3j; e.g., see Eq. (39). That is

Hj
aðy1Þ ¼

XN

i¼1

Wiðy1Þc
j
ai; a ¼ 1;3; j ¼ 1;2; . . . ;12 ð43Þ

where cj
ai are 24 N constants.

Substitution from Eqs. (40) and (43) into Eq. (37) and requiring
that the resulting equations hold for all values of constants cj

ai gives
the following set of coupled nonlinear ordinary differential equa-
tions (ODEs).

M€d ¼ Fext þ Fc � F intðdÞ; ð44Þ

where

M ¼
Z L

0
½;ðy1Þ�

T½A�½;ðy1Þ�dy1; ½A� ¼
A 0
0 A

� �
ð45:aÞ

Fext ¼
Z L

0
½;ðy1Þ�

T
vec �f j

1 þ Bj
13

� �
vec �f j

3 þ Bj
33

� �
8><
>:

9>=
>;dy1 þ ½;ðLÞ�

T
vec Mj

11ðLÞ
� �

vec Mj
31ðLÞ

� �
8><
>:

9>=
>;

� ½;ð0Þ�T
vec Mj

11ð0Þ
� �

vec Mj
31ð0Þ

� �
8><
>:

9>=
>; ð45:bÞ

Fc ¼
Z L

0
½;ðy1Þ�

T
vec Cj

13

� �
vec Cj

33

� �
8><
>:

9>=
>;dy1 ð45:cÞ

F int ¼
Z L

0
½BL1�T vec Mj

11

� �
vec Mj

31

� �
vec Mj

13� 1
RMj

31

� �
vec Mj

33þ 1
RMj

11

� �n oT
dy1

ð45:dÞ
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½BL1� ¼

diag @
@y1

� �
0

0 diag @
@y1

� �
diagð1Þ 0

0 diagð1Þ

2
666664

3
777775½;ðy1Þ�;

diagðfÞ ¼ diagonalff f . . . fg; ð12 termsÞ

ð45:eÞ

diagðf jÞ ¼ diagonal f1 f2
. . . f12


 �
; vecðf jÞ ¼ f1 f2

. . . f12
� �

ð45:fÞ

Here M = MT is the consistent mass matrix, the 12 x 12 matrix A is
given by Eq. (34.h), Fext represents the generalized 24 N-dimen-
sional nodal force (Fext is 24 N � 1 matrix) equivalent to the exter-
nally applied surface tractions on boundaries and the body force
(e.g., gravity). The 24 N-dimensional vector Fint represents forces
due to internal stresses, and is a nonlinear function of the general-
ized nodal displacement d since stresses T11, T13, T31 and T33 are
nonlinear functions of u1 and u3. Fc represents the force vector
due to tractions applied on the cohesive interface. The weak formu-
lation involves only first-order derivatives of generalized displace-
ments. Thus C0 basis functions can be used to numerically analyze
the problem. For example, for plates made of linear elastic materi-
als, Qian et al. [16] and Xiao et al. [17] have used, respectively, basis
functions derived by the moving least squares approximation and
radial basis functions in meshless methods to study transient defor-
mations of thick plates using Kth order shear and normal deformable
plate theory. Batra and Aimmannee [29] have used the same plate
theory and the FE basis functions to analyze free vibrations of a
plate. Here we consider material and geometric nonlinearities and
use the TSNDT.

Integrals in Eq. (45) are numerically evaluated by using three
Gauss integration points in each FE along the y1 -axis except in
Eqs. (45.c) and (45.d) where we use only one Gauss point in a FE
along the y1-axis. Recall that jump displacements at nodes on the
cohesive interface are included in d.

If the edge, y1 = 0, where node 1 is located, of the beam is
clamped, simply supported or free, boundary conditions there
are, respectively, given by Eqs. (46), (47) and (48).

~da1jðtÞ ¼ 0; j ¼ 1;2; . . . ;12; a ¼ 1;3; ð46Þ

~d31jðtÞ ¼ 0; Mj
11ð0; tÞ ¼ 0; j ¼ 1;2; . . . ;12; ð47:a;bÞ

Mj
11ð0; tÞ ¼ 0;Mj

31ð0; tÞ ¼ 0; j ¼ 1;2; . . . ;12: ð48Þ
3.3. Solution of nonlinear ODEs

We use the conditionally stable central-difference method to
integrate the coupled nonlinear ODEs (44). That is, with the
notation

dnþ1 ¼ dðtnþ1Þ; ð49Þ

we have

dnþ1 ¼ dn þ Dt _dn þ Dt2

2
€dn; ð50:aÞ

€dnþ1 ¼ M�1½Fextðtnþ1Þ þ Fcðdnþ1Þ � F intðdnþ1Þ�; ð50:bÞ

_dnþ1 ¼ _dn þ Dt
2
ð€dnþ1 þ €dnÞ: ð50:cÞ

The critical time step size to compute a stable solution is deter-
mined by finding the maximum frequency, xmax, of free vibrations
and taking Dt 6 Dtcrit, Dtcrit = 2/xmax. Ideally, xmax should be found
after every time step since frequencies of a structure change as it is
deformed. The accuracy of the solution can be improved by taking
Dt� Dtcrit but at the cost of increasing the computational time.

Results presented in Section 4 have been computed with a con-
sistent mass matrix and Dt = 0.9Dtcrit for a linear problem but
Dt = 0.5Dtcrit for a nonlinear problem. For the nonlinear problems,
xmax found from analyzing frequencies of the undeformed beam is
used to ascertain Dtcrit.

For a static problem, the nonlinear algebraic Eq. (44) is solved
for d by the modified Newton–Raphson method. That is, we itera-
tively solve

F intðdÞ � FcðdÞ ¼ Fext ð51Þ

by first writing it as

KDd ¼ �ðF intð�dÞ � Fcð�dÞ � FextÞ;K ¼ @ðF
int � FcÞ
@d

					
d¼�d

; d ¼ �dþ Dd

ð52Þ

The iterative process is terminated when the norm of the residual
load vector, R, defined by

R ¼ F intðdÞ � FcðdÞ � Fext; R ¼ maxðjRjÞN=SumðjFextjÞ ð53Þ

is less than 0.05%. Recall that N equals the number of nodes. For
every load step the stiffness matrix K is evaluated only once.

4. Example problems

We use the more common notation and replace y1 and y3 by x
and z, respectively. Subscripts 1, 2 and 3 represent directions along
the x-, the y- and the z-axes, respectively. When analyzing prob-
lems without considering geometric nonlinearities, we omit all
nonlinear terms in expressions for the strain components and rota-
tion of the cohesive interface, and note that differences among the
three stress tensors, namely, the 1st and the 2nd Piola–Kirchhoff
and the Cauchy stress tensors are negligible.

4.1. Delamination in quasistatic deformations of a pre-delaminated
linear elastic beam

4.1.1. Mode-I deformations under monotonically increasing load
We study the initiation and propagation of delamination in

mode-I deformations of a double cantilever beam (DCB) and com-
pare computed results with the numerical results of Ref. [7], and
experimental findings of Ref. [18]. We note that the beam under-
goes mode-I deformations when �Db

3 ¼ Dt
3 ¼ D3 in Fig. 4a. In order

to use the 3-layer formulation described above, we divide the bot-
tom layer of the DCB into two layers of equal thickness, and intro-
duce the cohesive interface only between the upper two layers. The
thickness of the top, the middle and the bottom layers of the beam
are given by ht ¼ h;2hc ¼ h

2 and hb ¼ h
2, respectively. Thus the z-

coordinate of points on the bottom and the top surfaces of the
DCB equal �0.75h and 1.25h, respectively.

Boundary conditions at the clamped edge x = 0 are given by Eq.
(46). We enforce boundary conditions �Db

3 ¼ Dt
3 ¼ D3 at x ¼ L by

applying

uc
30ðLÞ ¼ �D3;u

t
30ðLÞ ¼ 2D3;u

b
30ðLÞ ¼ 0 ð54aÞ

uc
3iðLÞ ¼ ub

3iðLÞ ¼ ut
3iðLÞ ¼ 0; i ¼ 1;2;3 ð54bÞ

Mj
11ðLÞ ¼ 0; j ¼ 1;2; . . . ;12 ð54cÞ

The displacement D3 is applied in increments of 0.01 mm. Forces Pt
3

and Pb
3 are evaluated by integrating computed values of

T31ðLÞ ¼ rxzðLÞ for the upper and the lower layers of the DCB,
respectively, and multiplying the result with the beam width B.
For this problem, dnðy1Þ ¼ ut

30ðy1Þ.



(a)

(b)

Fig. 4. (a) Sketch of a pre-delaminated beam with either point loads or transverse
displacements applied at the ends, (b) FE mesh on the reference surface of the
beam.

Fig. 5. For quasistatic mode-I deformations of the DCB specimen, comparison of the
presently computed load Pt

3


 �
-end displacement Dt

3


 �
curves with numerical results

of Ref. [7] and experimental findings of Ref. [18]. (a) and (b) r0
n ¼ 60 MPa (181

nodes), (c) load vs. displacement curves for two values, 60 and 30 MPa, of the
cohesive strength r0

n .

Fig. 6. Load Pt
3 vs. delaminated length, r0

n ¼ 60 MPa (181 nodes).
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Material and geometric parameters are assigned following val-
ues taken from [7].

E1 ¼ 130 GPa; G13 ¼ 2:0 GPa; GIc ¼ 275 Jm�2; r0
n ¼ 60 MPa

E2 ¼ E3 ¼ 7:5 GPa; t12 ¼ t13 ¼ 0:3; t23 ¼ 0:3
L ¼ 100 mm; a0 ¼ 45 mm; h ¼ 2 mm; B ¼ 15 mm

ð55Þ

Here a0 equals the initial delaminated length and 2h the total thick-
ness of the DCB. The FE mesh shown in Fig. 4b has 2-node elements
with element size in the in-tact region equal to half of that in the
initial delaminated region. The experimental value of the tensile
strength r0

n was not provided in [18] and was assumed to be
60 MPa in [7]. Here results have been computed for two values,
30 and 60 MPa, of r0

n that are representative of the matrix strength.
In the delaminated region, integrals in Eq. (31) over the thick-

ness are written as the sum of two integrals, one from �(hc + hb)
to hc and the other from hc to (hc + ht) with the interface between
the core and the top layer regarded as traction free. Thus the effec-
tive stiffness of the delaminated beam is less than that of the in-
tact beam.

The computed load vs. edge displacement curves for r0
n ¼ 30

and 60 MPa, two FE meshes and two values of the initial stiffness
ks of the cohesive traction–separation relation are compared in
Fig. 5 with those reported in Refs. [7,18]. Furthermore, in Fig. 6,
the presently computed load vs. the delaminated length curve is
compared with that given in [7]. It is clear from these plots that
the present work accurately analyzes mode-I delamination of a
DCB specimen. Effects of the initial stiffness (K ¼ 10�8 or 10�9 in
Eq. (18)) in the cohesive traction separation relation and of the
interfacial strength (30 or 60 MPa) on the computed load–displace-
ment curves are insignificant.

The variations with the edge displacement of the strain energy
We stored in the DCB, the work done by external forces and the en-
ergy dissipated during delamination are exhibited in Fig. 7. The en-
ergy We is evaluated by integrating the elastic energy density W (cf.
Eq. (10)) over the beam domain, the work Wp of external forces
equals

R
Pt

3dDt
3 þ

R
Pb

3dDb
3, and the energy Wd dissipated during

delamination equals
R

CC
BGIcdy1. It is clear that the delamination

begins to grow when the edge displacement and the load equal
about 1.5 mm and 45 N, respectively. The energy dissipated during
delamination is comparable to the elastic energy stored in the
beam. The maximum percentage difference 100(Wp �We �Wd)/
Wp equals 0.6% signifying that the balance of energy is well
satisfied.

The line PQR perpendicular to the centroidal axis at x = 40mm
in the reference configuration is deformed into line segments P0Q0

and Q00R0 shown in Fig. 8. Thus abutting particles of the lower and
the upper layers that occupied the place Q in the reference config-
uration are deformed into places Q00 and Q0 respectively, and Q0Q00
equals the jump dnðxÞ ¼ ut
30ðxÞ at x = 40 mm. It is also evident that

segments PQ and QR are rotated, respectively, into lines P0Q0 and
Q00R0 that have slopes of opposite signs.

4.1.2. Mode-I deformations under cyclic load
We now study mode-I deformations of the DCB analyzed in sub-

section 4.1.1 during loading, unloading and reloading. We use
increments of 0.01 mm to first increase D3 at the edge x ¼ L from



Fig. 7. Variation with the edge displacement of the work done by external forces,
strain energy stored in the beam and energy dissipated during delamination,
r0

n ¼ 60 MPa (181 nodes).

Fig. 8. Deformed configurations of a line initially perpendicular to the centroidal
axis at x = 40 mm when D3 = 3.42 mm.

Fig. 9. For r0
n ¼ 60 MPa and quasistatic mode-I deformations of the DCB, load Pt

3


 �
-

edge displacement Dt
3


 �
curves during loading, unloading and reloading. The

analytical results are obtained by using equations given in [7], and numerical
results were computed using 181 nodes.

Fig. 10. Variation with the edge displacement of the work done by external forces,
strain energy stored in the beam and energy dissipated during delamination.
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0 to 2 mm, then decrease D3 to zero, and finally increase D3 to
3 mm. Variations with D3 of the load and different components
of energy are shown in Figs. 9 and 10, respectively. The load vs. dis-
placement curve in Fig. 9 is given by OAB during initial loading, by
BO during unloading to zero value of D3, and by OBC during subse-
quent reloading. From results depicted in Fig. 10 we see that the
energy dissipated because of delamination during unloading is
zero (e.g., the curve AE in Fig. 10) and no additional energy is dis-
sipated till the specimen has been reloaded to the state (corre-
sponding to point A in Fig. 10) from which it was unloaded. The
work done by external force follows the path OC during initial
loading and CDE during unloading. It is clear that during the full
cycle of loading and unloading the net work done by external
forces corresponding to point E in Fig. 10 equals the energy used
to damage the cohesive layer of the DCB as evidenced by a decrease
in its stiffness from the slope of line OA to the slope of line OB in
Fig. 9. The area of triangle OAB equals the energy corresponding
to point E in Fig. 10. The strain energy of deformation follows the
path OFB during initial loading and the path BO during unloading.
Thus all of the energy stored in the body is recovered during
unloading as should be the case for an elastic problem. The curve
BO is essential parallel to the curve CDE with the vertical distance
between the two curves equaling the energy corresponding to
point A or that used to damage the cohesive layer. These results
suggest that the present software correctly predicts deformations
during loading, unloading and reloading process.

4.1.3. Mode-II deformations under monotonically increasing load
When the beam shown in Fig. 4a is deformed by prescribing dis-

placements Db
3 ¼ Dt

3 ¼ D3 and the beam undergoes mode-II defor-
mations, the beam is called the End Load Split (ELS) specimen
[19]. We assume that the beam is made of an isotropic material
with following values of material and geometric parameters taken
from [20,21].

E ¼ 150 GPa; m ¼ 0:25; GIIc ¼ 1:45 kJ m�2; r0
t ¼ 80 MPa

L ¼ 100 mm; a0 ¼ 50 mm; 2h ¼ 3 mm; B ¼ 10 mm ð56Þ

Presently computed numerical results are compared with the ana-
lytical results based on the LEFM approach reported in [20] and
numerical results given in [21] that were computed with a user de-
fined cohesive element subroutine implemented in ABAQUS.

Boundary conditions Db
3 ¼ Dt

3 ¼ D3 for mode-II deformations of
the beam shown in Fig. 4a are satisfied by setting

uc
30ðLÞ ¼ D3;u

t
30ðLÞ ¼ 0;ub

30ðLÞ ¼ 0 ð57:aÞ
uc

3iðLÞ ¼ ub
3iðLÞ ¼ ut

3iðLÞ ¼ 0;Mj
11ðLÞ ¼ 0; j ¼ 1;2; . . . ;12; i ¼ 1;2;3 ð57:bÞ

The displacement D3 is applied in increments of 0.05 mm and val-
ues of P3 ¼ Pt

3 þ Pb
3 are found by integrating over the thickness com-

puted values of T31ðLÞ ¼ rxzðLÞ for the upper and the lower layers of
the beam, and multiplying the result with the beam width B. The
presently computed load P3-displacement D3 curves for mode-II
delamination exhibited in Fig. 11a are close to those reported in
Refs. [20,21]. The load vs. displacement curves in Fig. 11b for two
values, 60 and 80 MPa, of r0

t , and two different FE meshes, are
essentially identical to each other signifying negligible effect of
the precise value of r0

t used to compute results, and whether 81
or 121 nodes are used to discretize the length L of the beam. The
beam begins to delaminate when D3 = 14.8 mm as signified by a
drop in the load in Fig. 11a. The presently computed peak load dif-
fers from that reported in Refs. [20,21] by 2.7% and 1.8%, respec-
tively. With an increase in the delamination length the load
continues to drop till D3 = 23 mm at which instant the load begins



Fig. 11. Load (P3)-edge displacement (D3) curves for mode-II deformations using 81
nodes. (a) Comparison of present results with those of [20,21] (121 nodes), (b) load
vs. displacement curves for two values, 60 and 80 MPa, of the cohesive strength r0

t ,
and two FE meshes having 81 and 121 nodes.

Fig. 12. Load Pt
3 vs. delaminated length, r0

t ¼ 80 MPa (121 nodes).

Fig. 13. Variation of rxz at x = 40 mm for two values of the edge displacement,
D3 (H = 2 h).
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to increase because the delamination has propagated to the end of
the beam as depicted in Fig. 12.

The delaminated lengths for D3 = 14.3 mm and 17.5 mm are
50 mm and 77 mm, respectively. That is, the interface between
the lower surface of the top beam and the upper surface of the bot-
tom beam at x = 40 mm is not delaminated when D3 = 14.3mm but
is delaminated when D3 = 17.5mm. We have plotted in Figs. 13
and 14, respectively, the variation at x = 40 mm of rxz and rxx for
D3 = 14.3 mm and 17.5 mm. It is clear that rxz and rxx are contin-
uous across the interface before delamination. The axial stress rxx

continuously varies from +422 MPa to �422 MPa from the bottom
to the top surface. Subsequent to delamination, the two layers de-
form independently and rxz equals zero on the interface since the
contacting smooth delaminated surfaces have zero tangential trac-
tions. The through-the-thickness variations of rxx in the two layers
of the beam are identical to each other since they have the same
bending stiffness and curvature.

The deformed configurations of line PQR initially perpendicular
to the centroidal axis at x = 40 mm when D3 = 17.5 mm are shown
in Fig. 15. Segments PQ and QR of line PQR are deformed into P0Q0

and Q00R0 that are parallel to each other. The distance Q0Q00 equals
the jump dtðxÞ ¼ ut

10ðxÞ at x ¼ 40 mm.

4.1.4. Mixed-mode deformations under monotonically increasing load
Following the terminology of [22], we call the fracture test

shown in Fig. 4a when Db
3 ¼ �D3; P

t
3 ¼ 0 and the beam undergoes

mixed mode deformations the Fixed Ratio Mixed Mode (FRMM)
test. We use following values of the material and the geometric
parameters taken from Ref. [21].

E1 ¼ 150 GPa; G13 ¼ 6:0 GPa; GIc ¼ 352 Jm�2;GIIc ¼ 1:45k Jm�2

E2 ¼ E3 ¼ 11:0 GPa; t12 ¼ t13 ¼ 0:25; t23 ¼ 0:45
L ¼ 100 mm; a0 ¼ 40 mm; 2h ¼ 3 mm; B ¼ 10 mm

r0
n ¼ 60 MPa; r0

t ¼ 80 MPa ð58Þ
The following boundary conditions at x ¼ L are imposed

uc
30ðLÞ ¼ �D3;u

c
3iðLÞ ¼ ub

3iðLÞ ¼ 0; i ¼ 1;2;3 ð59:aÞ

ub
30ðLÞ ¼ 0;Mj

11ðLÞ ¼ 0; j ¼ 1;2; . . . ;12; Mj
31ðLÞ ¼ 0;

j ¼ 5;6;7;8 ð59:b; c; eÞ

We call P3 ¼ �Pb
3 as the shear load. In Fig. 16 we have compared the

presently computed load ðP3Þ-edge displacement (D3) curve with
those of Ref. [21] for b = 1 and 2 in Eq. (20). The presently computed
peak value of the shear load differs from that of [21] by 9.1% and
8.6% for b = 1 and 2, respectively. It is clear that the value of b in
Eq. (20) affects the load when the delamination initiates. The ratio
of GI/GII vs. the delamination length shown in Fig. 17 is nearly con-
stant and equals 1.35 which agrees with the analytical result of [7].
Values of GI and GII are calculated from Eq. (24).

4.2. Delamination in quasistatic deformations of linear elastic curved
beam

We now study delamination growth in mode-I deformations of
a linear elastic, homogeneous and isotropic curved beam shown in
Fig. 18 that have been studied by Guedes et al. [23] and compare



Fig. 14. Variation of rxx at x = 40 mm for two values of the edge displacement, D3

(H = 2 h).

Fig. 15. For D3 = 17.5 mm, deformed configurations of a line initially perpendicular
to the centroidal axis at x = 40 mm (121 nodes).

Fig. 16. Comparison of the presently computed load ðP3Þ-edge displacement (D3)
curves for mixed-mode deformations using linear (b = 1) and quadratic (b = 2)
fracture energy criteria (cf. Eq. (20)) with those of ABAQUS reported in [21]
(r0

n ¼ 60 MPa, 121 nodes).

Fig. 17. Mode-mixity ratio vs. the delaminated length for mixed-mode deforma-
tions using r0

n ¼ 60 MPa.
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our results with those of [23]. The beam is deformed by applying
displacements Dt

3 ¼ �Db
3 ¼ D3 at points on the right edge. Values

of the material and the geometric parameters used to compute re-
sults are listed below.

E1¼4:5 GPa;G13¼1:0GPa; E2¼E3¼1:7GPa; t12¼t13¼0:3;
t23¼0:4

GIc¼800 Jm�2; GIIc¼1200Jm�2; r0
n¼r0

t ¼20MPa
hT ¼0:182p; hD¼0:063p; 2h¼11:6mm; B¼22:8 mm;R¼40h

ð60Þ
Here hT is the central angle of the entire beam, hD the central angle
of the initially delaminated part of the beam, and R is the mid-sur-
face radius. Boundary conditions for this problem are identical to
those of the problem studied in Section 4.1.1.

The presently computed load Pt
3


 �
vs. end displacement Dt

3


 �
curve shown in Fig. 19 agrees well with that of [23]. The two FE
meshes with 81 and 121 nodes give basically the same Pt

3 vs. Dt
3

curves, the presently computed peak load differs from that of
Ref. [23] by 4.1% and the two end displacements when the peak
loads occur differ by 1.3%. The load vs. the delaminated length
curve exhibited in Fig. 20 indicates that the load monotonically de-
creases with an increase in the delamination length. The variation
with Dt

3 of the strain energy We stored in the beam, the work done
by external forces and the energy dissipated during delamination,
displayed in Fig. 21, reveal that the maximum difference 100(Wp -
�We �Wd)/Wp equals 0.6% signifying that the balance of energy is
well satisfied.
4.3. Delamination growth in mode-I deformations of straight DCB with
consideration of all geometric onlinearities

We study the same problem as that analyzed by Allix and Cori-
gliano [11]. Whereas they used the displacement field of the Tim-
oshenko beam theory we use that of the TSNDT. We note that the
Timoshenko beam theory neglects transverse normal strains and
assumes the transverse shear strain to be constant. However, the
geometrically nonlinear TSNDT assumes quartic variation
through-the-thickness of the transverse normal strain and quintic
variation of the transverse shear strain. Values assigned to the
material and the geometric parameters taken from Ref. [11] are
listed below.

E1 ¼ 135 GPa; G13 ¼ 5:7 GPa; E2 ¼ E3 ¼ 10:0 GPa

t12 ¼ t13 ¼ 0:3; t23 ¼ 0:3;GIc ¼ 400 Jm�2 ð61Þ
L ¼ 20 mm; a0 ¼ 5:5 mm; 2h ¼ 0:4 mm; B ¼ 1 mm; r0

n ¼ 20 MPa:

Values of E2, E3 and Poisson’s ratios are not given in [11], and have
been estimated in the present work. Boundary conditions for this
problem are listed as Eq. (54).



Fig. 18. Curved DCB clamped at the left end and loaded by applying radial
displacements at the right end.

Fig. 19. Load Pt
3


 �
-right edge displacement Dt

3


 �
curves for the curved beam of

Fig. 18.

Fig. 20. Load Pt
3


 �
vs. delaminated length (121 nodes) for the curved beam of

Fig. 18.

Fig. 21. For the curved beam of Fig. 18, variation with the right edge displacement
of the work done by external forces, strain energy stored in the beam and energy
dissipated during delamination (121 nodes).

Fig. 22. For mode-I deformations of the DCB, comparison of load Pt
3


 �
vs. the edge

displacement Dt
3


 �
curves for the linear and the nonlinear analyses using 81 nodes.
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From the load Pt
3


 �
vs. the edge displacement Dt

3


 �
curves plotted

in Fig. 22, we conclude that the presently computed peak loads for
the linear and the nonlinear problems are essentially equal to each
other. However, for Dt

3 ¼ 1:5 mm, the presently computed load from
the nonlinear analysis exceeds that from the linear analysis by about
3%. Whereas delamination initiates for the same value of Dt

3 for the
Timoshenko beam theory used by Allix and Carigliano [11] and the
TSNDT used here, the two peak loads differ by 5.9%. For deformations
subsequent to the initiation of delamination the Pt

3 vs. Dt
3 curves

from the present work are close to that from the analytical solution
of Zou et al. [7] based on the linear theory but differ noticeably from
those reported by Allix and Corigliano [11].

4.4. Post-buckling deformations of pre-delaminated beam deformed in
axial compression

Pre-and post-buckling deformations of an initially debonded
[04/012/04] beam shown in Fig. 23a and analyzed in [24] are simu-
lated considering all geometric nonlinearities. The initial debonded
length located at the mid-span between the top face sheet and the
core equals a1. The nonsymmetrical perturbation shown in Fig. 23a
with P0 = 0.01 N is applied, and the beam with the right edge
clamped is deformed by applying axial displacement D1 on the left
edge in increments of 0.001 mm. Thus

uc
3ið0Þ ¼ ub

3ið0Þ ¼ ut
3ið0Þ ¼ 0; i ¼ 0;1;2;3

uc
1ið0Þ ¼ ub

1ið0Þ ¼ ut
1ið0Þ ¼ 0; i ¼ 1;2;3

ub
10ð0Þ ¼ ut

10ð0Þ ¼ 0; uc
10ð0Þ ¼ D1

ð62:aÞ

The point load P0 at ðL=2;H=2Þ is replaced by the surface traction
T31ðx;H=2Þ ¼ ðP0=eÞdðL=2� e=2;H=2Þ where d(x, H/2) is the delta
function centered at (x, H/2).

The compressive axial load P is found by integrating T11 (0,z)
over the thickness, multiplying the result with the beam width,
and taking the absolute value. Values of the geometric and the
material parameters taken from [24] are

E1¼139:3GPa;G13¼5:58 GPa; E2¼E3¼9:72 GPa; t12¼t13¼0:29; t23¼0:4

GIc¼87:6 Jm�2;GIIc¼315:2 Jm�2;r0
n¼44:54MPa;r0

t ¼106:9MPa ð63Þ
L¼50:8 mm; a1¼19:05mm;H¼2:59 mm; B¼5:08 mm

The presently computed results are compared with the numerical
solution of [24] and the experimental findings of [25]. In Figs. 24
and 25 we have exhibited the axial load vs. the engineering axial
strain, and the axial load vs. the mid-span deflections (or z-displace-
ments) of the top and the bottom surfaces. Results computed with
two FE meshes having 120 and 160 two-node elements are close to
each other. The drop in the axial load at an axial strain of about
0.25% indicates that the delamination begins to propagate. The
value of this load for the 121-node mesh exceeds that for the



Fig. 23. (a) Sketch of initially delaminated beam deformed in uniaxial compression, unequal perturbations applied at the top and the bottom surfaces, and sketch of the FE
mesh (not to scale).

Fig. 24. Axial compressive load P vs. the engineering axial strain.

Fig. 25. Axial compressive load P vs. the mid-span deflection of the top and the
bottom surfaces, symbol e represents the local buckling load (3404 N), symbol s

represents the load (4226 N) when the delamination begins to propagate. A blown-
up view of the plot for the deflection varying between �0.2 and 0.1 mm is shown in
the bottom figure.

Fig. 26. Axial compressive load P vs. delaminated length during axial compression
of an initially delaminated composite beam.
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161-node mesh by 5.0%, and the corresponding values of the axial
strains differ by 5.6%. The axial load and the axial strain for the
161-node mesh at the instant of delamination propagation differ
from the corresponding values reported by Wang and Zhang [24]
by 11% and 10%, respectively.

Whereas the presently computed axial load vs. the axial engi-
neering strain curve is close to that of Ref. [24], the axial load vs.
the mid-span deflection curves exhibited in Fig. 25 show some
deviations. With an increase in the axial compression, the upper
sub-laminate buckles locally and its mid-span deflection increases
significantly. The initiation of local buckling at an axial load of
3.4 kN is indicated by the symbol e. With continued axial com-
pression, both the axial load and the lateral deflections of the top
and the bottom surfaces monotonically increase till delamination
begins to propagate between the top layer and the core. As should
be clear from the plot of the axial load vs. the delaminated length
exhibited in Fig. 26, the axial load slowly decreases from 4.2 kN
with an increase in the delaminated length, and the delamination
is unstable till the delaminated length equals about 34.4 mm. Sub-
sequently, the axial load increases even though more of the inter-
face is being delaminated which indicates stable delamination
growth.

The lower sub-laminate begins to buckle when the load reaches
the collapse load of 6.7 kN. The difference between the presently
computed collapse load and that reported in [24] is 1.55%. How-
ever, both these values exceed the experimental value [25] of the
collapse load by about 24% as should be clear from the variation
of the axial load with the axial strain at the mid-span of the top
surface displayed in Fig. 27. One reason for this difference is the
failure of the material near the clamped ends not considered in
the studies. The initiations of local buckling and unstable delami-
nation growth agree with the experimental results of [25] except
that we overestimate the collapse load.

Variations with the axial strain of the strain energy stored in
the beam, the work done by external forces and the energy dissi-
pated due to delamination are exhibited in Fig. 28. The total en-
ergy dissipated during delamination is only about 4% of the work
done by external forces which is mostly stored as strain energy in
the beam. We have plotted in Fig. 29 the deformed shapes of lam-
inated beam corresponding to two values of the axial compressive
strain.

4.5. Transient deformations

4.5.1. Transient deformations of DCB
We study delamination growth in dynamic mode-II deforma-

tions of the beam studied in subsection 4.1.3, take mass density



Fig. 27. Axial compressive load P vs. axial engineering strain, du/dx, at the mid-span
of the top surface of the beam, symbol e represents the local buckling load
(3404 N), and symbol s represents the load when the delamination begins to
propagate (4226 N).

Fig. 28. Variation with the engineering axial strain of the work done by external
forces, strain energy stored in the beam, and the energy dissipated during
delamination.

Fig. 29. Deformed shapes of the beam corresponding to engineering axial strain of
(a) 0.33% and (b) 0.6%.

Fig. 30. Load P3 vs. edge displacement D3 curves for mode-II deformations with
D3 = 0.25 and 2.5 m/s (121 nodes).

Fig. 31. Axial compressive load P vs. engineering axial strain for D1 = 0.203 and
2.03 m/s.
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equal to 2000 kg/m3, employ the same FE mesh (121 nodes) as that
used in Section 4.1.3, neglect effects of geometric nonlinearities,
and compute results for D3 = 2.5 m/s and 0.25 m/s. The load (P3)-
displacement (D3) curves plotted in Fig. 30 reveal that inertial ef-
fects are insignificant for D3 = 0.25 m/s, and D3 = 2.5 m/s results
in oscillatory P3–D3 curve suggesting that inertial effects are
noticeable. The peak load for the transient problem with
D3 = 2.5 m/s is about 14% higher than that for the static problem.
The time step used to compute results found by using the criterion
discussed in Section 3.3 equaled 8 ns.

4.5.2. Dynamic post-buckling deformations of pre-delaminated beam
deformed in axial compression

We delineate the effect of inertia forces on post-buckling defor-
mations of an initially debonded beam deformed in axial compres-
sion by restudying the problem of subsection 4.4 using the FE mesh
with 121 nodes, taking mass density = 2000 kg/m3, and D1 = 2.03
and 0.203 m/s or equivalently axial strain rates of 40 and 4/s,
respectively. Results were computed with Dt = 14 ns. The axial
load vs. the engineering axial strain curves displayed in Fig. 31 re-
veal that, for D1 = 2.03 m/s, the consideration of inertia effects in-
creases the buckling load from 6.1 kN for the static analysis to
10.5 kN for the dynamic problem, i.e., by about 65%. Thus the dy-
namic load amplification factor (DLAF) equals 1.65. Batra and Geng
[26] found that for a pinned–pinned column the DLAF varied from
1.69 to 8.59 when loading rate was increased from 20 to 1000 kN/s.

Variations of the axial compressive load P vs. the delaminated
length for the two loading rates are shown in Fig. 32. The load cor-
responding to the initiation of the unstable delamination growth
increases with an increase in the loading rate, it equals 4.2, 5.5
and 10.5 kN for the quasistatic problem, D1 = 0.203 m/s and
D1 = 2.03 m/s, respectively. The delaminated length that grows
unstably changes from about 15 mm for the quasistatic problem
to 32 and 25 mm for D1 = 0.203 and 2.03 m/s, respectively. We re-
call that results have been computed by prescribing displacements
at the end faces.



Fig. 32. Axial compressive load P vs. delaminated length for D1 = 0.203 and 2.03 m/s.

Fig. 33. At an engineering axial strain of 0.8%, deformed shapes of the beam for (a)
D1 = 0.203 m/s, and (b) D1=2.03 m/s.

Fig. 34. For D1 = 0.203 and 2.03 m/s, variation with the engineering axial strain of
the mid-span deflection of (a) the top, and (b) the bottom surfaces.
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Fig. 33 shows deformed shapes of the beam for different loading
rates when the engineering axial strain equals 0.8 %. Whereas
delamination propagated to the ends of the beam for
D1 = 0.203 m/s, it did not propagate to the end faces of the beam
for D1 = 2.03 m/s because the beam buckled globally. In Fig. 34
we have plotted variation with the engineering axial strain of the
mid-span deflections of the top and the bottom surfaces of the
beam. These results suggest that an increase in the loading rate
smoothens out the rate of increase of deflections of the two sur-
faces. The unstable growth of delamination could not be detected
by studying the growth in the deformed shapes of the top and
the bottom surfaces.

We note that the TSNDT discussed here generalizes the higher-
order shear and normal deformable plate theory of Batra and Vidoli
[27] to finite deformations. Several plate problems for linear elastic
materials using the Batra and Vidoli plate theory have been dis-
cussed in Refs. [28–31], and exact solutions for plate deformations
are given in Refs. [32,33]. Recently, Thai et al. [34] and Kapoor and
Kapania [35], amongst others, have used the isogeometric basis
functions and a layer-wise first-order shear deformation theory
to analyze several problems for plates.
5. Conclusions

We have used a cohesive zone model (CZM) and a layer-wise
third-order shear and normal deformable beam theory (TSNDT)
to analyze delamination growth in a laminated composite beam,
and compared our results with those available in the literature
for nine problems. We have considered all geometric nonlinearities
including the von Karman nonlinearitiy. Presently computed re-
sults for mode-I, mode-II and mixed-mode deformations of straight
and curved cantilever beams under the assumption of infinitesimal
deformations have been found to agree well with those of other
investigators including results obtained using the linear elastic
fracture mechanics approach. During the analysis of delamination
growth in axial compression of an initially delaminated beam we
found that local buckling ensues first and it is followed by global
buckling. Because of the geometric nonlinearities considered, we
could also analyze the post-buckling response of the beam which
is found to agree well with experimental results reported in the lit-
erature. We have also studied the effect of inertia forces on delam-
ination growth in a pre-delaminated beam. It is found that for the
applied axial strain rate of 40/s, the buckling load increases by 65%
over that for the static problem, and the length of the unstably
grown delaminated region decreases by 30%.
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