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a b s t r a c t

Analytical relations between the critical buckling load of a functionally graded material (FGM) Timo-
shenko beam and that of the corresponding homogeneous Euler–Bernoulli beam subjected to axial com-
pressive load have been derived for clamped–clamped (C–C), simply supported–simply supported (S–S)
and clamped–free (C–F) edges. However, no such relation is found for clamped–simply supported (C–S)
beams. For C–S beams, the transcendental equation has been derived to find the critical buckling load for
the FGM Timoshenko beam which is similar to that for a homogeneous Euler–Bernoulli beam. For the
FGM beams Young’s modulus, E, and Poisson’s ratio, m, are assumed to vary through the thickness. The
significance of this work is that for the C–C, S–S and C–F FGM Timoshenko beams, the critical buckling
load can be easily found from that of the corresponding homogeneous Euler–Bernoulli beam and two
constants whose values depend upon the through-the-thickness variations of E and m. For the C–S FGM
Timoshenko beam the transcendental equation for the determination of the critical buckling load is sim-
ilar to that for the corresponding homogeneous Euler–Bernoulli beam.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded materials (FGMs) are composites in which
continuous spatial variation of constituents can be designed to
either alleviate stress concentrations near voids, defects and inter-
faces or material properties optimized for achieving a desired goal.
Consequently, FGMs have enormous potential for technological
and engineering applications especially in extreme thermal envi-
ronment where stress concentration due to high temperature gra-
dients can be either minimized or significantly reduced. For beams,
plates and shells the gradient in the composition is usually taken to
be in the thickness direction. Analytical solutions for structures
made of FGMs are difficult to find because governing equations in-
volve coefficients that depend upon spatial coordinates. An ideal
situation will be to express the load bearing capacity of a FGM
structure in terms of that of a homogeneous structure under the
constraints of both structures having the same geometry and
boundary conditions. We study such a problem in this paper.

Because of the enormous literature on FGMs, we briefly review
papers closely related to the current work. Benatta et al. [1] and
Sallai et al. [2] analytically solved static bending deformations of
simply supported FGM hybrid beams subjected to uniformly dis-
tributed transverse loads by using a higher-order shear deforma-
ll rights reserved.

: +1 540 231 4574.
tion theory and gave numerical results for the deflection, and the
transverse normal and the transverse shear stresses. Kadoli et al.
[3] used the finite element method and the third-order shear
deformation theory (TSDT) to analyze static bending deformations
of FGM beams with different boundary conditions (BCs) at the
edges and a uniform transverse load applied on the top surface.
Li [4] investigated static bending deformations and transverse
vibrations of FGM Timoshenko beams (TBs) and introduced a func-
tion to uncouple governing equations for the deflection and the an-
gle of rotation of a cross-section initially perpendicular to the
neutral surface. Employing the same method, Huang and Li [5,6]
used the FSDT to study bending, buckling and free vibrations of
FGM circular columns with material properties continuously vary-
ing in the radial direction. Simsek [7] studied free vibrations of
FGM beams using different higher-order shear deformation theo-
ries and derived governing equations by using Hamilton’s princi-
ple. Ke et al. [8,9] as well as Yang and Chen [10] studied free
vibrations, buckling and post-buckling of FGM TBs containing open
cracks by assuming an exponential variation of material properties
in the thickness direction.

Sankar [11] used the linear elasticity theory to analytically ana-
lyze deformations of simply supported FGM beams with Young’s
modulus varying exponentially in the thickness direction and
subjected to symmetrical sinusoidal transverse loads. Zhong and
Yu [12] adopted the two-dimensional linear elasticity theory to
study deformations of a cantilever FGM beam with arbitrary

http://dx.doi.org/10.1016/j.compstruct.2012.07.027
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through-the-thickness variation of material properties. Ding et al.
[13] used the Airy stress function to study deformations of aniso-
tropic FGM beams under various BCs at the edges.

Different from the conventional analytical and numerical ap-
proaches of analyzing static and dynamic responses of FGM struc-
tures, a few investigations have focused on finding relations
between deflections, buckling loads and natural frequencies of
FGM structures and those of the corresponding homogeneous ones.
By examining numerical results for deflections, buckling loads and
natural frequencies of FGM plates available in the literature Abrate
[14,15] concluded that these quantities for a FGM plate are nearly
proportional to those of its homogeneous counterpart with the
proportionality factor depending upon through-the-thickness var-
iation of the elastic moduli. By searching for similarities between
differential equations for eigenvalues of a simply supported FGM
polygonal plate and those of the frequency of a clamped membrane
geometrically identical to the midsurface of the plate, Cheng and
Batra [16] presented a relation between the eigenvalues (critical
load or vibration frequency) of the FGM plate and those of the
membrane. Zhang and Zhou [17] defined a physical neutral surface
that is different from the geometric midsurface of a plate, omitted
the stretching-bending coupling terms in the governing equations
of FGM plates and derived a similarity relation between the buck-
ling load and the natural frequency of thin rectangular simply sup-
ported FGM plates and those of homogeneous plates. Ma and Wang
[18] used the TSDT to express axisymmetric bending deflection
and buckling loads of FGM circular plates in terms of those of thin
circular plates. Li and Liu [19] derived analytical formulations for
the proportional coefficients between deflections, buckling loads
and natural frequencies of FGM Euler–Bernoulli beams (EBBs) with
arbitrary variation of Young’s modulus in the thickness direction
and those of the corresponding homogeneous beams; they proved
that the proportionality factors are independent of BCs.

Here we find relationships between critical buckling loads of
FGM TBs and those of the corresponding homogeneous and FGM
EBBs. It is shown that critical buckling loads of FGM TBs can be
found from those of the corresponding EBBs and two constants
whose values depend upon the through-the-thickness variation
of Young’s modulus in the FGM TB. Whereas closed-form relations
exist for C–C, S–S and C–F beams, the critical loads for C–S beams
are solutions of similar transcendental equations with no closed-
form relations among buckling loads for the FGM TB and the corre-
sponding EBB.

2. Problem formulation

We consider a beam of uniform rectangular cross-section A,
width b, depth h, length l, and made of an isotropic and linear elas-
tic (Hookean) FGM, and use rectangular Cartesian coordinate axes
with the x-axis along the geometric centroidal axis and the z-axis
in the thickness direction to describe its deformations; Fig. 1. Fur-
thermore, we assume that Young’s modulus E and Poisson’s ratio m
continuously vary in the thickness direction z according to the
relation:

PðzÞ ¼ PbwpðzÞ ð1Þ
,x u

,z w

l

/ 2h

/ 2h

Fig. 1. Schematic sketch of a FGM beam, and coordinate axes.
where Pb = P(�h/2) and Pt = P(h/2), respectively, denote values of P
at the bottom and the top surfaces of the beam, and wp(z) is a
smooth continuous function of z satisfying wp(�h/2)=1 and wp(h/
2)=Pt/Pb.

The displacement field for the TB can be written as:

uðx; zÞ ¼ ðz� z0ÞuðxÞ; wðx; zÞ ¼ w0ðxÞ ð2Þ

where u(x, z) and w(x, z) are, respectively, the axial and the trans-
verse displacements of a point of the beam, w0(x) is the deflection,
u(x) the angle of rotation of a cross-section about the y-axis, and z0

the z-coordinate of the neutral surface, i.e.,

z0 ¼
B1

A1
; A1 ¼

Z
A

EdA; B1 ¼
Z

A
zEdA ð3Þ

For infinitesimal deformations, the strain–displacement and the
constitutive relations are

exðx; zÞ ¼ ðz� z0Þ
du
dx

; cxzðx; zÞ ¼
dw0

dx
þu

� �
ð4Þ

rx ¼ Eðz� z0Þ
du
dx

; sxz ¼
E

2ð1þ mÞ
dw0

dx
þu

� �
ð5Þ

Thus the axial and the transverse forces, FA and Fs, and the mo-
ment, M, on a cross-section are given by:

FA ¼
Z

A
rxdA ¼ ðB1 � z0A1Þ

du
dx
¼ 0; M ¼

Z
A
rxzdA

¼ ðD1 � B2
1=A1Þ

du
dx

; Fs ¼
Z

A
sxz dA ¼ C1

dw0

dx
þu

� �
; ð6Þ

where

A1 ¼ AEb/1; B1 ¼ AhEb/2; C1 ¼ j
Z

A

E
2ð1þ mÞ dA

¼ jAEb/4; D1 ¼
Z

A
z2 EdA ¼ IEb/3; ð7Þ

/1 ¼
1
A

Z
A

wEðzÞdA; /2 ¼
1

Ah

Z
A

wEðzÞzdA; ð8aÞ

/3 ¼
1
I

Z
A

wEðzÞz2 dA; /4 ¼
1
A

Z
A

wEðzÞ
2ð1þ mÞdA ð8bÞ

The shear correction factor, j, is taken to equal 5/6 for a
rectangular cross-section, I = bh3/12, and coefficients /i are non-
dimensional.

For a beam made of a homogeneous material of Young’s modu-
lus, Eb, hereafter called the reference homogeneous beam, we get
/1 = /3 = 1, /2 = 0 and /4 = 1/[2(1 + m)]. Assuming that m is indepen-
dent of z and

wE ¼ 1þ ðrE � 1Þðgþ 1=2Þn ð9Þ

where rE = Et/Eb, g = z/h and the constant n is such that

/1 ¼ 1þ rE � 1
nþ 1

; /2 ¼
nðrE � 1Þ

ðnþ 1Þðnþ 2Þ ;

/3 ¼ 1þ 3ðrE � 1Þðn2 þ nþ 2Þ
ðnþ 1Þðnþ 2Þðnþ 3Þ

are well defined. For through-the-thickness exponential variation of
E, the function wE(z) is assumed to be given by

wEðzÞ ¼ ebðgþ1=2Þ ð11Þ

with b = lnrE. Functions /1, /2, and /3 have the following values:

/1 ¼
1
b
ðrE � 1Þ; /2 ¼

1
b

rE þ 1
2
� /1

� �
; /3 ¼ 3/1 �

24
b

/2 ð12Þ



Table 1

BCs P�Ecr PEcr=P�Ecr PTcr=P�Tcr PTcr/PEcr

S–S p2 1/c 1þp2 c�s
cþp2 cs

c
cþp2 cs

C–C 4p2 1/c 1þ4p2 c�s
cþ4p2cs

c
cþ4p2cs

C–F p2/4 1/c 1þp2 c�s =4
cþp2 cs=4

c
cþp2 cs=4

C–S 2.04p3 1/c no closed form relation
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We introduce following non-dimensional variables

ðn;W ; dÞ ¼ ðx;w0; hÞ=l; P ¼ pl2

EbI
; c ¼ 1

ð/3 � 12/2
2=/1Þ

;

cs ¼
d2

12j/4
ð13Þ

where p is the axial compressive force applied at the ends. In Eq.
(13) the dimensionless constant, c, represents the inhomogeneity
parameter, and equals 1 for a homogeneous beam. The constant,
cs, related to the shear deformation, goes to zero with the decrease
in d or the height of the beam. The constant cs = 0 for an FGM EBB.

Constitutive relations relating M and Fs to W and /, and equilib-
rium equations are

M ¼ EbI
cl

du
dn

; Fs ¼
EbI

csl
2

dW
dn
þu

� �
ð14a;bÞ

dM
dx
¼ Fs;

dFs

dx
¼ p

d2w0

dx2 ð15a;bÞ

Combining Eqs. (14) and (15) gives

cs

c
d2u
dn2 ¼

dW
dn
þu;

d2W

dn2 þ
du
dn
¼ csP

d2W

dn2 ð16a;bÞ

Eliminating u from Eq. (16a,b) yields

d4W

dn4 þK2 d2W

dn2 ¼ 0; ð17aÞ

where

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cP=ð1� csPÞ

p
: ð17bÞ

For cs = 0, Eq. (17a) reduces to

d4WE

dn4 þ cP�E
d2WE

dn2 ¼ 0 ð18Þ

that governs deformations of an FGM EBB quantities for which are
indicated by subscript ‘E’. Setting c = 1 in Eq. (18) we obtain Eq.
(19) for the reference homogeneous EBB.

d4W�
E

dn4 þ P�E
d2W�

E

dn2 ¼ 0 ð19Þ

Here and below quantities with superscript star are for EBB
made of the reference homogeneous material.

Boundary conditions (BCs) at simply supported, clamped and
free edge, x = 0, of a FGM TB, respectively, are

Wð0Þ ¼ 0;W 00ð0Þ ¼ 0; Wð0Þ ¼ 0;aW 000ð0Þ þW 0ð0Þ
¼ 0; W 00ð0Þ ¼ 0;�aW 000ð0Þ ¼ csPW 0ð0Þ ð20a—fÞ

where a = cs(1�csP)/c and W0 = dW/dn At a clamped edge of an EBB
Eq. (20d) becomes W 0

Eð0Þ ¼ 0, and at a free edge of an EBB Eq. (20f)
is replaced by W 000

E ð0Þ ¼ 0:

3. Buckling loads of FGM TBs and EBBs

BCs for a simply supported edge of both homogeneous and FGM
EBBs are the same as those for the FGM TB. However, BCs at
clamped and free edges of the FGM TB need not be the same as
those for the EBBs since / – �dW/dn for the TB. Thus we first find
eigenvalues of Eq. (17) for the appropriate BCs and then search for
relations between buckling loads of FGM TBs and those of homoge-
neous EBBs. A general solution of Eq. (17) has four constants which
are to be determined from two BCs at each edge of the beam. This
gives an eigenvalue problem, and details for the C–S beam are gi-
ven in Appendix A.
For the EBBs Eqs. (18) and (19) imply that for all BCs [19],

PEcr ¼ P�Ecr
=c ð21Þ

where P�Ecr
and PEcr are, respectively, the critical buckling loads of the

homogeneous and FGM EBBs of the same geometry and BCs. We
note that the proportionality constant in Eq. (21) is determined
by the spatial distribution of E(z).

For the S–S FGM TB and the homogeneous EBB, Kcr ¼ p ¼
ffiffiffiffiffiffiffiffi
P�Ecr

q
.

From the definition of K given in Eq. (17b), we get the following
relation between the critical loads, PTcr and P�Ecr

, of the FGM TB
and the homogeneous EBB:

PTcr ¼
P�Ecr

c þ csP
�
Ecr

; or PTcr ¼
PEcr

1þ csPEcr

ð22Þ

Thus PTcr < PEcr : That is, the consideration of shear deformations de-
creases the critical buckling load. The constant cs reflects effects of
shear deformations on the critical load and is proportional to d2. A
relation similar to Eq. (22) for critical buckling loads of FGM circular
columns with material properties varying in the radial direction
was given by Huang and Li [5].

For a C–C beam the lowest eigenvalues of the FGM TB and the
homogeneous EBB are given by Kmin = 2p, and Eq. (22) again holds.

For a cantilever beam clamped at the edge x = 0 one can show
that for both FGM TB and the homogeneous EBB, Kmin = p/2, and
Eq. (22) relates PTcr and P�Ecr

.
For a beam clamped at one end, say x = 0, and simply supported

at the other end, the condition of having nontrivial eigenvalues of
the governing equation (e.g., see Appendix A) is

tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cP

1� csP

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cPð1� csPÞ

p
ð23Þ

If we set c = 1 and cs = 0, Eq. (23) reduces to the equation for
finding the buckling load of a homogeneous EBB with C–S ends,
which can be found in text books on Strength of Materials. It is
obvious that Eq. (22) is not valid for the FGM TBs with C–S edges.
The critical buckling load PTcr can be ascertained by numerically
finding the minimum root of Eq. (23).

We have summarized in Table 1 relations between critical
buckling loads for different beams. Here c�s is determined by setting
/4 = 1/[2(1 + m)] in Eq. (13), and P�Tcr

equals the critical load of the
reference homogeneous TM.

It follows from Eq. (22) that for C–C, C–F and S–S FGM TBs, the
critical buckling load will have an extreme value when the expo-
nent n in Eq. (9) is a solution of

dc
dn
þ P�

dcs

dn
¼ 0:

This nonlinear algebraic equation can be numerically solved for n.
We note that a static mechanical problem has been studied and

values of material parameters have been assumed to be tempera-
ture independent. Were we to consider the temperature depen-
dence of material parameters then it will be better to analyze
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thermo-elastic deformations of the beam and find the temperature
rise that buckles the beam. However, if the temperature of the
beam is uniformly raised then the current analysis applies pro-
vided that values of material parameters at the final temperature
are considered.

4. Numerical results and discussion

In order to show that Eqs. (22) and (23) accurately predict the
critical buckling load of FGM TBs, for d = l/h = 5 and 10 we have
compared, respectively, in Tables 2 and 3 predictions from these
equations with results found by using the shooting method to
numerically solve eigenvalue problems defined by differential
Eqs. (16a) and (16b) and the pertinent BCs. The FGM beam is as-
sumed to be composed of ceramic (alumina) and metal (alumi-
num) with Et = Ec = 380 GPa and Eb = Em = 70 GPa, respectively,
and mt = mb = 0.23. Thus in the computation of numerical results
Poisson’s ratio is assumed to be constant. Young’s modulus of the
FGM beam is found from Eqs. (1) and (9). Values in the first row
of the tables are obtained by numerically solving the eigenvalue
problem, and those in 2nd row are predictions from Eq. (22) for
C–C, S–S and C–F beams and from Eq. (23) for C–S beams. In the
3rd row we have listed values from Eq. (21) which are critical
buckling loads of EBBs. Values in the 1st and the 2nd rows confirm
Table 2
Dimensionless critical loads of FGM beams with length to thickness ratio l/h = 5.

BCs n

0.0 0.5 1 2

C–C 154.35a 103.22 80.498 62.614
154.35b 103.22 80.498 62.614
214.31d 138.93 106.82 83.355

C–S 97.580a 64.052 49.497 38.576
97.580c 64.052 49.497 38.576
109.61d 71.053 54.633 43.631

S–S 48.835a 31.967 24.687 19.245
48.835b 31.967 24.687 19.245
53.578d 34.731 26.705 20.838

C–F 13.213a 8.5782 6.6002 5.1495
13.213c 8.5782 6.6002 5.1495
13.394d 8.6829 6.6763 5.2097

a Eqs. (16a and 16b) by shooting method.
b by Eq. (22).
c by Eq. (23).
d by Eq. (21).

Table 3
Dimensionless critical loads of FGM beams with length to thickness ratio l/h = 10.

BCs n

0.0 0.5 1 2

C–C 195.34a 127.87 98.749 76.980
195.34b 127.87 98.749 76.980
214.31d 138.93 106.82 83.355

C–S 106.33a 69.154 52.251 41.535
106.33c 69.154 52.251 41.535
109.61d 71.053 54.622 42.631

S–S 52.309a 33.996 26.171 20.416
52.309b 33.996 26.171 20.416
53.578d 34.731 26.705 20.838

C–F 13.349a 8.6566 6.6570 5.1944
13.349c 8.6564 6.6571 5.1945
13.395d 8.6828 6.6763 5.2097

a Eqs. (16a and 16b) by shooting method.
b by Eq. (22).
c by Eq. (23).
d by Eq. (21).
that there is very good agreement between predictions from Eqs.
(22) and (23) and those found by using the shooting method. A
comparison of values in the 2nd and 3rd rows in the two tables
suggests that effects of shear deformations on the critical buckling
loads not only depend on the slenderness ratio but also on the end
constraints. We note that for n = 0, the beam material is homoge-
neous and is ceramic. Since Ec/Eb = 38/7, the critical buckling load
for the ceramic beam is higher than that of the FGM beam in which
ceramic on a part of the cross-section is replaced by a weaker mix-
ture of ceramic and aluminum. This holds irrespective of the con-
sideration of shear deformation effects.

We note that the critical buckling load of an FGM beam depends
upon through-the-thickness variations of E and m only through the
parameters c and cs. Thus results for any through-the-thickness var-
iation of E and m can be obtained from those for the power law var-
iation provided that the two have the same values of c and cs.

Here we have assumed the material properties to only vary in
the z-direction. Alternatively, Young’s modulus and Poisson’s ratio
could be assumed to continuously vary both in the x- and the z-
directions. Qian and Batra [20] numerically found the variation of
material parameters in the x- and the z-directions to optimize
the fundamental frequency of free vibrations of a cantilever rectan-
gular plate by using a higher-order shear and normal deformable
plate theory [21].
5 7 10 100 1011 (1)

50.384 47.332 44.267 31.231 28.433
50.384 47.332 44.267 31.231 28.433
70.491 67.598 64.207 44.262 39.478

32.000 30.437 28.731 19.990 17.975
32.000 30.437 28.731 19.990 19.975
36.052 34.572 32.838 22.638 20.190

16.024 15.265 14.427 10.020 8.9959
16.024 15.265 14.427 10.020 8.9959
17.623 16.899 16.052 11.066 9.8696

4.3445 4.1620 3.9501 2.7263 2.4340
4.3445 4.1620 3.9502 2.7262 2.4340
4.4057 4.2249 4.0129 2.7664 2.4674

5 7 10 100 1011 (1)

64.096 61.062 57.708 40.081 35.984
64.096 61.062 57.708 40.081 35.984
70.491 67.598 64.207 44.262 39.478

34.945 33.436 31.705 21.192 19.587
34.945 33.436 31.705 21.192 19.587
36.052 34.572 32.838 22.638 20.191

17.192 16.459 15.612 10.784 9.6357
17.192 16.459 15.612 10.784 9.6357
17.623 16.899 16.052 11.066 9.8696

4.3903 4.2091 3.9969 2.7562 2.4589
4.3902 4.2090 3.9969 2.7562 2.4589
4.4057 4.2248 4.0129 2.7564 2.4674



S.-R. Li, R.C. Batra / Composite Structures 95 (2013) 5–9 9
5. Conclusions

For simply supported, clamped and clamped–free beams, we
have found closed-form relations between critical buckling loads
of functionally graded Timoshenko and Euler–Bernoulli beams
and those of a homogeneous Euler–Bernoulli beam. However, no
such relation exists for the clamped–simply supported beams.
For these end conditions, an algebraic eigenvalue problem is de-
rived to determine the critical buckling load of the FGM Timo-
shenko beam which is similar to that for finding the critical
buckling load of a homogeneous Euler–Bernoulli beam with the
same end constraints. As a result, the calculation of critical buck-
ling loads of FGM Timoshenko beams is reduced to that of finding
critical buckling loads of a homogeneous Euler–Bernoulli beam
with the same geometry and end constraints in conjunction with
the calculation of the two constants whose values depend upon
the through-the-thickness variations of Young’s modulus and Pois-
son’s ratio. Predictions from these relations are shown to agree
well with the critical buckling loads found by numerically solving
the eigenvalue problem with the shooting method.
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Appendix A

For a C–S FGM TB, we derive below an expression for the critical
buckling load. A general solution of differential Eq. (17) is

WðnÞ ¼ b1 cos Knþ b2 sin Knþ b3nþ b4 ðA1Þ

where bi(i = 1,2,3,4) are arbitrary constants. Substitution of solution
(A1) into boundary conditions (20) yields the following system of
linear algebraic equations:

b1 þ b4 ¼ 0 ðA2Þ

ð1� aK2ÞKb2 þ b3 ¼ 0 ðA3Þ

b1 cos Kþ b2 sin Kþ b3 þ b4 ¼ 0 ðA4Þ

b1 cos Kþ b2 sin K ¼ 0: ðA5Þ
Eqs. (A2)–(A5) have a non-trivial solution if and only if K
satisfies

tan K ¼ ð1� csPÞK ðA6Þ

which is the same as Eq. (23) (recall the value of K listed in Eq.
(17b)).
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