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We investigate recovery of through-the-thickness transverse normal and shear strains and stresses in
statically deformed functionally graded (FG) doubly-curved sandwich shell structures and shells of rev-
olution using the generalized zigzag displacement field and the Carrera Unified Formulation (CUF). Three
different through-the-thickness distributions of the volume fractions of constituents and two different
homogenization techniques are employed to deduce the effective moduli of linear elastic isotropic mate-
rials. The system of partial differential equations for different Higher-order Shear Deformation Theories
(HSDTs) is numerically solved by using the Generalized Differential Quadrature (GDQ) method. Either the
face sheets or the core is assumed to be made of a FGM. The through-the-thickness stress profiles are
recovered by integrating along the thickness direction the 3-dimensional (3-D) equilibrium equations
written in terms of stresses. The stresses are used to find the strains by using Hooke’s law. The computed
displacements and the recovered through-the-thickness stresses and strains are found to compare well
with those obtained by analyzing the corresponding 3-D problems with the finite element method and
a commercial code. The stresses for the FG structures are found to be in-between those for the homoge-
neous structures made of the two constituents of the FGM.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction by different plate theories. Yang and Shen [3] have underlined the
Functionally Graded Materials (FGMs) are a new generation of
non-homogeneous composites that have continuous and smooth
spatial variations of physical and mechanical properties. In particular,
for plates and shell structures studied herein the mechanical
properties such as Young’s modulus and Poisson’s ratio are assumed
to vary in the thickness direction according to a predefined relation
or the spatial variation of volume fractions of constituents is
prescribed. We note that FGMs have been applied and studied in
different engineering fields by many researches, e.g. see [1–38].
The practical applications of FGMs have exponentially increased in
the last few years, and the mechanics of non-homogeneous solids
has received considerable scientific interest as evidenced by
numerous publications on the subject. Much of the work on FGMs
has been summarized by Shen in his book [1]. Cheng and Batra [2]
have correlated deflections of FG polygonal linear elastic plates with
those of homogeneous plates of identical geometries and modeled
importance of geometric nonlinearities in bending of shear deform-
able FG plates. Batra [4] investigated the torsion of axially graded FG
cylinders and found the variation of the shear modulus to attain the
desired axial variation of the angle of twist per unit length. Vel and
Batra [5–7] have provided analytical solutions of the 3D linear elas-
ticity theory for deflections and free vibrations of FG rectangular
plates. Deformations of variable thickness FG plates have been
studied by Efraim and Eisenberger [8]. Tornabene [9] and Tornabene
and Viola [10] introduced the four-parameter power law FG volume
fraction which was also used in Refs. [11–13]. Viola et al. [17,21] con-
ducted a parametric investigation of FG cylindrical and conical shells
coupled with a stress recovery procedure. Other papers on FG plates
and shells include those by Abrate [29,30], Qian et al. [31,32] and
Gilhooley et al. [33] who used higher-order shear and normal
deformable plate theories of Batra and Vidoli [34] to analyze static
and transient deformations of FG rectangular plates.

Most available studies assume that the material properties of
FGMs vary either according to an exponential or a power law
relation in one or more space directions. In general, the rule of mix-
tures [9–13] and the Mori–Tanaka scheme [39–42] are often used
to evaluate the equivalent mechanical properties of an FGM. It is

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2014.08.005&domain=pdf
http://dx.doi.org/10.1016/j.compstruct.2014.08.005
mailto:francesco.tornabene@unibo.it
http://dx.doi.org/10.1016/j.compstruct.2014.08.005
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct


(a) Shell of revolution with free-form meridian (b) Panel of revolution with free-form meridian 

Fig. 1. Doubly-curved shells of revolution with C–G–L discretization.
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believed that Mori–Tanaka’s scheme is more accurate in describing
the effective properties of FGMs than the classical rule of mixtures.
An advantage of FGMs is that no distinct internal boundaries
between different constituents exist because the volume fractions
of the two or more materials continuously vary in space. However,
if FGMs are produced from particulate composites or by varying
the volume fraction of fibers or their orientation in fiber-reinforced
composites, then failures from interfacial stress gradients cannot
be avoided.

The engineering theories of singly-curved and doubly-curved
structures have been refined over the last 70 years [43–117] by
Fig. 2. Through-the-thickness variation of the volume fr
Gol’denveizer [45], Novozhilov [46], Kraus [48] and Ventsel and
Krauthammer [68]. Leissa [50,51] has extensively studied vibration
of plates and shells. Reddy [65,69,70], Qatu [72] and Leissa and
Qatu [77] have analyzed deformations of laminated composite
shells and plates. The higher-order plate theories are given in the
book by Carrera et al. [75], the works by Carrera [82–84], Cho
et al. [85], Lo and Christensen [86], and Batra and Vidoli [34]. Most
of the recent developments on plate and shell structures can be
found in [97–117]. It is recalled that curved shell structures have
the major advantage of geometrically coupling the membrane
and bending deformations to give strength, stability and toughness
action of constituents for different functional forms.



Fig. 3. Comparison of the presently computed through-the-thickness variation of
different quantities with those of the semi-analytical solution of [5]; CPT, FSDT and
TSDT stand for, respectively, the classical plate theory, first-order shear deformation
theory, and the third-order shear deformation theory. Results for these plate
theories are taken from [5].
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to the structure. The geometrical definitions of singly-curved
shells, doubly-curved shells, shells of revolution, and degenerate
shells require differential geometry concepts illustrated in the
books [79,80]. A general way to define a shell of revolution using
Bézier curves is given in [16]. Thus free-form meridians can be
geometrically defined for studying unconventional shells of revo-
lution. An engineer can tailor parameters of the Bézier curve to
design different structures.

One way to analyze quasistatic deformations of shells is to use
an Equivalent Single Layer (ESL) theory because the shell thickness
is much smaller than the other two dimensions. Other approaches
such as the 3-D elasticity, Eshelby–Stroh formalism [87–89] and
the Layer-Wise (LW) theories can be used but they are computa-
tionally more expensive than the ESL theory. The ESL theory
employed in this work is based on the expansion of the displace-
ment field in the thickness direction to an arbitrary order of the
thickness coordinate, and is known as the Carrera Unified Formu-
lation (CUF). This model is general and allows to define several
Higher-order Shear Deformation Theories (HSDTs) using a free
parameter, and has been employed to study problems for beams,
plates and shells [82–84]. It should be added that Murakami’s
function, also known as the zigzag effect, has been considered. It
is needed for sandwich or soft-core structures due to the zigzag
behavior of the in-plane displacements among two stiff sheets
and a soft core, usually honeycomb or foam materials.

When studying static, free and forced vibrations of rectangular
monolithic plates with a higher order shear and normal deform-
able theory, Qian et al. [31,32] found that the 5th order theory pre-
dicts well nearly all aspects of deformations of thick plates given
by the 3-D elasticity theory. The classical approach for solving
engineering problems involving composite structures is the Finite
Element Method (FEM), e.g. see [69,70]. As it is well-known the
FEM is based on a weak or variational formulation of the problem.
Whereas the basis functions used in the FEM exploit the element
connectivity, the basis functions for meshless methods avoid this.
Generally, basis functions so generated do not possess the
Kronecker delta property, i.e., they do not equal 1 at a node (or a
discrete point) and zero at the remaining nodes in the domain.

A particular version of the so-called spectral methods is the Gen-
eralized Differential Quadrature (GDQ) method [118–164], which
expresses a derivative of a given function as a linear weighted sum
of values of the function at discrete points. Thus it can be easily
implemented in a computer code. The GDQ is a generalization of
the Differential Quadrature Method (DQM) introduced by Bellman
et al. in 1971 [119]. Shu [118] applied the GDQ to solve the
Navier–Stokes equations, and applications of the DQM to structural
mechanics include those of Bert and Malik [120], Striz et al.
[121,122] and Chen et al. [123]. Shu [124–129] has also used the
GDQ to study vibrations of cylindrical and conical shells. These
works have shown that the GDQ method is more stable, accurate
and reliable than the DQM for reasons explained in [130–164]. In
the last decade the DQM has been further developed to solve differ-
ent engineering problems, e.g. see the book by Zong and Zhang [130].

The recovery of through-the-thickness variation of stresses
from the solution obtained with an ESL theory has been used by
Pagano [165] who found the interlaminar stresses by using the
Classical Laminated Plate Theory (CLPT) and then integrated with
respect to the thickness coordinate the 3-D equilibrium equations.
Noor et al. [166] and Malik and Noor [167] developed predictor–
corrector procedures to iteratively find to the desired degree of
accuracy strains, stresses and displacements throughout a lami-
nate from their values on the laminate mid-surface. Chaudhuri
and Seide [168] used shape functions in the thickness direction
of each layer to represent the interlaminar stresses.

Sandwich structures are being increasingly used in engineering
applications because of their relatively high specific stiffness. Here
we use the GDQ method and an ESL theory to investigate static
deformations of doubly-curved and free-form sandwich shells with
either the face sheets or the core made of FGMs with the focus on
recovering accurate values of strains and stresses through the
thickness of the structure. These values are needed for analyzing
the load carrying capacity of a structure and quantifying progres-
sive damage induced in them. The accuracy of the recovered stres-
ses and strains is established by comparing them for a FGM plate
with those from an analytical solution of the problem available
in the literature [5], and for a sandwich structure with those
obtained by numerically analyzing 3-D deformations of the sand-
wich structure by the finite element method. The materials of
the soft-core and the face sheets are assumed to be isotropic and
linear elastic. It is found that the ratio of the stiffness of the face
sheet to that of the core for which the ESL theory gives reasonably
accurate results is higher for a flat sandwich structure than that for
a curved sandwich shell.



Fig. 4. For a CCFF Zirconia/Core/Zirconia sandwich rectangular plate, through-the-thickness variation of displacements [m] on the transverse normal passing through the
point D ¼ 0:25 a1

1 � a0
1

� �
;0:75 a1

2 � a0
2

� �� �
. The plate has a uniformly distributed load qðþÞn ¼ �10000 Pa at the top surface, h1 = h3 = 0.075 m, h2 = 0.15 m and E = 0.7 GPa, m = 0.3

for the core material.

70 F. Tornabene et al. / Composite Structures 119 (2015) 67–89
2. Expressions for volume fractions and homogenization
techniques

We analyze static deformations with an ESL HSDT and use
equilibrium equations of 3-D elasticity theory to recover through-
the-thickness stresses and strains of ceramic–metallic FG shells.
The constituent materials and the resulting homogenized material
are assumed to be linear elastic and isotropic. Young’s modulus
E(k)(f) and Poisson’s ratiom(k)(f) of the kth lamina are assumed to vary
continuously and smoothly in the thickness direction f. They are
functions of the volume fractions and the mechanical properties of
the constituent materials. Two different approaches are used to



Fig. 5. For a CCFF Zirconia/Core/Zirconia sandwich rectangular plate, through-the-thickness variation of strains on the transverse normal passing through the point
D ¼ 0:25 a1

1 � a0
1

� �
;0:75 a1

2 � a0
2

� �� �
. The plate has a uniformly distributed load qðþÞn ¼ �10;000 Pa at the top surface, h1 = h3 = 0.075 m, h2 = 0.15 m and E = 0.7GPa,m = 0.3 for the

core material.
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evaluate these mechanical properties: the theory of mixtures [9–13]
and the Mori–Tanaka scheme [39–42]. The former is a linear
combination of the mechanical properties of the ceramic and the
metal constituents weighted by their volume fractions. In the
Mori–Tanaka scheme, the bulk modulus, the shear modulus, Young’s
modulus and Poisson’s ratio of the kth lamina are given by

KðkÞðfÞ ¼ KðkÞC � KðkÞM

� � V ðkÞC ðfÞ

1þ 1� V ðkÞC ðfÞ
� �

KðkÞ
C
�KðkÞ

M

KðkÞ
M
þ4

3GðkÞ
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þ KðkÞM
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� �

GðkÞ
C
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GðkÞM þf ðkÞM
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f ðkÞM ¼ GðkÞM
9KðkÞM þ 8GðkÞM

6KðkÞM þ 2GðkÞM

EðkÞðfÞ ¼ 9KðkÞGðkÞ

3KðkÞ þ GðkÞ
; mðkÞðfÞ ¼ 3KðkÞ � 2GðkÞ

2 3KðkÞ þ GðkÞ
� � ð1Þ
Here subscripts C and M on a quantity imply its values for the cera-
mic and the metal, respectively. Before proceeding further we give
the FGM nomenclature employed in the paper. Effective properties
derived by using the Theory of Mixtures and the Mori–Tanaka
schemes are denoted, respectively, by superscripts (MIX) and (MT).
The four different volume fraction functions considered are the 4
parameters power law (4P) [9–13], the Weibull (W), the Exponential
(E) and the 3 parameters power law (3P) used by Vel and Batra [5].

The acronym used to identify these is: FGMtðthÞ
bðfunÞðaðkÞ=bðkÞ=...Þ

, where t

and b represent the material at the top and the bottom of the current
lamina (e.g., if the top is made of ceramic and the bottom of metal
t = C and b = M), (th) = (MIX) or (MT) represents the scheme used to
deduce values of the effective material properties, (fun) = (4P), (W),
(E) or (3P) describes the function for through-the-thickness variation
of the volume fraction of constituents, and a(k)/b(k)/. . . are parame-
ters in the expressions for the volume fractions of constituents. For
the four parameters a(k), b(k), c(k) and p(k), power law distributions,
the volume fraction of the ceramic is given by



Fig. 6. For a CCFF Zirconia/Core/Zirconia sandwich rectangular plate, through-the-thickness variation of stresses [Pa] on the transverse normal passing through the point
D ¼ 0:25 a1

1 � a0
1

� �
;0:75 a1

2 � a0
2

� �� �
. The plate has a uniformly distributed load qðþÞn ¼ �10;000 Pa at the top surface, h1 = h3 = 0.075 m, h2 = 0.15 m and E = 0.7GPa, m = 0.3 for

the core material.
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The Weibull distribution (W) is defined by
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where a(k) and b(k) are parameters. Another two-parameter distribu-
tion is the exponential (E) given by
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The results of the present technique have been compared with the
analytical solution of Vel and Batra [5] who used the following
expressions for the volume fraction of the ceramic phase

V ðkÞC ðfÞ ¼ V�ðkÞC þ VþðkÞC � V�ðkÞC

� � f� fk

hk
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� � fkþ1 � f
hk
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Table 1
Values of non-dimensional parameter/ for the (a) FG sandwich plate for which results are reported in Figs. 7–9, using the mean value of the elastic modulus of the sheets and the
soft core, considering h1 = h3 = 0.05 m and h2 = 0.2 m, (b) FG fictitious sandwich spherical panel with results reported in Figs. 10–12 using the elastic moduli of the zirconia and the
aluminium, considering variable thickness of the sheets and the core, (c) FG sandwich free-form shell for which results are given in Figs. 13–15 using the mean value of the elastic
moduli of the face sheets and the stiff core, considering h1 = h3 = 0.02 m and h2 = 0.06 m, (d) FG sandwich free-form panel for which results are displayed in Figs. 16–18 using the
mean value of the elastic modulus of the core and the stiff face sheets, considering h1 = h3 = 0.01 m and h2 = 0.08 m.

Case (a)

a(1) = a(3) = 10 b(1) = b(3) = b

1/20 1/2 1 2 20
/(�) 13.1 50.0 60.1 67.7 87.1
Eð�Þ (GPa) 18.37 70.00 84.18 94.75 122.00
Ec (GPa) 0.35 0.35 0.35 0.35 0.35
EðþÞ (GPa) 149.987 122.00 84.18 73.60 46.36
/(+) 107.1 87.1 60.1 52.6 33.1

Case (b)

b(1) = b(2) = 50

a(1) 0.3 0.4 0.5 0.6 0.7 0.8
a(2) 0.8 0.7 0.6 0.5 0.4 0.3
hs (m) 0.015 0.02 0.025 0.03 0.035 0.04
hc (m) 0.035 0.03 0.025 0.02 0.015 0.01
~/ 20.57 32 48 72 112 192

Case (c)

a(1) = a(3) = 1, b(1) = b(3) = 0, c(1) = c(3) p(1) = p(3) = p

1/20 1/5 1/2 1 2 5 20
Eð�Þ ¼ EðþÞ (GPa) 160.38 147.48 132.12 119 106.99 94.61 83.01
Ec (GPa) 70 70 70 70 70 70 70
/ 0.764 0.702 0.629 0.567 0.509 0.451 0.395

Case (d)

a(2) = 1, b(2) = 1, c(2) = 2 p(2) = p

1/20 1/5 1 5 20
E(�) = E(+) (GPa) 168 168 168 168 168
Ec (GPa) 166.89 163.62 147.84 97.95 49.19
/ 0.13 0.13 0.14 0.21 0.43
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Eq. (3) describes a power-law distribution using 3 parameters
ð3PÞ : V�ðkÞC ;VþðkÞC ;pðkÞ, where V�ðkÞC and VþðkÞC are the ceramic volume
fractions on the top and the bottom surfaces of the kth lamina.

3. Higher-order Shear Deformation Theory (HSDT)

A HSDT formulated using both the differential geometry con-
cepts and the mechanics of doubly-curved shells and panels pre-
sented in [148–150] is used here. It is an ESL theory in which
variables are functions of coordinates of points on the mid-surface
of the shell. A shell geometry is limited by a0

1 6 a1 6 a1
1

� �
along the

a1 – and a0
2 6 a2 6 a1

2

� �
along the a2 – coordinate axes that are

mutually orthogonal and lie on the mid-surface of the shell, and
(�h/2 6 f 6 h/2) along the f – axis or the shell thickness. The posi-
tion vector R of a point in the shell can be expressed as

R a1;a2; fð Þ ¼ r a1;a2ð Þ þ h a1;a2ð Þ
2

zn a1;a2ð Þ

for z ¼ 2f=h a1;a2ð Þ; z 2 �1;1½ � ð6Þ

where r(a1,a2) is the position vector of a point on the mid-surface
of the shell and n(a1, a2) is the outward unit normal to the mid-
surface. The shell thickness h(a1,a2) need not be uniform, and

h ¼
Xl

k¼1

hk; hk ¼ fkþ1 � fk ð7Þ

where hk is the thickness of the kth lamina. For conciseness, we
refer the reader to Refs. [79,80] for the ESL shell theory governing
equations in terms of the Lamè parameters A1, A2 and the principal
radii of curvature R1, R2. These equations are valid under a well-
known set of assumptions listed in Refs. [148,150] where the CUF
of shell theories is provided. The displacement field in the HSDT
model of the CUF can be written as

U1 a1;a2; fð Þ ¼ F0uð0Þ1 þ F1uð1Þ1 þ � � � þ FNuðNÞ1 þ FNþ1uðNþ1Þ
1

U2 a1;a2; fð Þ ¼ F0uð0Þ2 þ F1uð1Þ2 þ � � � þ FNuðNÞ2 þ FNþ1uðNþ1Þ
2

U3 a1;a2; fð Þ ¼ F0uð0Þ3 þ F1uð1Þ3 þ � � � þ FNuðNÞ3 þ FNþ1uðNþ1Þ
3

ð8Þ

or

U ¼
XNþ1

s¼0

FsuðsÞ ð9Þ

where U(a1,a2,f) = [U1 U2 U3]T is the vector of the displacement

components, uðsÞ a1;a2ð Þ ¼ uðsÞ1 uðsÞ2 uðsÞ3

h iT
is the sth order vector of

the generalized displacements of points on the mid-surface (f = 0)
of the shell, Fs is the 3 � 3 matrix

Fs ¼
Fs 0 0
0 Fs 0
0 0 Fs

2
64

3
75 ¼ FsI3; ð10Þ

I3 is the 3 � 3 identity matrix and Fs(f) is a function of the thickness
coordinate f that can have several forms. The most common form of
Fs(f) is a polynomial of order N + 1 such as

Fs ¼
fs for s ¼ 0;1; . . . ;N

�1ð Þk 2
fkþ1�fk

f� fkþ1þfk
fkþ1�fk

� �
for s ¼ N þ 1

(
for k ¼ 1; . . . ; l

ð11Þ

Many other expressions for the thickness function, Fs(f), are sum-
marized in Refs. [148–150]. For the displacement field (9), the gen-
eralized strain vector, e(s), is given by



Fig. 7. For a CCFF FGMMðMIXÞ
CðEÞðað1Þ¼10=bð1Þ Þ

=Core=FGMCðMIXÞ
MðEÞðað3Þ¼10=bð3Þ Þ

sandwich rectangular plate, through-the-thickness variation of displacement components [m] on the transverse

normal passing through the point D ¼ 0:25 a1
1 � a0

1

� �
;0:75 a1

2 � a0
2

� �� �
. The plate has a uniformly distributed load qðþÞn ¼ �10;000 Pa at the top surface, h1 = h3 = 0.05 m,

h2 = 0.2 m, and E = 0.35 GPa, m = 0.3 for the core material.

74 F. Tornabene et al. / Composite Structures 119 (2015) 67–89
eðsÞ ¼ DXuðsÞ for s ¼ 0;1;2; . . . ;N;N þ 1 ð12Þ

where DX is the differential operator [148,150] involving radii of
curvature R1 and R2 and derivatives with respect to spatial coordi-
nates a1 and a2. It is noted that only e(0) and e(1) have physical
meaning, e(s) for s = 2,. . ., N represents the generalized parts of
the deformation, and e(N+1) represents the generalized part of the
deformation associated with the zigzag effect. Different generalized
strain vectors e(s) for s = 0,1,2,. . ., N, N + 1, are given by Eq. (12), and
the index s refers to the order of the strain, e.g., s = 1 represents the
first-order deformation. For the linear elastic and isotropic shell
material, constitutive equations in terms of stress resultants can
be written as

SðsÞ ¼
XNþ1

s¼0

AðssÞeðsÞ for s ¼ 0;1;2; . . . ;N;N þ 1 ð13Þ



Fig. 8. For a CCFF FGMMðMIXÞ
CðEÞðað1Þ¼10=bð1Þ Þ

=Core=FGMCðMIXÞ
MðEÞðað3Þ¼10=bð3Þ Þ

sandwich rectangular plate, through-the-thickness variation of strains on the transverse normal passing through

the point D ¼ 0:25 a1
1 � a0

1

� �
;0:75 a1

2 � a0
2

� �� �
. The plate has a uniformly distributed load qðþÞn ¼ �10;000 Pa at the top surface, h1 = h3 = 0.05 m, h2 = 0.2 m, and E = 0.35 GPa,

m = 0.3 for the core material.
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where SðsÞ a1;a2ð Þ ¼ NðsÞ1 NðsÞ2 NðsÞ12 NðsÞ21 TðsÞ1 TðsÞ2 PðsÞ1 PðsÞ2 SðsÞ3

h iT
is the

sth order vector of the stress resultants and A(ss) is the matrix of
the elastic constants [148,150] defined as

AðssÞ
nmðpqÞ ¼

Xl

k¼1

R fkþ1
fk

CðkÞnmFsFs
H1H2
Hp

1Hq
2

df

Að~ssÞ
nmðpqÞ ¼

Xl

k¼1

R fkþ1
fk

CðkÞnmFs
@Fs
@f

H1H2
Hp

1Hq
2

df

Aðs~sÞ
nmðpqÞ ¼

Xl

k¼1

R fkþ1
fk

CðkÞnm
@Fs
@f Fs

H1H2
Hp

1
Hq

2
df

Að~s~sÞ
nmðpqÞ ¼

Xl

k¼1

R fkþ1
fk

CðkÞnm
@Fs
@f

@Fs
@f

H1H2
Hp

1Hq
2

df

for s; s ¼ 0;1;2; . . . ;N;N þ 1
for n;m ¼ 1;2;3;4;5;6
for p; q ¼ 0;1;2

ð14Þ

Here, superscripts s, s indicate the corresponding thickness
functions Fs, Fs, respectively. The superscripts ~s;~s imply that the cor-
responding thickness functions Fs, Fs are replaced by @Fs

@f ;
@Fs
@f , respec-
tively, p, q are exponents of the quantities H1 ¼ 1þ f
R1
; H2 ¼ 1þ f

R2
,

and n, m are indices of the material constants CðkÞnm defined for the

kth lamina. Expressions for material constants CðkÞnm can be found in
structural mechanics books [65,69,70].

Using the principle of minimum potential energy [79,80], equa-
tions of static equilibrium can be written as

D�XSðsÞ þ qðsÞ ¼ 0 for s ¼ 0;1;2; . . . ;N;N þ 1 ð15Þ
where D�X is the differential operator [148,150],

qðsÞ ¼ qðsÞ1 qðsÞ2 qðsÞn

h iT
is the static load equivalent to forces

applied on the shell top and bottom surfaces, and

qðsÞ1 ¼ qð�Þ1 Fð�Þs Hð�Þ1 Hð�Þ2 þ qðþÞ1 FðþÞs HðþÞ1 HðþÞ2

qðsÞ2 ¼ qð�Þ2 Fð�Þs Hð�Þ1 Hð�Þ2 þ qðþÞ2 FðþÞs HðþÞ1 HðþÞ2 for s¼ 0;1;2; . . . ;N;Nþ1

qðsÞn ¼ qð�Þn Fð�Þs Hð�Þ1 Hð�Þ2 þ qðþÞn FðþÞs HðþÞ1 HðþÞ2

ð16Þ



Fig. 9. For a CCFF FGMMðMIXÞ
CðEÞðað1Þ¼10=bð1Þ Þ

=Core=FGMCðMIXÞ
MðEÞðað3Þ¼10=bð3Þ Þ

sandwich rectangular plate, through-the-thickness variation of strains on the transverse normal passing through

the point D ¼ 0:25 a1
1 � a0

1

� �
;0:75 a1

2 � a0
2

� �� �
. The plate has a uniformly distributed load qðþÞn ¼ �10;000 Pa at the top surface, h1 = h3 = 0.05 m, h2 = 0.2 m, and E = 0.35GPa,

m = 0.3 for the core material.
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Here qð�Þ1 ; qð�Þ2 ; qð�Þn and qðþÞ1 ; qðþÞ2 ; qðþÞn are surface tractions applied on
the bottom, f = � h/2, and the top, f = + h/2, surfaces, respectively.
Combining Eqs. (12), (13) and (15), the governing equations can
be written in terms of generalized displacements asXNþ1

s¼0

LðssÞuðsÞ þ qðsÞ ¼ 0 for s ¼ 0;1;2; . . . ;N;N þ 1 ð17Þ

where LðssÞ ¼ D�XAðssÞDX is the equilibrium operator [148,150]. The
total number of equations depends on the order of expansion s.
Boundary conditions for differential equations (17) for clamped
(C), simply-supported (S) and free (F) edges are listed below.

Clamped edge (C)

uðsÞ1 ¼ uðsÞ2 ¼ uðsÞ3 ¼ 0 for s ¼ 0;1;2; . . . ;N;N þ 1; at

a1 ¼ a0
1 or a1 ¼ a1

1; a0
2 6 a2 6 a1

2 ð18Þ

uðsÞ1 ¼ uðsÞ2 ¼ uðsÞ3 ¼ 0 for s ¼ 0;1;2; . . . ;N;N þ 1; at

a2 ¼ a0
2 or a2 ¼ a1

2; a0
1 6 a1 6 a1

1 ð19Þ
Simply-supported edge (S)

NðsÞ1 ¼ 0;uðsÞ2 ¼ uðsÞ3 ¼ 0 for s ¼ 0;1;2; . . . ;N;N þ 1; at

a1 ¼ a0
1 or a1 ¼ a1

1; a0
2 6 a2 6 a1

2 ð20Þ
NðsÞ2 ¼ 0;uðsÞ1 ¼ uðsÞ3 ¼ 0; for s ¼ 0;1;2; . . . ;N;N þ 1; at

a2 ¼ a0
2 or a2 ¼ a1

2; a0
1 6 a1 6 a1

1 ð21Þ

Free edge (F)

NðsÞ1 ¼ 0;NðsÞ12 ¼ 0; T ðsÞ1 ¼ 0 for s ¼ 0;1;2; . . . ;N;N þ 1; at

a1 ¼ a0
1 or a1 ¼ a1

1; a0
2 6 a2 6 a1

2 ð22Þ
NðsÞ21 ¼ 0;NðsÞ2 ¼ 0; T ðsÞ2 ¼ 0 for s ¼ 0;1;2; . . . ;N;N þ 1; at

a2 ¼ a0
2 or a2 ¼ a1

2; a0
1 6 a1 6 a1

1 ð23Þ

In general, a panel is defined by four edges. However, the given geo-
metric description allows considering shells of revolution, in other
words structures which have a closing meridian (shells). For these



Fig. 10. For a FCFF FGMMðMIXÞ
CðWÞðað1Þ=bð1Þ¼50Þ

=FGMCðMIXÞ
MðWÞðað2Þ=bð2Þ¼50Þ

spherical panel, through-the-thickness variation of displacement components [m] on the transverse normal passing

through the point C ¼ 0:25 a1
1 � a0

1

� �
;0:25 a1

2 � a0
2

� �� �
. The panel has a uniformly distributed load qðþÞn ¼ �10;000 Pa at the top surface, h1 = h2 = 0.05 m.
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structures the continuity of displacements and surface tractions at
a2 = 0,2p is enforced

Kinematic (displacement) compatibility conditions along the clos-
ing meridian (a2 = 0,2p)
uðsÞ1 a1;0; tð Þ ¼ uðsÞ1 a1;2p; tð Þ; uðsÞ2 a1;0; tð Þ ¼ uðsÞ2 a1;2p; tð Þ;
uðsÞ3 a1;0; tð Þ ¼ uðsÞ3 a1;2p; tð Þ for s ¼ 0;1;2; . . . ;N;N þ 1;

a0
1 6 a1 6 a1

1 ð24Þ



Fig. 11. For a FCFF FGMMðMIXÞ
CðWÞðað1Þ=bð1Þ¼50Þ

=FGMCðMIXÞ
MðWÞðað2Þ=bð2Þ¼50Þ

spherical panel, through-the-thickness variation of strains on the transverse normal passing through the point

C ¼ 0:25 a1
1 � a0

1

� �
;0:25 a1

2 � a0
2

� �� �
. The panel has a uniformly distributed load qðþÞn ¼ �10;000 Pa at the top surface, h1 = h2 = 0.05 m.
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Physical (surface tractions) compatibility conditions along the clos-
ing meridian(a2 = 0,2p)

NðsÞ21 a1;0; tð Þ ¼ NðsÞ21 a1;2p; tð Þ; NðsÞ2 a1;0; tð Þ ¼ NðsÞ2 a1;2p; tð Þ;
TðsÞ2 a1;0; tð Þ ¼ TðsÞ2 a1;2p; tð Þ for s ¼ 0;1;2; . . . ;N;N þ 1;

a0
1 6 a1 6 a1

1 ð25Þ
4. Approximate numerical solution

The boundary-value problem (BVP) formulated above is numer-
ically solved by using the GDQ method that transforms a partial or a
total derivative of an unknown function into an algebraic form, (e.g.,
see Eq. (26)), and hence differential equations into algebraic equa-
tions that can be numerically solved for the unknown quantities

@nf xð Þ
@xn

����
x¼xm

¼
XT

k¼1

1ðnÞmkf xkð Þ; ð26Þ
Furthermore, the GDQ method can be used to approximate integrals
as reported in several papers [148–150,160]. This approximation,
termed Generalized Integral Quadrature (GIQ) rule [118], is
employed in the present work for approximating the engineering
constants AðssÞ

nmðpqÞ;A
ð~ssÞ
nmðpqÞ;A

ðs~sÞ
nmðpqÞ;A

ð~s~sÞ
nmðpqÞ. We note that the SSPH

method proposed by Zhang and Batra [169,170] also expresses
derivatives of a function at a point in terms of values of the function
at its neighboring points. The SSPH basis functions have been
employed to numerically analyze several BVPs [169–171]. For
numerically solving the BVP a Chebyshev–Gauss–Lobatto (C–G–L)
grid of points is considered both in the interior and at boundaries
of the shell/panel. That is, coordinates (a1i,a2j) of points on the ref-
erence surface are given by

a1i ¼ 1�cos
i�1

IN�1
p

� �� �
a1

1�a0
1

� �
2

þa0
1; i¼1;2; . . . ; IN ; for a1 2 a0

1;a
1
1

	 

a2j ¼ 1�cos

j�1
IM�1

p
� �� �

a1
2�a0

2

� �
2

þa0
2; j¼ 1;2; . . . ; IM ; for a2 2 a0

2;a
1
2

	 
 ð27Þ



Fig. 12. For a FCFF FGMMðMIXÞ
CðWÞðað1Þ=bð1Þ¼50Þ

=FGMCðMIXÞ
MðWÞðað2Þ=bð2Þ¼50Þ

spherical panel, through-the-thickness variation of stresses [Pa] on the transverse normal passing through the point

C ¼ 0:25 a1
1 � a0

1

� �
;0:25 a1

2 � a0
2

� �� �
. The panel has a uniformly distributed load qðþÞn ¼ �10;000 Pa at the top surface, h1 = h2 = 0.05 m.
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where IN, IM are the total number of sampling points used to discret-
ize the domain in the a1, a2 directions, respectively. It is shown in
Refs. [127–129,131–140] that the C–G–L points give accurate
results. Using Eq. (26), the BVP defined by Eqs. (17)–(25) can be
written as the following system of algebraic equations

Kbb Kbd

Kdb Kdd

� �
db

dd

� �
�

fb

fd

� �
¼

0
0

� �
ð28Þ

In Eq. (28) subscripts b and d in d = [db dd]T refer to degrees of free-
dom associated with the boundary db where surface tractions are
prescribed and the domain dd, respectively. We note that null dis-
placements prescribed at points on the clamped boundary have
been incorporated in Eq. (28). Using the static condensation on
the first line of (28) we obtain

db ¼ Kbbð Þ�1½fb � Kbddd� ð29Þ

Substituting from Eq. (29) into Eq. (28) we get

Kdd � Kdb Kbbð Þ�1Kbd

� �
dd ¼ fd � Kdb Kbbð Þ�1fb ð30Þ
which can be written as

Kdd ¼ �f ð31Þ

where K ¼ Kdd � Kdb Kbbð Þ�1Kbd and �f ¼ fd � Kdb Kbbð Þ�1fb . The sys-
tem of linear equations (31) can be easily solved. The GDQ method
is computationally cost effective since no integration on the 2-D
domain is needed.

5. Recovery of transverse stresses and strains

As in previous studies [139,140,146–150,157,158,160,161] on
posteriori recovery of transverse shear and normal stresses, we
use the 3-D linear elasticity equilibrium equations (32) for a gen-
eral doubly-curved shell to compute these stresses. Even though
the 2-D shell problem formulated above considers through-
the-thickness stresses, they may not satisfy surface tractions
prescribed on the top and the bottom surfaces. Hence, Eq. (32)
can be used to evaluate or correct all transverse normal and shear
strains and stresses
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@s1n

@f
þs1n

2
R1þ f

þ 1
R2þ f

� �
¼� 1

A1 1þf=R1ð Þ
@r1

@a1
þ r2�r1

A1A2 1þf=R2ð Þ
@A2

@a1

� 1
A2 1þ f=R2ð Þ

@s12

@a2
� 2s12

A1A2 1þ f=R1ð Þ
@A1

@a2

@s2n

@f
þs2n

1
R1þ f

þ 2
R2þ f

� �
¼� 1

A2 1þf=R2ð Þ
@r2

@a2
þ r1�r2

A1A2 1þf=R1ð Þ
@A1

@a2

� 1
A1 1þ f=R1ð Þ

@s12

@a1
� 2s12

A1A2 1þ f=R2ð Þ
@A2

@a1

@rn

@f
þrn

1
R1þf

þ 1
R2þf

� �
¼� 1

A1 1þ f=R1ð Þ
@s1n

@a1
� s1n

A1A2 1þ f=R2ð Þ
@A2

@a1

� 1
A2 1þ f=R2ð Þ

@s2n

@a2
� s2n

A1A2 1þ f=R1ð Þ
@A1

@a2

þ r1

R1þf
þ r2

R2þf
ð32Þ

Note that the in-plane stresses r1,r2,s12 and their derivatives
@r1
@a1

; @r2
@a2

; @s12
@a1

; @s12
@a2

are known at all points of the 3-D solid shell. Eq.
(32) are solved for the transverse shear and the transverse normal
stresses,s1n,s2n,rn, by using the GDQ method along the thickness
direction f at the C–G–L points given by

fm ¼ 1� cos
m� 1
IT � 1

p
� �� �

h
2
� h

2
; m ¼ 1;2; . . . ; IT ;

for f 2 � h
2
;
h
2

� �
ð33Þ

Eq. (32)3 is solved for rn only after the numerical evaluation of the
two shear stresses s1n,s2n and their derivatives @s1n

@a1
; @s2n
@a2

, e.g. see Refs.
[138,160]. When solving Eq. (32) for the transverse shear stresses
s1n,s2n, the traction boundary conditions at the bottom surface are
first used and a linear correction is employed afterwards for the sat-
isfaction of the traction boundary conditions at the top surface as
exemplified below in Eqs. (34) and (35).

s1n ij1ð Þ ¼ �qð�Þ1ðijÞðBoundary condition at the bottom surface of the shellÞ
XIT

k¼1

1f 1ð Þ
mk s1nðijkÞ þs1nðijmÞ

2
R1ðijÞþfm

þ 1
R2ðijÞþfm

� �
¼� 1

A1ðijÞ 1þfm=R1ðijÞð Þ
@r1
@a1

���
ðijmÞ

þ r2ðijmÞ�r1ðijmÞ

A1ðijÞA2ðijÞ 1þfm=R2ðijÞð Þ
@A2
@a1

���
ðijÞ
þ

� 1
A2ðijÞ 1þfm=R2ðijÞð Þ

@s12
@a2

���
ðijmÞ
� 2s12ðijmÞ

A1ðijÞA2ðijÞ 1þfm=R1ðijÞð Þ
@A1
@a2

���
ðijÞ

for m¼2; . . . ; IT

8>>>>>>>>>><
>>>>>>>>>>:

s2n ij1ð Þ ¼ �qð�Þ2ðijÞðBoundary condition at the bottom surface of the shellÞ
XIT

k¼1

1f 1ð Þ
mk s2nðijkÞ þs2nðijmÞ

1
R1ðijÞþfm

þ 2
R2ðijÞþfm

� �
¼� 1

A2ðijÞ 1þfm=R2ðijÞð Þ
@r2
@a2

���
ðijmÞ

þ r1ðijmÞ�r2ðijmÞ

A1ðijÞA2ðijÞ 1þfm=R1ðijÞð Þ
@A1
@a2

���
ðijÞ
þ

� 1
A1ðijÞ 1þfm=R1ðijÞð Þ

@s12
@a1

���
ðijmÞ
� 2s12ðijmÞ

A1ðijÞA2ðijÞ 1þfm=R2ðijÞð Þ
@A2
@a1

���
ðijÞ

for m¼2; . . . ; IT

8>>>>>>>>>><
>>>>>>>>>>:
The boundary conditions at the top surface of the shell, s1nðijTÞ ¼ �qðþÞ1ðijÞ
and s2nðijTÞ ¼ �qðþÞ2ðijÞ , are satisfied as follows

�s1nðijmÞ ¼ s1nðijmÞ þ
�qðþÞ

1ðijÞ�s1nðijTÞ

h fm þ h
2

� �
�s2nðijmÞ ¼ s2nðijmÞ þ

�qðþÞ
2ðijÞ�s2nðijTÞ

h fm þ h
2

� � for m ¼ 1; . . . ; IT ð35Þ

The GDQ method applied to Eq. (32)3 gives

rn ij1ð Þ ¼ �qð�ÞnðijÞðBoundary condition at the bottom surface of the shellÞ
XIT

k¼1

1f 1ð Þ
mk rnðijkÞ þrnðijmÞ

1
R1ðijÞþfm

þ 1
R2ðijÞþfm

� �
¼ r1ðijmÞ

R1ðijÞþfm
þ r2ðijmÞ

R2ðijÞþfm
þ

� 1
A1ðijÞ 1þfm=R1ðijÞð Þ

@�s1n
@a1

���
ðijmÞ
� �s1nðijmÞ

A1ðijÞA2ðijÞ 1þfm=R2ðijÞð Þ
@A2
@a1

���
ðijÞ
þ

� 1
A2ðijÞ 1þfm=R2ðijÞð Þ

@�s2n
@a2

���
ðijmÞ
� �s2nðijmÞ

A1ðijÞA2ðijÞ 1þfm=R1ðijÞð Þ
@A1
@a2

���
ðijÞ

for m¼2; . . . ; IT

8>>>>>>>>>><
>>>>>>>>>>:

ð36Þ

where derivatives @�s1n
@a1

; @
�s2n
@a2

of the shear stresses �s1n; �s2n are approxi-
mated using the GDQ method. The boundary condition on the top
surface of the shell, rnðijTÞ ¼ �qðþÞnðijÞ, is enforced by the following
formula
�rnðijmÞ ¼ rnðijmÞ þ
�qðþÞnðijÞ � rnðijTÞ

h
fm þ

h
2

� �
for m ¼ 1; . . . ; IT ð37Þ

We use the generalized Hooke’s law [65,69,70] to evaluate the out-
of-plane shear and normal strains c1n,c2n,en from

c1nðijmÞ ¼
CðmÞ55

�s1nðijmÞ � CðmÞ45
�s2nðijmÞ

CðmÞ55 CðmÞ44 � CðmÞ45

� �2

c2nðijmÞ ¼
CðmÞ44

�s2nðijmÞ � CðmÞ45
�s1nðijmÞ

CðmÞ55 CðmÞ44 � CðmÞ45

� �2

enðijmÞ ¼
�rnðijmÞ � CðmÞ13 e1ðijmÞ � CðmÞ23 e2ðijmÞ � CðmÞ36 c12ðijmÞ

CðmÞ33

ð38Þ

We note that relations (38) do not guarantee that the strain com-
patibility conditions are satisfied. Transverse strains computed
using Eqs. (38) and in-plane strain components found from the dis-
placements and strain–displacement relations can be used to fur-
ther refine stresses r1,r2,s12 as follows:

�r1ðijmÞ ¼ CðmÞ11 e1ðijmÞ þ CðmÞ12 e2ðijmÞ þ CðmÞ16 c12ðijmÞ þ CðmÞ13 enðijmÞ

�r2ðijmÞ ¼ CðmÞ12 e1ðijmÞ þ CðmÞ22 e2ðijmÞ þ CðmÞ26 c12ðijmÞ þ CðmÞ23 enðijmÞ

�s12ðijmÞ ¼ CðmÞ16 e1ðijmÞ þ CðmÞ26 e2ðijmÞ þ CðmÞ66 c12ðijmÞ þ CðmÞ36 enðijmÞ

ð39Þ

In summary the stress (�r1; �r2; �s12; �s1n; �s2n; �rn) components in the 3-
D shell are numerically computed using Eqs. (35), (37) and (39),
whereas the strain (e1,e2,c12,c1n,c2n,en) components are evaluated
using the constitutive equations and Eqs. (38). It will be shown by
several example problems that the present recovery approach gives
their values close to those obtained using the FEM to analyze 3-D
deformations of the shell.
6. Applications

Recalling that the accuracy and the stability of the GDQ method
applied to laminated structures have been studied in [131–140],
we focus here on providing results for through-the-thickness
displacements, stresses and strains for sandwich shells. For all
problems studied, a relatively fine 31 � 31 C–G–L grid in the
mid-surface of the shell and 51 points along the transverse normal
in each lamina for the recovery procedure are used. The numerical
solution is found with the free software distributed by the authors
[164].

Boundary conditions on the four edges of a shell are written in
the sequence WSEN for West, South, East and North edges, respec-
tively, and letters ‘‘C’’, ‘‘S’’ and ‘‘F’’ are used to identify clamped,
simply-supported and traction free conditions. Thus, boundary
conditions FCFC mean the West and the East edges are traction free
and the South and the North edges are clamped. For a shell of rev-
olution with the vertical line as the axis of symmetry, boundary
conditions are described as CF on the South and the North surfaces.
Geometries of doubly-curved free-form shells and panels investi-
gated in this work are depicted in Fig. 1. The through-the-thickness
distributions of volume fraction of the constituents used in the fol-
lowing examples are shown in Fig. 2. One of the constituents of the
FGM is Zirconia for which, unless otherwise mentioned, Young’s
modulus E = 168 GPa and Poisson’s ratio m = 0.3.

In results presented in various Figures, symbols EDZ2, EDZ3 and
EDZ4 are used. In these symbols, E indicates that an ESL theory is
employed, D specifies that the governing equations are expressed
in terms of the generalized displacements, Z stands for the Mura-
kami function, and numbers 2, 3, 4 equal the value of (N + 1) in
Eq. (11), e.g. see [148,160].



Fig. 13. Through-the-thickness variation of displacement components [m] for a CF free-form revolution shell of Fig. 1a at the point A ¼ 0:5 a1
1 � a0

1

� �
;0:5 a1

2 � a0
2

� �� �
with a

FGMMðMIXÞ
Cð4PÞðað1Þ¼1=bð1Þ¼0=cð1Þ=pð1Þ Þ

=Aluminum=FGMCðMIXÞ
Mð4PÞðað3Þ¼1=bð3Þ¼0=cð3Þ=pð3Þ Þ

lamination scheme, when uniformly distributed load qðþÞ1 ¼ 10;000 Pa is applied on the top surface,
h1 = h3 = 0.02 m and h2 = 0.06 m.
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6.1. Comparison of present results with the analytical solution of Vel
and Batra

In order to establish the validity of the posteriori recovery of the
transverse shear and the transverse normal stresses for an FGM
structure, we compare the presently computed results with the
semi-analytical solution of Vel and Batra [5] who analyzed three
dimensional (3D) deformations of FGM rectangular plates with
the volume fraction of Aluminium (E = 70 GPa,m = 0.3) and Silicon
Carbide (E = 427 GPa,m = 0.17) given by Eq. (5) and the
Mori–Tanaka homogenization scheme. Results are presented in
terms of the following nondimensionalized variables:

�u1;�u2ð Þ¼100EAluh2

qðþÞn L3
u1;u2ð Þ; �u3 ¼

100EAluh3

qðþÞn L4
u3

�rx; �ry;�sxy
� �

¼ 10h2

qðþÞn L2
rx;ry;sxy
� �

; �sxz;�syz
� �

¼ 10h

qðþÞn L
sxz;syz
� �

; �rz ¼
rz

qðþÞn

ð40Þ



Fig. 14. Through-the-thickness variation of strains for a CF free-form revolution shell of Fig. 1a at the point A ¼ 0:5 a1
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lamination scheme, when uniformly distributed load qðþÞ1 ¼ 10;000 Pa is applied on the top surface,
h1 = h3 = 0.02 m and h2 = 0.06 m.
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For an SSSS square plate of aspect ratio L/h = 5, with a sinusoidal
load at the top surface qðþÞn ;V�C ¼ 0;VþC ¼ 0:75 and p = 2, we have
compared in Fig. 3 the presently computed values of �u3; �sxz and �rx

using the ED3 and the ED4 theories with those of Ref. [5]. It is clear
that the two sets of results are in excellent agreement with each
other thereby verifying the accuracy of the present posterior stress
recovery technique.

6.2. Flat laminated FG plates

Deformations of a flat sandwich rectangular 3 � 3 � 0.3 m plate
with h1 ¼ h3 ¼ 7:5 cm; h2 ¼ 15 cm; qðþÞn ¼ �10 MPa which is a
particular case of a degenerate shell are studied with different
ESL theories. In order to demonstrate the accuracy of the present
stress recovery scheme for a sandwich structure with core material
considerably softer than the material of the face sheets, results for
sandwich plate made of homogeneous material are compared with
those obtained by analyzing 3D deformations of the corresponding
structures by the FEM using 20 � 20 � 12 uniform 20-node brick
elements. The Zirconia face sheets are perfectly bonded to the core
made of an isotropic material having E = 0.7 GPa, m = 0.3; thus E1/
E2 = 240. In order to account for both the effect of the thickness
and the elastic modulus, we introduce a non-dimensional parame-
ter h1E1/h2E2 = /. Thus for the sandwich plate being studied, /
= 120. When either the core or the face sheet is made of an FGM,
then the mean value of E is used to compute /.

In Figs. 4–6 we have plotted through-the-thickness variations of
the three components of displacements, and the six components of
stresses and strains found using several higher-order ESL theories
with and without the Murakami function (zigzag effect) along with
those obtained by analyzing 3-D deformations of the sandwich
structure with the core and the face sheets made of homogeneous
materials with the FEM. It is clear that the zigzag effect is essential
to capture deformations of the soft-core due to large differences in
values of material parameters and thicknesses of the core and the
face sheets. Furthermore, the EDZ4 gives the best accuracy among
the four ESL theories considered but a good approximate solution
is obtained using the EDZ2 and the EDZ3. We now use the EDZ3



Fig. 15. Through-the-thickness variation of stresses [Pa] for a CF free-form revolution shell of Fig. 1a at the point A ¼ 0:5 a1
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to study deformations of the above sandwich plate except that
E = 0.35 GPa for the core material and the face sheets are made of
the FGM. For the FGMMðMIXÞ

CðEÞðað1Þ¼10=bð1ÞÞ
= Core=FGMCðMIXÞ

MðEÞðað3Þ¼10=bð3ÞÞ
plate

the through-the-thickness variation of the volume fraction of the
ceramic is assumed to be given by Eq. (3) and is depicted in
Fig. 2a for a(1) = a(3) = a = 10 and b(1) = b(3) = b = 1/20,1/2,1,2,20.
For comparison, the 3-D deformations of the Zirconia/Core/Zirco-
nia (/ = 120) plate made of isotropic and homogeneous materials
are analyzed by using 20 � 20 � 12 20-node brick elements with
the Strand 7 software. Values of the parameter / are summarized
in Table 1 (case a) with respect to the values of E of the top and
the bottom face sheets of the sandwich plate. Note that for most
of the cases studied, due to the mixing of the Zirconia with the
softer material, / < 1. The through-the-thickness variation of the
displacements, stresses and strains depicted in Figs. 7–9 reveal that
the results from the EDZ3 and the 3-D elasticity theory are virtu-
ally identical to each other. For the face sheets made of the FGM,
results for b = 1/20 and 20 are quantitatively quite different from
those for other values of b but results for the five values of b
considered are qualitatively similar to each other. Even though
the transverse shear stresses and strains in the core are nearly uni-
form, their values strongly depend upon the value of b.

6.3. Doubly-curved laminated FG panels

We study deformations of a doubly curved FCFF sandwich panel
with equal principal radii R1 = R2 = R = 1 m, h = 0.1 m,
h1 = h3 = 0.015 m, h2 = 0.07 m, and subjected to a uniform pressure,

pðþÞn ¼ �10 MPa, on the top layer. For comparison, the 3-D deforma-
tions of geometrically identical Zirconia/Core/Zirconia sandwich
structure with E = 3.5 GPa, m = 0.3 for the core material and using
25,600 (40 � 40 � 16) 20 node brick elements were analyzed by
the FEM. The non-dimensional parameter / ’ 10.3 for this structure.
We now assume that it can be modeled as a three layered structure
by modifying the definition of two plies. This can be achieved by the
Weibull distribution shown in Fig. 2b. The two plies are 5 cm thick
but the effective sheets and the core have a variable thickness which
depends on the volume fraction parameters. Thus the lamination



Fig. 16. Through-the-thickness variation of displacement components [m] for a CFFC free-form revolution panel of Fig. 1b at the point C ¼ 0:25 a1
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=Zirconia lamination scheme, when uniformly distributed load qðþÞn ¼ �10;000 Pa is applied on the top surface, h1 = h3 = 0.01 m and
h2 = 0.08 m.
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scheme is given by FGMMðMIXÞ
CðWÞðað1Þ=bð1Þ¼50Þ

=FGMCðMIXÞ
MðWÞðað2Þ=bð2Þ¼50Þ

. Note that

the FEM solution of 3D deformations of the Zirconia/Core/Zirconia
sandwich structure using h1 = h3 = 0.015 m and h2 = 0.07 m is also
displayed. It can be used as a reference since the other thicknesses
of the FG lamination schemes vary with the volume fractions. It is
clear from results plotted in Figs. 10–12 that values of parameters
a(1), a(2) significantly affect through-the-thickness distributions of
displacements, stresses and strains. The maximum values of the
in-plane normal stresses and the maximum value of the out-
of-plane strains in the core are reduced by changing the parameter
a(1) as 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and inversely a(2) as 0.8, 0.7, 0.6, 0.5,
0.4, 0.3. The values of the non-dimensional fictitious parameter ~/
for the different values of the volume fractions are given in Table 1
(case b). Note that the mean values of the elastic moduli are not



Fig. 17. Through-the-thickness variation of strains for a CFFC free-form revolution panel of Fig. 1b at the point C ¼ 0:25 a1
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=Zirconia lamination scheme, when uniformly distributed load qðþÞn ¼ �10;000 Pa is applied on the top surface, h1 = h3 = 0.01 m and
h2 = 0.08 m.
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considered for the present calculations, whereas the elastic moduli
of the Zirconia and the Aluminum are used with the following ficti-
tious sheets and core thicknesses denoted by subscripts s and c,
respectively: hs = 0.015 m, hc = 0.035 m; hs = 0.02 m, hc = 0.03 m;
hs = 0.025 m, hc = 0.025 m; hs = 0.03 m, hc = 0.020 m; hs = 0.035 m,
hc = 0.015 m; hs = 0.04 m, hc = 0.01 m.

6.4. Free-form doubly-curved laminated FG shells

The first example is the CF FGMMðMIXÞ
Cð4PÞðað1Þ¼1=bð1Þ¼0=cð1Þ=pð1ÞÞ

=

aluminum=FGMCðMIXÞ
Mð4PÞðað3Þ¼1=bð3Þ¼0=cð3Þ=pð3ÞÞ

shell of revolution (Fig. 2a)

with a free-form meridian generated by the Bézier curve with
�x1 ¼ 2 1:2 0:85 0:75 0:7½ �; �x03 ¼ 0 0:3 1 1:5 2½ �;w ¼ 1 1 1 1 1½ �; Rb

¼ 0 m;h ¼ 0:1 m and #0 = 2p, and a tangential force pðþÞ1 ¼ 10 MPa
applied at the top surface of the shell. The through-the-thickness
variation of the volume fraction of the constituents is shown in
Fig. 2c, and values of material parameters for the aluminum are
E = 70 GPa, m = 0.3 and those for the ceramic (Zirconia) are listed
above. The results of the recovered displacements, strains and stres-
ses on the transverse normal passing through the point
A ¼ 0:5 a1

1 � a0
1

� �
;0:5 a1

2 � a0
2

� �� �
for the power law exponent

p(1) = p(3) = p varying from 20 (FGM almost all Aluminum) to 1/20
(FGM almost all Zirconia) are shown in Figs. 13–15. Whereas the
ED4 is used for two isotropic cases (structure made of Aluminum
and Zirconia), the EDZ4 is used for other values of p. As has been
shown by numerous investigators for flat plates, results for the
FGM materials are in-between those for homogeneous structures
made of pure Aluminum and Zirconia. The values of the non-dimen-
sional parameter / for the FGMs are reported in Table 1 (case c), con-
sidering the mean values of the elastic moduli of the two face sheets.
For all FGMs studied in this example problem, / varies between
0.395 and 0.764.

The second example is a CFFC Zirconia=

FGMMðMIXÞ
Cð4PÞðað1Þ¼1=bð1Þ¼1=cð1Þ¼2=pð1ÞÞ

=Zirconia shell of revolution, similar to

that shown in Fig. 2d but with different thicknesses of the core
and the face sheets. It is formed by the Bézier geometric parame-
ters �x1 ¼ 0:8 1:3 1:5 1:4 1:2½ �; �x03 ¼ 0 0:5 1 1:5 2½ �;w ¼ 1 1 1 1 1½ �;
Rb ¼ 0 m;h ¼ 0:1 m and #0 = 2p/3, and a normal pressure



Fig. 18. Through-the-thickness variation of stresses for a CFFC free-form revolution panel of Fig. 1b at the point C ¼ 0:25 a1
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=Zirconia lamination scheme, when uniformly distributed load qðþÞn ¼ �10;000 Pa is applied on the top surface, h1 = h3 = 0.01 m and
h2 = 0.08 m.
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pðþÞn ¼ �10 MPa applied on the top surface. The two constituent
materials are Zirconia and Aluminum, and the thickness of the
top and the bottom face sheets and of the core are
h1 = h3 = 0.01 m, h2 = 0.08 m. Results on the transverse normal
through the point C ¼ 0:25 a1

1 � a0
1

� �
;0:25 a1

2 � a0
2

� �� �
presented in

Figs. 16–18 reveal that stresses for the FGM structures are in-
between those for the two limiting cases, namely those for the
structures made of pure Zirconia and pure Aluminum. Values of
/ listed in Table 1 (case d) vary between 0.13 and 0.43.
7. Conclusions

Several aspects related to the static analysis of FG laminated
free-form shells and doubly-curved shells have been studied by
using equivalent single layer (ESL) theories of different orders.
The differential equations of the ESL theory are numerically
solved by using the Generalized Differential Quadrature (GDQ)
method. Through-the-thickness variations of stresses, strains
and displacements computed by using an iterative a posteriori
stress recovery technique are found to be close to those
obtained by solving the 3-D equations of linear elasticity.
Furthermore, their values for structures made of FGMs are in-
between those for the same structures made of homogeneous
materials with material properties of the two constituents of
the FGM. When both FGMs and Bézier curves are considered,
the designer can tailor both the mechanical and the geometric
properties of the structure under study to optimize their
performance.
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